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Abstract: This paper aims at exploring the potentiality of the multimodal fusion of remote sensing
imagery with information coming from mobility demand data in the framework of land-use mapping
in urban areas. After a discussion on the function of mobility demand data, a probabilistic fusion
framework is developed to take advantage of remote sensing and transport data, and their joint
use for urban land-use and land-cover applications in urban and surrounding areas. Two different
methods are proposed within this framework, the first based on pixelwise probabilistic decision
fusion and the second on the combination with a region-based multiscale Markov random field. The
experimental validation is conducted on a case study associated with the city of Genoa, Italy.

Keywords: urban land-use mapping; data fusion; Markov random fields; transport zones; mobility
demand

1. Introduction

Land-use and land-cover mapping in urban and peri-urban areas plays a major role
in applications to urban planning, urban sprawl mitigation, and disaster risk prevention
in human settlements [1]. The discrimination of urban land-use classes is a complex task,
given the difficulty of jointly defining complex spatial patterns found in remote sensing
data and their relation to the semantic use of the corresponding urban area [2–4]. In this
framework, the introduction of ancillary information, for example OpenStreetMap (OSM)
layers, cadastral data, or social media data, used conjointly with remote sensing data
has shown promising results [5–7]. The objective of this work is to explore the potential
of the fusion of remote sensing data with information related to the so-called mobility
demand, such as people and freight mobility needs, for applications of urban land-use and
land-cover mapping in urban and peri-urban areas.The technique proposed in this paper
combines methodological aspects of two different disciplinary areas which are generally
considered separately, namely remote sensing and transport systems engineering. In this
case, the latter is considered the set of methods and tools aimed at connecting the so-called
activity system, i.e., the set of activities (work, residence, mixed) performed in the different
urban zones [8].

In this framework, a probabilistic decision fusion strategy [9] is adopted in the pro-
posed approach and two supervised methods are developed. In the first one, a case-specific
probabilistic model is developed to fuse, on a pixelwise basis, posterior probability dis-
tributions computed from the mobility and remote sensing data sources with regard to
the urban land-use and land-cover classes, respectively. In the second method, the multi-
scale region-based Markov random field (MRF) model in [10] is extended to integrate the
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aforementioned pixelwise probabilistic model and the spatial structure associated with the
transport data. This second method allows for characterising spatial-contextual information
within the process of urban land-use and land-cover mapping, an especially important task
in the application to high-resolution remote sensing images [11].

The novel contributions of this paper are twofold. First, the potential of the integration,
in a multimodal fusion framework, of methodological contributions coming from the
remote-sensing and transport-systems engineering fields is investigated and experimentally
discussed. The analysis of the advantages of this fusion process and of the added value
of mobility data are performed in the framework of the challenging problem of urban
land-use mapping from Earth observation (EO) imagery. Second, two novel algorithms are
developed to address the combination of remote sensing and transport data for urban land-
use mapping by leveraging probabilistic modelling and Markovian multiscale concepts.
To the authors’ knowledge, this is the first study in which the joint use of remote-sensing
images and mobility demand data, the latter usually gathered in the so-called Origin-
Destination (OD) matrix [8], is proposed and validated in a case study of urban land-use
and land-cover mapping. A preliminary version of the present work was published by
two of the authors of this article in the conference paper [12]. The present article further
extends this previous paper by expanding both the methodological discussion and the
experimental validation of the proposed approach in the aforementioned case study.

The objective of the present work is to demonstrate the effectiveness of the novel
combination of satellite imagery and mobility demand data for urban land-use and land-
cover mapping in the context of urban applications, as well as to propose two novel
algorithms that address this fusion problem. This work also has relevance to transport-
system studies, as it demonstrates an additional value of the OD matrix, showing that it can
provide information not only related to the mobility demand (which represents its currently
primary use in transport analysis and planning) but also to the activities performed in the
different zones of an urban area, and thus to the urban land use.

In this framework, the proposed approach, introducing the fusion of transport-data
and remote-sensing images, is not meant as an alternative to the use of cadastral data, but
as a further source of information, complementary to what can be extracted by cadastre.
Cadastral data sets obviously play a crucial role in urban mapping applications. As a
matter of fact, thematic products generated by the proposed methods could be used by the
local authorities as an additional tool for evaluating the goodness of cadastral data and to
extract up-to-date land-use maps when cadastral data are unavailable or not fully reliable.
Moreover, the availability of up-to-date OD matrices allows to plot the variations and the
dynamic evolution of the urban land use over time in a way that is more difficult if only
cadastral data can be used.

In this connection, the recent literature in transportation studies also shows how OD
matrices can be estimated and kept up-to-date in quasi-real time, thus further supporting
the role of the proposed approaches as complementary thematic mapping tools, in addition
to cadastral data sets. Such a direct dynamic estimation of OD matrices can be accomplished
using a wide range of crowdsourced data that are becoming more and more widespread,
including traffic counts data, smartcard data [13], GPS data [14], mobile phone data [15],
and floating car data provided by probe vehicles [16]. From this perspective, the possibility
of estimating OD matrices from the aforementioned sources without prior knowledge on
the territory suggests the relevance of exploring the possible benefit coming from their joint
use with remote-sensing imagery. In addition, mobility data are also available—or can be
estimated as mentioned above—in the urban areas where cadastral data may be unavailable,
unreliable, or not up-to-date. Indeed, cadastral data can be affected by unreliability issues
deriving from variations on the ground, owners negligence in updating household data, or
insufficiently frequent updates by the municipalities; there might also be a lack of detailed
regulations to verify these kinds of data [17].

The paper is organised as follows: The previous work related to the addressed topics
is reviewed in Section 2. Then, Section 3 recalls basic concepts about transport systems
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and mobility demand data. The considered case study, with its associated datasets, and
the methodological formulation of the proposed techniques are described in Section 4.
The experimental results obtained by the developed methods and by baseline approaches
are reported in Section 5 and discussed in Section 6. Finally, conclusions are drawn in
Section 7.

2. Previous Work

The issues addressed in this paper consist of the fusion of the information derived
from two separate scientific areas, transport systems engineering and remote sensing, to
investigate the potential of the joint use of two different types of data for the specific
application of mapping land use and land cover in urban and peri-urban areas. In this
section, we shall review the state of the art associated with remote sensing and ancillary data
fusion—jointly—focusing on approaches developed for urban land-use purposes. Land use
is of great importance for urban planning, environmental monitoring, and transportation
management [18].

Remote sensing techniques for land-cover and land-use mapping applications have
been regarded as a major solution for urban planning and monitoring of the urban envi-
ronment [19–21]. An important role in this context is played by supervised classification
methods. Spatially dense image classification (or semantic segmentation) methods based
on architectures of deep neural networks have recently found to be highly promising in a
variety of applications, including remote sensing [22,23]. However, to perform accurate
classification, deep-learning based classifiers usually require a large number of training sam-
ples, which may not be available for many remote sensing applications [24] and especially
with regard to land-use classes [5].

At the same time, crowd-sourced OSM data provide rich annotation information
about urban targets [19,25]. The combination of OSM data and remote-sensing images
for efficient urban scene classification has been explored recently [19,26,27]. For example,
in [26], Landsat images were integrated with OSM data in a semiautomatic large-scale
and long-time series urban land mapping framework with the goal of sustainable urban
development. Road networks play an important role in traffic management, urban planning,
vehicle navigation, and emergency management. In [27], an automatic approach for
extracting road networks from very high resolution (VHR) remote sensing images and
OSM data was presented based on a fully convolutional neural network, in which the
road centrelines from OSM were employed to construct the labels for the model training
and validation.

Furthermore, the quantification of impervious surfaces provides useful information
for urban planning and therefore socioeconomic development [28–33]. OSM data on
impervious surfaces have been integrated with the predictions of neural networks, when
applied to Landsat 8 images, to produce classification results on impervious surfaces [28]
and to Sentinel-2 multispectral imagery [29]. In [30], a further road superimposition strategy
that considers road hierarchy was developed to perform land-cover classification of urban
areas. Moreover, a hybrid method was developed to improve the extraction of impervious
surfaces from high-resolution aerial imagery in [31], integrating ancillary datasets from
OSM, and the United States National Wetland Inventory and National Cropland Data to
generate training and validation samples in a semiautomatic manner.

These methods, however, simply consider information about impervious surfaces,
without including knowledge about their use. OSM road network data were also inte-
grated with remote sensing and geospatial data to develop an accurate urban functional
region identification method and to analyse the spatial distribution of the population, infor-
mation crucial to the analysis of population mobility patterns and health indicators [34].
The distribution of the population is of great significance in urban emergency response,
disaster assessment, urban planning, and transportation route design [35]. In [35], land
cover and ancillary data, including building addresses, housing price data, and stereo
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pairs of high-resolution remote sensing images, were used to simulate fine-scale urban
population distribution.

Street blocks generated from OSM data have been used in [36] as the minimum classi-
fication unit and integrated with ensemble learning and with sets of multiscale spatially
explicit data about land surface, vertical height, socioeconomic attributes, social media,
demography, and topography, to derive urban land-use classification maps to be used for
urban planning, environmental management, and disaster control [36]. Furthermore, this
information regarding land use in the urban environment has been integrated with data
about population, roads, and other transportation infrastructure to analyse land transitions
in periods of fast economic growth [37].

Studies on land-cover change and urban growth have also been conducted by fusing
remote sensing information with ancillary OSM data [38]. Modelling land-use changes is
one way to manage the consequences of the expansion of urban areas. In [39], land-use
data were integrated with a cellar automation model (slope, land use, exclusion/attraction,
urban extent, transportation, and hillshade–SLEUTH) to reveal trends in urban growth for
the different development scenarios [39]. For example, a key factor towards sustainable
urban development is the understanding of the interdependencies among urban growth
patterns, infrastructure, and socioeconomic indicators [40]. In [40], the spatiotemporal
urban growth dynamics and their relation to road density were studied through urban
land-cover maps and OSM data to generate road density maps and the SLEUTH urban
growth model.

The availability of remote sensing data has opened up opportunities for modelling
techniques that allow to understand how subtle differences in the urban fabric can impact
transportation mode shares [41]. A combination of remote sensing imagery and mobile
phone positioning data (MPPD) through a support vector machine was considered in [18]
to generate land-use maps. Based on the resulting land-use maps and on the MPPD, the
activity density in key zones during daytime and nighttime was analysed to illustrate the
volume and variation of people working and living across different regions.

The aforementioned state-of-the-art techniques mostly focus on the computation of
land-cover and land-use maps from input remote sensing and ancillary datasets in which
transport engineering is only weakly involved, namely, through the simple topology of
road networks or the flux of population, which do not convey any direct information
regarding land use. From this perspective, a major novelty of the proposed method consists
precisely of the combination of remote sensing with traffic data—hence offering details
about mobility demand and the related use of the associated portions of the urban land.

3. Basics on Transport Systems and Mobility Demand Data

The aim of this section is to recall and discuss the mobility demand and its relevance
in the proposed methodology for urban land-use classification. Mobility demand consists of
the collection of people and freight, namely users that need to move from one location to
another for a specific purpose, such as “go to work”, “go to school”, “return home”, “spend
free time”, etc. These travel needs are satisfied by the supply system, which consists of the set
of infrastructures (e.g., roads, rails, etc.) and services (e.g., public transport, etc.) providing
trip solutions to the users. In this connection, it is common to refer to these solutions in
terms of “transport mode alternatives” (hereafter indicated also as “transport alternatives”)
determined by different combinations of infrastructures and services such as private car,
motorbike, pedestrian, rail transport, etc.

The mobility demand and the supply system, which represent the two components of
a transport system, are highly connected and interact with each other (e.g., an efficient public
transport system can attract users from other transport modes, such as private vehicles)
and with the so-called activity system, which consists of residences, economic activities
(e.g., work, education, shopping, etc.), as well as the relevant locations (e.g., offices and/or
factories, schools, and shops).
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A basic scheme of a generic transport system is depicted in Figure 1, where it is possible
to note the feedback mechanism showing that the distribution of the activities in an area
determines the need for trips (i.e., the demand) and the supply performances determine
the ease of reaching/leaving the locations of the activities themselves. For example, travel
needs depend on the level and location of economic activities households. Conversely, in a
medium/long time period, the location of economic activities and households is influenced
by the transport supply, whose performances determine their accessibility (e.g., a shopping
centre tends to be located in a place that can be rapidly and cheaply reached by customers,
such as in the proximity of fast roads or subway stations).

Figure 1. Relationships between the transportation system and the activity system.

Since the mobility demand originates from the need to perform different activities in
different places, it is always spatially referred to a pair of locations, namely an origin and a
destination. In addition, since different activities are performed at different times of the day,
it is also useful to consider a reference time period (e.g., an hour of the day). Accordingly,
considering the purpose associated with the trip need (such as “going to work”, “going
home after work”, etc.) can provide information about the activities that are performed in
different locations. From the above considerations, it descends that it is possible to identify
the collection of user trips between a certain origin/destination pair travelling for a given
purpose in a given time period.

Mobility data are usually available for cities and regions, and are traditionally obtained
via census samples, ad-hoc surveys, and calibrated models representing users’ travel choices
in terms of destination, transport mode, and purpose (see Figure 1). For more details
about mobility demand, its relationships with the supply and the activity system and the
abovementioned techniques for demand estimation, readers can refer to [8]. Here, we recall
that, as mentioned above, the increasing availability of crowdsourced data provides the
capability for updating the mobility data in quasi-real time, thus not only capturing the
demand variations over time but also obtaining reliable mobility demand data estimates
without the need for models. In particular, such sources focus directly on the trips within the
urban area, which are generated by the combination of demand and supply (see Figure 1),
being such a combination known as “assignment” in the transport systems literature [8].
As a consequence, trips implicitly include information on the demand as well.

In the following subsections, more details about the characteristics of mobility demand
are discussed in connection to the information they can provide to the identification of
urban land use.

3.1. Mobility Demand Spatial Characteristics

Since travel needs in a certain area may, in general, start and end in a large number of
different locations, the considered study area is always spatially discretised into N zones,
and only travel needs between different zones are collected. An example of zoning is
reported in Figure 2, where it is possible to note that the zones can be significantly different
in size, usually as a consequence of the population and economic activity densities.

The zones are determined considering different criteria, such as the presence of phys-
ical barriers (e.g., rivers, railways, roads, . . . ) and the available census data. A general
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criterion is that the zones are the most homogeneous as possible with respect to the ac-
tivities performed therein, such as residential, working, and commercial. On the one hand,
this general criterion generally does not hold perfectly. Hence, it is more appropriate to
refer to the main activity performed in each zone (e.g., mainly residential zone, mainly
commercial zone). Nevertheless, in the following, for the sake of compactness, the adjective
“mainly” will be dropped unless it is strictly necessary for clarity. On the other hand, when
the homogeneity assumption is definitely violated for a certain zone, it is appropriate to
address it as a mixed zone (e.g., some areas of a city centre where residences, offices, and
shops coexist).

Figure 2. Map of the 71 zones in which the territory of Genoa is divided for the purpose of
transport analysis.

Given such a spatial discretisation of the study area and denoting as T the total number
of time units and as K the number of considered trip purposes, the demand Dkt

od is defined
as the average number of users moving from an origin zone o to a destination zone d
(o, d “ 1, 2, . . . , N) at the time unit t (t “ 1, 2, . . . , T) for the purpose k (k “ 1, 2, . . . , K).
A graphical representation of one-to-one relation between an origin/destination pair is
depicted in Figure 3a.

(a) (b) (c)

Figure 3. Example of mobility demand relations: (a) one-to-one relation between an ori-
gin/destination pair po, dq; (b) total mobility demand generated by a generic zone z; (c) total mobility
demand attracted by a generic zone z. Size of the crop area: 3 km ˆ 3 km.

Spatial discretisation allows to gather mobility demand data associated with a given
time t and a given purpose k in a matrix Dkt, usually addressed as an Origin-Destination
(OD) matrix, whose rows and columns correspond to the origin and destination zones,
respectively. Accordingly, the zones are also often explicitly named “OD zones”. Since
each OD zone z (z “ 1, 2, . . . , N) can be the simultaneous origin and destination of different
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trips, the OD matrix size is N ˆ N, and useful aggregations of the matrix entries can be
obtained as (t “ 1, 2, . . . , T; k “ 1, 2, . . . , K):

Dkt
z¨ “

N
ÿ

n“1

Dkt
zn (1)

and

Dkt
¨z “

N
ÿ

n“1

Dkt
nz (2)

Dkt
z¨ is the so-called generated demand flow and represents the total number of trips starting

from zone z, with the purpose k, during the period t. Conversely, Dkt
¨z is the attracted demand

flow and represents the total number of trips ending in z. Graphical representations of the
mobility demand relations among different zones are depicted in Figure 3a–c.

3.2. Mobility Demand Temporal Characteristics

From a temporal point of view, the demand Dkt
od is referred to an elementary time

interval t (usually an hour) that depends on the problem to be studied, and collects all the
trips that start within this time unit. In practice, Dkt

od can be interpreted as the sum, over
the tth time interval, of the average user flow between zone o and zone d. Thus, mobility
demand variations within the time unit are not modelled.

Focusing on the relations between different time intervals, the mobility demand is
characterised by different kinds of dynamics:

• long-period dynamics: they result from territorial, social, and economic changes such as
the variations in the gross direct product of a country, and they essentially describe
the changes of a territory and of the relevant economy over the years;

• periodic dynamics: they refer to demand values that are cyclically repeated (e.g., on a
seasonal or weekly basis) and point out the different users’ needs and behaviours over
different times of long periods (e.g., seasons over years or days over weeks);

• daily dynamics: they are strictly correlated with the users’ daily activities, such as living
and working.

The daily dynamics turn out to be a good source of information for the identification of
the urban land use of each zone since they provide an indication of the activities performed
therein. In particular, for a generic zone z, the following relations are generally verified:

• in mainly residential zones (i.e., zones with a high density of housing), the generated
demand is greater than the attracted demand—i.e., Dkt

z¨ " Dkt
¨z —in the morning, since

people leave their houses to reach workplaces, schools, or other economic activities.
Conversely, attracted demand is greater than generated demand—i.e., Dkt

¨z " Dkt
z¨—in

the afternoon and in the evening, when most people return home. During the other
periods of the day, the generated and attracted demands are similar. An example of
such differences is depicted in Figure 4a, where the hourly generated and attracted
demands of a mainly residential zone are represented for a whole day.

• in mainly working areas (i.e., zones with a high density of workplaces), the attracted
demand is greater than the generated demand—i.e., Dkt

¨z " Dkt
z¨—in the morning

when most of the people go to work, while the generated demand is greater than
the attracted demand—i.e., Dkt

z¨ " Dkt
¨z —in the afternoon and in the evening, when

most of the people return to home. During the other periods of the day, the generated
and attracted demands are similar. An example of such differences is depicted in
Figure 4b, where the hourly generated and attracted demands of a mainly working
zone are shown for a whole day.

• in mixed zones, there is not a clear difference between the generated and attracted
demands, i.e., Dkt

z¨ is overall comparable to Dkt
¨z at all hours of the day, as shown in the

example of Figure 4c.
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(a) (b)

(c)

Figure 4. Example of typical daily dynamics of total mobility demand for (a) residential, (b) working,
and (c) mixed zones. The coloured rectangles refer to morning (red), afternoon (green) and evening
(blue) time periods.

3.3. Mobility Demand Modal Split

As already mentioned, the mobility demand Dkt
od collects all the user travel needs

between two zones at a given time period and for a given trip purpose. Nevertheless, since
the supply system generally provides different modal alternatives to satisfy the demand (e.g.,
cars, public transport, pedestrians, etc.), it is common practice to split the demand Dkt

od into
contributions on the basis of the available transport modes such that (o, d “ 1, 2, . . . , N; t “
1, 2, . . . , T; k “ 1, 2, . . . , K):

Dkt
od “

L
ÿ

`“1

Dkt`
od , (3)

where L is the total number of available transport modes, and Dkt`
od is the number of users

travelling with transport mode ` (` “ 1, 2, . . . , L). The demand decomposition in (3) is
widely known and used in the transportation engineering literature and can be achieved
via specific models and/or surveys [8].

Similar decompositions can also be applied to the generated and attracted demands in
(1) and (2), respectively. With these decompositions, it is possible to compute the demand
generated and attracted by a generic zone z in the time unit t for the purpose k and with
the transport alternative `, namely, Dkt`

z¨ and Dkt`
¨z .

This modal decomposition can provide more insights regarding the activities per-
formed in a certain zone.

In fact, there may be a correlation between the transport alternative and the trip
purpose: for example, a peak of the generated demand for public transport in the early
afternoon suggests the presence of schools in the zone (e.g., young students, who generally
do not own a driving licence, come back home after school). Conversely, an evening
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peak of generated demand for both private vehicles and public transport may suggest
a high density of offices or factories. As a further example, a high level of attracted or
generated demand regarding freight-related modes (i.e., light or heavy trucks) can suggest
the presence of productive activities (e.g., factories) or shops in a zone.

4. Materials and Methods
4.1. Case Study

The Italian city of Genoa, together with its surrounding area, is chosen as a case study.
Both mobility demand data and high-resolution remotely sensed imagery are available
for the present study. Genoa is located in northern Italy, and is the main urban area of
the Liguria Region and the sixth largest city in Italy. It has a population of «585,000 in-
habitants (https://dati.comune.genova.it/sites/default/files/EPR56U%202016.csv—in
Italian, accessed on 25 April 2022), which increases to«850,000 when considering the whole
metropolitan area (https://demo.istat.it/ricostruzione/dati/PopolazioneEta-Territorio-
Province.zip—in Italian, accessed on 25 April 2022). The city, which is visible in the Sentinel-
2 image in Figure 5 (false colour composite), spreads over a narrow and mainly hilly area
of approximately 240 km2 between the Ligurian Sea and the Appennini Mountains; in
particular, it stretches for more than 30 km along the coast and for over 10 km from the coast
towards the north along the two valleys of the Polcevera and Bisagno Rivers. Historically,
the current city of Genoa results from the unification of different towns and villages that, in
1926, became neighbourhoods of the city. For these reasons, Genoa presents a very articu-
lated and differentiated urban fabric with different centralised locations acting as mobility
generators and attractors. Its port is one of the most important of the Mediterranean Sea
and characterises a relevant portion of the local economy influencing the urban structure
and the location of different economic activities.

The significance of the urban area of Genoa, its articulated fabric, and the coexistence
of different land-use typologies are among the reasons why this city has been adopted as
the case study in the present work. A further reason is associated with the ground truth.
In general terms, the ground truth for urban land-use mapping, to be used for validating
the output classification results and for training supervised approaches, requires prior
knowledge regarding the zones of the city, their districts, and the activities performed
therein. In the considered case study, this ground truth could be collected thanks to the
knowledge the authors have of the city of Genoa and of its current development. As
detailed in Section 5, the ground truth on the urban land use of each neighbourhood of
Genoa is used in the present study to train and validate the proposed methodologies.

The input remote sensing data used in the case study are given by a Copernicus
Sentinel-2 multispectral image with a spatial resolution of 10 m and with four spectral
channels (blue, green, red, and near infrared; see Figure 5).

The mobility demand data refer to a set of N “ 71 OD zones in which the terri-
tory of the municipality of Genoa is divided (see Figure 2) and to the related OD matri-
ces (https://dati.comune.genova.it/dataset/matrici-origine-destinazione-spostamenti-e-
viaggi—in Italian, accessed on 25 April 2022) that, coherently, have size 71ˆ 71. More specif-
ically, in terms of time period, data are available for T “ 2 time intervals, i.e., the morning
peak hours (6:30 a.m. ˜ 9:00 a.m.) and the evening peak hours (5:30 p.m. ˜ 8:00 p.m.). For
each time period, aggregated data are available for L “ 3 transport alternatives: the private
mode (i.e., the sum over cars and motorcycles), the urban public transport (i.e., the sum
over bus and urban metro rail), and the freight-related mode (i.e., the sum of medium and
heavy trucks). Furthermore, for each time period and each transport alternative, data are
available for K “ 3 trip purposes: “go to work/school”, “return home”, and “occasional”.
In addition, the mobility demand attracted and generated by the surrounding area of
Genoa, which can be thought of as an external zone, has been added to the result with the
aim of also considering the trips that start or end outside the city.

Therefore, in summary, T ¨ L ¨K “ 18 OD matrices Dkt` are available. From each matrix
and for each zone z (z “ 1, 2, . . . , N “ 71), the generated and attracted demands Dkt`

¨z and

https://dati.comune.genova.it/sites/default/files/EPR56U%202016.csv
https://demo.istat.it/ricostruzione/dati/PopolazioneEta-Territorio-Province.zip
https://demo.istat.it/ricostruzione/dati/PopolazioneEta-Territorio-Province.zip
https://dati.comune.genova.it/dataset/matrici-origine-destinazione-spostamenti-e-viaggi
https://dati.comune.genova.it/dataset/matrici-origine-destinazione-spostamenti-e-viaggi
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Dkt`
z¨ are calculated and used as mobility demand features in the proposed approach (see

next section). Accordingly, 36 mobility demand features are associated with each zone.

Figure 5. Sentinel-2 image of the city of Genoa, Italy: false colour composite of the near-infrared, red,
and green channels after histogram stretching.

4.2. Multimodal Decision Fusion of Remote Sensing and Mobility Demand Data

A block diagram of the two proposed methodologies is depicted in Figure 6, where the
relations between the pixelwise decision-fusion approach and the region-based Markovian
approach are highlighted. The input data sources and the output of each methodology are
also shown in this figure.

Let focus first on the proposed pixelwise fusion method. The zones to which the
OD matrix corresponds are generally regions of an urban area and of the surrounding
territory. Given the aforementioned remote sensing image of the same urban area, let I
be the pixel lattice and ri be the feature vector extracted from the remote sensing image
on pixel i P I . The OD zones correspond to N disjoint subsets Z1,Z2, . . . ,ZN of the pixel
lattice (Zn Ă I ,Zm XZn “ H for m, n “ 1, 2, . . . , N, m ‰ n). Let

Z “

N
ď

n“1

Zn (4)

be the set of pixels enclosed in all OD zones. On the one hand, each zone Zn usually
corresponds to a city neighbourhood or a collection of neighbourhoods and is assumed
to be administratively homogeneous. It corresponds to a portion of the urban cover in
the scene and may generally also include other land covers in the peri-urban area (e.g.,
forestland, grassland, agricultural land at the outskirts of the city). On the other hand, the
OD zones do not generally cover the entire imaged scene, which may generally correspond
to a larger region surrounding the considered city, i.e., Z Ă I .

For the nth zone (n “ 1, 2, . . . , N), let tn be the vector gathering the mobility-generated
demand flow and attracted demand flow for all purposes and all time units, as defined in
(1) and (2) and discriminated for the transport modes as in (3). tn collects the quantities
Dkt`
¨n and Dkt`

n¨ across all trip purposes k P t1, 2, . . . , Ku, all time units t P t1, 2, . . . , Tu, and all
modalities ` P t1, 2, . . . , Lu. It represents a feature vector extracted from transport demand
data on the nth zone (n “ 1, 2, . . . , N). As anticipated in the previous section, in the case of
the considered case study of the city of Genoa, it is a 36-dimensional vector.

Let Ω be the set of classes to be discriminated. We assume that it can be partitioned
as Ω “ ΨY Ψ̄, where Ψ includes urban land-use classes (e.g., “residential”, “working”,
“commercial”) and Ψ̄ includes the additional (nonurban) land covers that are present in the
imaged scene (e.g., water bodies, forestland, agricultural land). In this regard, the subset Ψ
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of classes collectively corresponds to the urban cover as a whole, and its elements are the
individual urban land uses in the scene. In contrast, the subset Ψ̄ encompasses the other
land covers in the considered urban and peri-urban areas. Given these different semantics,
the two subsets of classes are meant to be disjoint, i.e., ΨX Ψ̄ “ H.

Figure 6. Block diagram of the two proposed methodologies: posterior probability estimation (light
green box), pixelwise decision fusion (light blue box), and multiscale region-based Markovian fusion
(light red box).

If i P Z is a pixel within the overall area of the OD zones, let νi be the index of the
corresponding zone, i.e., νi “ n if and only if i P Zn. Accordingly, the vector xi “ rri, tνi s

collects all features that are associated with pixel i P Z , including those extracted on pixel i
from the input remote sensing image (ri) and those computed from the transport demand
data on the zone including pixel i (tνi ). For a pixel outside the OD zones (i P IzZ), only
remote sensing-derived features are available, and we set xi “ ri.

Let yi P Ω be the class label of pixel i P I . First, we note that, in the case of a
pixel i within the OD zones (i.e., i P Z) and of an urban land-use class (i.e., yi P Ψ), the
posterior probability Ppyi|xiq, which is conditioned on all available—remote sensing and
transport—features, can be expressed as:

Ppyi|xiq “ Ppyi, Ψ|xiq “ Ppyi|Ψ, xiqPpΨ|xiq. (5)

In this framework, the proposed multimodal decision fusion approach is based on the
following conditional independence assumptions:

Ppyi|Ψ, xiq “ Ppyi|Ψ, tνiq @i P Z , yi P Ψ (6a)

PpΨ|xiq “ PpΨ|riq @i P I (6b)

Ppyi|xiq “ Ppyi|riq @i P I , yi P Ψ̄ (6c)

Assumptions (6b) and (6c) imply that the membership of a pixel to the urban cover
as a whole (Ψ; see Assumption (6b)) or to the individual land-cover classes in Ψ̄ (see



Remote Sens. 2022, 14, 3370 12 of 29

Assumption (6c)) is estimated according to the remote sensing features and regardless of
mobility features. The rationale is that transport data convey information on how people
move across the urban area, which is related to the use of the various city neighbourhoods.
In contrast, transport demand features do not bear a relevant dependence on classes that
are not associated with urban land use, such as the land-cover categories in Ψ̄. Accordingly,
these land-cover classes, including the urban cover as a whole, are spatially discriminated
only on the basis of the features extracted from remote sensing data.

Assumption (6a) indicates that, given the membership to the urban cover as a whole,
the specific land use is determined based on the mobility-related features. On the one hand,
as mentioned above, transport demand features are expected to be informative with respect
to the discrimination of the use of a certain portion of the city territory. Remote sensing
features generally also contribute to this discrimination in areas whose land use implies a
well-defined spatial structure of the urban fabric and its buildings (e.g., presence of a large
industrial complex). On the other hand, in portions of the urban areas whose use does not
yield a peculiar spatial behaviour of the image, features extracted from the remote sensing
data often do not strongly contribute to urban land use discrimination (e.g., in the case of
city centre buildings that may correspond to both offices and residential houses). In this
framework, Assumption (6a) plays the role of a simplifying hypothesis, under which the
discrimination of urban land-use classes inside the urban cover is addressed by focusing
only on the transport data.

Given the aforementioned assumptions, we can distinguish the three following cases
in the modelling of the pixelwise posterior distribution:

• In the case of a pixel located within the OD zones (i.e., i P Z) and of an urban land-use
class (i.e., yi P Ψ), plugging Assumptions (6a) and (6b) in (5) yields:

Ppyi|xiq “ Ppyi|Ψ, tνiqPpΨ|riq. (7)

In this case, the pixelwise posterior of each urban land-use class is decomposed as the
product of two terms, associated with the probability PpΨ|riq of the urban cover as
a whole, given the remote sensing observations, and with the probability Ppyi|Ψ, tνiq

of the urban land-use class, given the transport features and the membership to the
urban cover.

• In the case of a land-cover class (yi P Ψ̄) and of an arbitrary pixel (i P I), Assumption (6c)
implies Ppyi|xiq “ Ppyi|riq.

• In the case of a pixel located outside the OD zones (i.e., i P IzZ), only remote sensing
features are available (xi “ ri); therefore, Ppyi|xiq “ Ppyi|riq again.

Summing up the three cases, the following decision fusion model is defined to combine
remote sensing and transport demand features for the classification of urban land-use and
land-cover classes (see Figure 6):

Ppyi|xiq “

#

Ppyi|Ψ, tνiqPpΨ|riq for i P Z and yi P Ψ
Ppyi|riq otherwise.

(8)

Based on the maximum a-posteriori (MAP) criterion, the first proposed multimodal
fusion method assigns each pixel the class label that maximises the fused posterior in (8)
(see Figure 6). The partial posteriors Ppyi|riq and Ppyi|Ψ, tνiq, conditioned to remote sensing
and mobility observations, respectively, are estimated in a supervised manner using the
random forest (RF) algorithm. Random forest is a well-known ensemble learning technique
that defines a stochastic ensemble of decision trees, trained using bagging and random
feature selection such that their outputs are as independent as possible [42]. In the proposed
method, random forest is adopted thanks to its fully nonparametric formulation—which
makes it possible to apply it to input features with arbitrary distribution—to its robustness
to overfitting, and to its low computational burden [42].
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For training the proposed supervised approach, two sources of ground truth data are
assumed available:

(a) a ground truth map regarding the individual land-cover classes in Ψ̄ and the urban
land cover;

(b) a subset of the zones Z1,Z2, . . . ,ZN belonging to each urban land-use class.

On the one hand, the ground truth map in (a) indicates training pixels for each
individual land-cover class in Ψ̄ as well as for the urban cover Ψ. The latter is considered
in this training map as a whole, i.e., examples of the individual urban land-use classes on a
pixelwise basis are not necessary in the proposed method. On the other hand, the ground
truth for the urban land-use classes in (b) is defined in terms of OD zones, i.e., the proposed
method requires input training information about the land use only at the semantic level of
city neighbourhoods (or collections of neighbourhoods).

We note that, outside the OD zones (i.e., for i P IzZ), no transport features are defined
and, based on (8), we can compute both Ppyi|riq for each land-cover class yi P Ψ̄ and PpΨ|riq.
Therefore, the proposed method assigns such a pixel i either to one of the land-cover classes
or to the urban cover as a whole but will not assign it to one of the urban land-use classes.
This is consistent with the fact that a pixel outside the OD zones is meant to be outside
the city and the related peri-urban region, and, accordingly, an urban land use would
be undefined.

4.3. Markovian Region-Based Multimodal Fusion of Remote Sensing and Mobility Demand Data

Motivated by the intrinsic region-based spatial structure of the OD zones, the second
proposed fusion method leverages the spatial-contextual modelling capabilities of MRF
models [11,43]. MRFs are a powerful family of stochastic models for image data in Bayesian
image analysis [43,44]. They have been successfully applied for a long time in remote
sensing for image classification and segmentation [24,45–50], object-based and region-
based image analysis [10,51,52], cloud detection [53,54], and change detection [55–57]. They
represent a multi-dimensional generalisation of Markov chains and, in the case of 2D
images, are defined in terms of a Markovianity property on the two-dimensional pixel
lattice with respect to a given neighbourhood system [11,43,44].

In principle, each pixel depends on all the other pixels that make up an image. How-
ever, a Bayesian image-analysis problem formalised with such a global dependence would
be computationally intractable in general. Taking advantage of the Markovian property, it
is possible to restrict the probability distribution of a pixel conditioned to the whole image
to the distribution conditioned only to a limited number of pixels in its surroundings [11].
However, regardless of this formulation in terms of local distributions, an MRF model
also provides a full characterisation of the global (image-wise) distribution. Through the
Hammersley–Clifford theorem, MRFs can be proven to correspond to global probabilistic
models for the joint distribution of the image data (namely, Gibbs distribution models) [44],
thus leading to a computationally tractable formulation of the Bayesian MAP decision
criterion in terms of an appropriate “energy function” [11,43].

Specifically, let X “ txiuiPI and Y “ tyiuiPI be the two-dimensional random fields of
the feature vectors and the class labels, respectively. For classification purposes, an MRF
is typically used as a model for the prior distribution of the random field Y of the class
labels [10,11]. Y is said to be an MRF if its joint distribution PpYq is strictly positive and if
the following Markovianity property holds:

Ppyi|yj, j ‰ iq “ Ppyi|yj, j „ iq @i P I , (9)

where i „ j indicates that pixels i and j are neighbours with respect to a predefined neigh-
bourhood system [11,43]. While the strict positivity is basically a technical assumption,
the Markovianity represents the core of the MRF notion. A well-known result of the MRF
theory is that, if Y is an MRF, then, under suitable conditional-independence assumptions,
the maximisation of the global posterior distribution PpY |X q is equivalent to the minimisa-
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tion of an energy function UpY |X q that characterises both pixelwise and spatial-contextual
information and is defined locally according to the aforementioned neighbourhood system.
Indeed, the relationship PpY |X q9 expr´UpY |X qs holds between the global posterior dis-
tribution and the energy [11,44]. Details on MRF modelling and their use in VHR remote
sensing image classification can be found in [10,11].

In this framework, the second proposed method generalises the MRF model in [10],
which allows spatial information associated with both the local context and the membership
to homogeneous regions to be fused together, by integrating it with the mobility features
and their spatial zonization. Region-based and object-based models are usually employed
to discriminate classes that exhibit a well-defined geometrical structure [52,58]. They
incorporate information associated with the output of an image segmentation result and
with the corresponding segments. Region-based MRFs directly model spatial information
associated not only with a local neighbourhood but also with image regions, which are
generally larger (possibly much larger) than the neighbourhood and which capture long-
range spatial dependencies [10,59].

In particular, multiscale region-based MRFs also integrate multiscale information by
using segmentation results corresponding to different spatial scales or resolutions [60].
In this case, one leverages the capabilities of MRFs to perform data fusion in order to
exploit the multiscale information for classification purposes [10,61]. Given an image
to be classified, a multiscale segmentation method is applied to generate a collection of
segmentation maps, including coarse- and fine-scale maps. At finer scales, small spatial
details can be appreciated but noise can have a significant impact, whereas at coarser
scales, only large image structures and regions are preserved but with a strong immunity
to noise [10]. Each segmentation map is considered as a distinct information source,
formalising the classification task as a data fusion problem [10]. Consistently with the
MRF approach to data fusion [61], the energy UpY |X q of a multiscale region-based MRF is
expressed as a linear combination of energy contributions related to the individual pixels
(pixelwise terms) and to the spatial information contained both in the neighbourhood of
each pixel and in the segmentation map at each scale [10,61].

In the second proposed method, this approach is further generalised by integrating in
the MRF model spatial-geometrical structure given not only by a multiscale segmentation
result but also by the zonization of the mobility data. Let Q segmentation maps, corre-
sponding to Q different spatial scales, be computed from the input remote sensing image,
and let siq be the segment label of pixel i P I in the qth map (q “ 1, 2, . . . , Q). We define the
following MRF energy (see Figure 6):

UpY |X ,S ,N q “ ´
ÿ

iPI
ln Ppyi|xiq ´

ÿ

iPI

Q
ÿ

q“1

αq ln Ppsiq|yiq`

´ β
ÿ

iPZ
ln Ppνi|yiq ´ γ

ÿ

i„j

δpyi, yjq, (10)

where δp¨q is the Kronecker impulse, αq (q “ 1, 2, . . . , Q), β, γ are positive weight coefficients,
S “ tsiq : i P I , q “ 1, 2, . . . , Qu is the random field collecting all segment labels in the Q
segmentation maps, and N “ tνiuiPZ analogously collects the zone indices of all pixels in
Z . The second-order neighbourhood is used, i.e., i „ j if and only if j is one of the eight
pixels surrounding pixel i (and vice versa) [11].

As in [10], energy contributions associated with the class-conditional distributions
Ppsiq|yiq of the segment labels in the Q segmentation maps and with the local contextual
Potts model (i.e., the well-known term r´

ř

i„j δpyi, yjqs [11]) are included in the energy (10)
(see Figure 6). As discussed above, the rationale of the terms associated with the Q
segmentation maps in (10) is to incorporate multiscale information in the labelling process
by extracting and using segmentation maps corresponding to Q spatial scales. In the
terms Ppsiq|yiq, segment labels are considered as features and allow a model of the relation
between the classes and the multiscale segmentation maps to be integrated in the data
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fusion process [10]. The well-known Potts MRF model [11] favours the same labelling
within homogeneous image regions.

In the proposed method, a further energy term associated with the OD zones and
expressed in terms of the class-conditional distribution Ppνi|yiq of the zone index is also
integrated (see Figure 6). From a methodological point of view, this corresponds to defining
and using for classification a composite stack of region maps, deriving both from the
segmentation of the remote sensing image at coarse-to-fine scales and from the zonization
associated with the OD data. Similar to the case of Ppsiq|yiq, in the term Ppνi|yiq, the zone
index νi plays the role of a further feature. This interpretation of siq and νi as additional
features in the classification process explains the notation UpY |X ,S ,N q for the energy
in (10). A pixelwise term associated with the fused posterior Ppyi|xiq in (8) is also included
in the energy (10). This term is related to the probability that pixel i has label yi given
the feature vector xi, which includes remote-sensing and mobility demand data. The
aforementioned composite stack of segmentation maps is semantically mixed since it
includes Q maps computed from the input image data and one additional map derived
from the OD zones. Accordingly, in the second proposed method, multimodal fusion of
remote-sensing and transport-demand data are accomplished in terms not only of decision
fusion, through the pixelwise energy contribution r´ ln Ppyi|xiqs, but also of the spatial
information associated with both the remote sensing image and the OD zonization.

In the second developed technique, the algorithm in [62] is used to generate the Q
segmentation maps (see Figure 6). It has been selected as a well-known approach for the
segmentation of optical image data, which has proven successful in its combination with
region-based MRF models in [10,51]. It is a graph-based region-merging algorithm and
is parameterised by a parameter k that indirectly determines the scale of the extracted
segments [62]. To generate the Q segmentation maps, the algorithm is separately run
Q times with increasing values of k in a predefined range. Examples of the resulting
segmentation output can be seen in the block diagram of Figure 6.

Since the region labels siq and the zone index νi are discrete random variables, their
class-conditional distributions Ppsiq|yiq (q “ 1, 2, . . . , Q) and Ppνi|yiq are estimated through
the corresponding relative frequencies on the classification map obtained by the first
proposed method. For example, Ptνi “ n|yi “ ωu is estimated as the relative frequency of
the pixels that belong to zone Zn (n “ 1, 2, . . . , N) amongst those that are assigned to class
ω P Ω by the first proposed method. Further details on the estimation of these distributions
can be found in [10].

The weight parameters α1, α2, . . . , αQ, β, and γ are optimised by using the technique
in [63]. Given a preliminary classification map, which is here the one generated by the
first proposed method, this technique expresses the condition that the training samples are
correctly classified by the minimum energy rule in terms of an overconditioned system of
linear inequalities. The solution of this system is addressed using the least mean square
error criterion, which, in turn, is numerically formulated through the iterative Ho–Kashyap
algorithm [64]. Convergence in a finite number of steps is analytically guaranteed [64]. The
energy function in (10) is minimised using the iterated conditional mode (ICM) algorithm
(see Figure 6). ICM is a well-known iterative technique for the minimisation of MRF
energies that is proven to converge to a local minimum and generally requires a short
computation time. It is often an effective trade-off between classification accuracy and
computational burden. Details can be found in [11]. In the second proposed method, ICM
is initialised with the pixelwise classification result of the first developed technique.

Consistently with the previous works in [10,51], the random field model defined by
the energy in (10) has been described as an MRF, rather than a conditional random field
(CRF). This is due to the aforementioned interpretation of the segmentation labels siq and
the zone index νi as additional features or observations. From this perspective, Ppsiq|yiq

pq “ 1, 2, . . . , Qq and Ppνi|yiq are interpreted as the class-conditional distributions of those
features, given the pixelwise class label yi. However, the proposed contextual model can
also be considered as a CRF [43,65]. The rationale is that the segment labels siq are generated
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through the application of the segmentation algorithm in [62] to the input image, i.e., to the
random field X of the observations. Therefore, they can be considered as functions siqpX q.
Under this interpretation, the pixelwise contributions r´ ln Ppsiq|yiqs to the energy function
of the proposed model would generally depend on the whole random field X , a property
that would qualify the model as a CRF [43,65]. Overall, given the two aforementioned
possible interpretations, the random field associated with the second proposed method
can be correctly referred to as either an MRF or a CRF. In the following, we will continue
referring to it as an MRF, for the sake of consistency with the previous papers in [10,51].

We also recall that Markov chain random field (MCRF) models have recently been
applied within Bayesian schemes for land-cover mapping [66–69] and updating [45,70].
In the MCRF solution, the spatial dependencies among nearest samples and the central
random variable can be described by a probabilistic directed acyclic graph that conforms to
a neighbourhood-based Bayesian network on spatial data. A first major difference between
our proposed method—and MRF-based methods in general—and MCRFs is that the model
employed in our paper represents a 2D generalisation of Markov chains, whereas an MCRF
is actually a Markov chain. A second relevant difference regards their characteristics as
probabilistic graphical models [65]. As mentioned above, an MCRF is based on a directed
graph, a property that relates it to the area of Bayesian networks. On the contrary, from a
graph-theoretic perspective, MRF models are based on undirected graphs [65].

5. Experimental Results

The two proposed multimodal fusion methods have been experimentally validated on
the case study of the city of Genoa described in Section 4.1. Regarding the ground truth for
the training and the testing, the urban land use associated with each of the 71 zones has
been determined based on prior knowledge on the city structure and on the characteristics
of its neighbourhoods within the urban territory. Three urban land-use classes have been
identified, i.e., “residential”, “working”, and “mixed” (i.e., Ψ “ tresidential, working,
mixedu). The “residential” class is associated with neighbourhoods with a well-defined
housing vocation. The “working” class encompasses industrial, port, and office activities
across the city, and “mixed” includes neighbourhoods in which both offices and housing
are prominent. In this respect, the considered case study is particularly challenging, as
the three land-use classes strongly overlap. In particular, the discrimination of the class
“mixed” is expected to be especially difficult because this class is intrinsically characterised
by a significant semantic overlapping with both the “residential” and “working” classes.
Furthermore, in the mixed zones, there is not a clear difference between the generated
and attracted mobility demands, thus making the discrimination of the land use of the
area even more complicated. This characteristic of the case study derives from the spatial
structure of the city and relates to the homogeneity criterion of the OD zonization, since
several neighbourhoods of the city of Genoa truly correspond to mixed land use.

The ground truth for the urban land use of the 71 zones is shown in Figure 7a,b, which
refer to the zones used for training the proposed approaches and for testing their accuracies,
respectively (see Section 4.2). In particular, 35 zones (see Figure 7a) have been used to
train a random forest classifier that estimates the posteriors Ppyi|Ψ, tνiq (yi P Ψ) of the
urban land-use classes, conditioned on the transport demand features, while the remaining
36 zones have been used for testing (see Figure 7b).
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(a)

(b)

Figure 7. OD zones belonging to (a) the training set and (b) the test set.

Furthermore, according to the characteristics of the region around Genoa, which is a
port city on the Ligurian Sea and is mostly surrounded by forestland, the set of nonurban
land-cover classes in the considered case study is Ψ̄ “ tvegetation, water bodyu. The
training map for “vegetation”, “water body”, and “urban cover” is shown in Figure 8a.
It has been used within the proposed techniques to train random forest for estimating
Ppyi|riq (yi P Ψ̄) and PpΨ|riq, i.e., the posteriors of “vegetated”, “water body”, and of the
urban cover as a whole, given the remote sensing features. In particular, the multispectral
channels of the input Sentinel-2 image have been used as remote sensing features in the
application of the proposed fusion techniques. Similarly, Figure 8b shows the test map
used in the quantitative assessment of the proposed algorithms. Since both methods assign
each pixel a class label in the complete set of classes Ω “ ΨY Ψ̄, both urban land-use and
nonurban land-cover classes are present in this test map.
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(a)

(b)

Figure 8. (a) Training map for the land-cover classes (including the urban cover) in the proposed
fusion methods and (b) test map for quantitative accuracy assessment.

First, as a preliminary result, the outcome of the classification of the individual OD
zones among the three urban land-use classes is depicted in Figure 9a. For the sake of
comparison, the complete ground truth is shown in Figure 9b. Here, it is worth noting that
all the pixels belonging to the same zone Zn share the same transport-demand features and
consequently the same posterior distribution conditioned on transport data (i.e., Ppyi|Ψ, tnq

depends on the zone Zn and is constant over all pixels i P Zn enclosed within it). The
producer and user accuracies (PAs and UAs) of the three urban land-use classes in this
classification result, with respect to the test map in Figure 7b, are reported in Table 1,
together with the overall accuracy (OA), the average accuracy (AA), and Cohen’s κ statistics.

Then, the classification maps generated by the proposed pixelwise and Markovian
fusion methodologies are shown in Figure 10. Their quantitative assessment in terms of PA
and UA values with respect to the test map in Figure 8b is presented in Table 2. To evaluate
the usefulness of mobility demand data, the results of the proposed methods were com-
pared to those of classical baseline strategies for land-use and land-cover mapping based
on the classification of spectral and textural features (without transport demand data):
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(a)

(b)

Figure 9. (a) Classification result and (b) ground truth for the urban land use of the OD zones in
Figure 2.

Table 1. Producer, user, overall, average accuracies and Cohen’s κ of OD zone classification based on
mobility-demand features. Since the number of test zones is 36, the accuracy values are discretised to
multiples of 2.5% and only two digits are reported for κ.

Residential � Mixed � Working �

Producer accuracy (%) 87.5 80.0 100
User accuracy (%) 87.5 85.0 85.0

Overall accuracy (%) 85.0
Average accuracy (%) 90.0

Cohen’s κ 0.78
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(a)

(b)

Figure 10. Urban land-use and land-cover maps generated by (a) the proposed pixelwise decision
fusion method and (b) the proposed Markovian region-based multiscale method.

(i) Pixelwise classification of the remotely sensed image, using its multispectral chan-
nels as features—This is meant as a consolidated baseline for land-cover mapping.
Random forest was chosen as a well-known benchmark classifier and was trained
to discriminate all the classes in Ω. The training samples for “vegetation” and “wa-
ter bodies” are shown in Figure 8. Regarding the urban land-use classes, pixelwise
training samples were obtained through the spatial intersection between the training
regions of “urban cover” in Figure 8a and the training OD zones in Figure 7a;

(ii) Pixelwise classification using not only the multispectral channels but also additional
features including the normalised difference vegetation index (NDVI) and texture
features—Random forest has been used in this case as well, thanks to its fully non-
parametric formulation that allows the application to heterogeneous input features.
Texture analysis is conducted using the well-known first-order histogram (FOH) and
grey-level cooccurrence matrix (GLCM) approaches [71,72]. The FOH variance and
GLCM contrast and variance features were extracted from all channels of the input
Sentinel-2 image. Preliminary experiments, not reported for brevity, have been per-
formed to tune the parameters of the FOH and GLCM texture analysis algorithms to
optimise the classification results. Texture features have been found informative in the
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literature of land-use mapping from remote sensing imagery (e.g., [73,74]), and this
experiment is aimed at discussing the behaviour of the proposed methods compared
to a traditional approach to land-use classification from EO data. The training set
used for this experiment is the same as in (i);

(iii) Soft-majority voting on the posteriors computed by classifier (i)—In this case, for each
OD zone and each urban land-use class, first, the average of the pixelwise posteriors
predicted by random forest in (i) is computed. Then, each pixel of the zone is assigned
by applying the MAP rule with the averaged posteriors of the urban land-use classes
and with the pixelwise posteriors of the nonurban land-cover classes. Averaging
is applied only to the posteriors of the urban land-use classes (and not to those of
“vegetation” and “water bodies”) to take into account that the zonization is associated
with the urban mobility and generally not with other land covers. The aim of this
experiment is to appreciate the possible contribution of the spatial discretization
associated with the OD zones within a traditional classification scheme as in (i), in
comparison to the developed techniques in which mobility-related information is
exploited in terms both of spatial structure and of transport demand features;

(iv) Soft-majority voting as in (iii), applied here to the pixelwise posteriors obtained in
(ii) from input spectral channels and additional features—While the rationale of this
experiment is similar to that of (iii), here, the focus is on evaluating the possible benefit
of combining a traditional land-use classification strategy with the spatial structure of
mobility demand data.

The values of PA, UA, OA, AA, and κ obtained by these benchmark approaches are
shown in Table 2.

Table 2. Producer, user, overall, average accuracies and Cohen’s κ of the proposed methods and of
the compared approaches: (i) classification of only the spectral channels; (ii) soft-majority voting
applied to the pixelwise posteriors estimated from only the spectral channels; (iii) classification in the
stacked feature space of spectral channels, NDVI, and texture features; and (iv) soft-majority voting
applied to the pixelwise posteriors estimated in the stacked feature space.

Producer Accuracy (%)

Residential Mixed Working Vegetation Water Body
� � � � �

(i) 34.54 45.77 23.28 41.90 99.96
(ii) 36.37 46.62 19.58 51.36 99.99
(iii) 37.18 63.13 0 41.90 99.97
(iv) 28.49 55.22 17.22 51.36 99.99

Proposed pixelwise 90.42 87.07 77.58 42.94 99.99
Proposed MRF region-based 70.71 88.69 99.99 99.23 100

User Accuracy (%)

residential mixed working vegetation water body
� � � � �

(i) 20.33 17.73 27.23 99.56 99.97
(ii) 22.68 24.75 28.30 99.81 99.99
(iii) 38.48 29.67 0 99.56 99.97
(iv) 9.13 16.61 46.31 99.81 99.99

Proposed pixelwise 39.29 53.96 77.28 99.55 100
Proposed MRF region-based 88.18 84.68 76.04 100 100

Overall Accuracy (%) Average Accuracy (%) Cohen’s κ

(i) 50.12 49.09 0.3820
(ii) 54.76 48.44 0.4274
(iii) 52.82 50.79 0.4138
(iv) 49.32 50.46 0.3856

Proposed pixelwise 70.25 79.60 0.6286
Proposed MRF region-based 89.98 91.72 0.8706
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6. Discussion

Regarding the preliminary result in Figure 9a, which is about the classification of
the OD zones among the urban land-use classes based on the transport demand features,
a visual comparison with the ground truth in Figure 9b indicates that only a few zones
are misclassified. It is worth noting that they are all related to the “mixed” class. Two
mixed zones are erroneously classified as “residential”, and a third zone is labelled as
“working”, whereas two residential zones are assigned to “mixed”. On the one hand,
as discussed in Section 5, this is an expected type of error due to the semantics of the
“mixed” class, which corresponds by definition to city neighbourhoods in which housing
and working activities coexist significantly. On the other hand, in the result of Figure 9a,
there is no confusion between the “residential” and “working” classes. This visual analysis
is confirmed quantitatively by the high values of PA and UA for the three classes and of OA,
AA, and κ (see Table 1). These results suggest the relevance of transport-demand data from
the viewpoint of the discrimination of urban land use and the effectiveness of the features
computed from these data on each OD zone. This is consistent with the relation between
mobility demand from/to a city neighbourhood and the land use in that neighbourhood
and confirms the opportunity to exploit transport engineering data within urban land-use
mapping from satellite imagery.

These comments are also confirmed by a qualitative analysis of the maps generated
by the two proposed methods (see Figure 10), in which the land-cover and urban land-
use classes appear to be well distinguished. A quantitative assessment in terms of PA
and UA values with respect to the test set (see Table 2) confirms the effectiveness of the
proposed approaches. In particular, in the discrimination of the three urban land-use
classes, the pixelwise multimodal fusion method obtained rather high values of PA ranging
approximately from 78% to 90%, although the values of UA were lower in the cases
of “residential” and “mixed”. The proposed Markovian region-based fusion technique
obtained high values of both PA and UA on all three classes. The values of OA, AA, and κ
achieved by the two proposed methods confirmed the accuracy of their maps and especially
of the output of the Markovian region-based fusion technique. These results suggest the
potential of mobility demand data in conjunction with remote sensing imagery for mapping
urban land use and the effectiveness of the proposed probabilistic approach to address this
multimodal fusion task.

In particular, the test-set results indicate the improvement obtained by the proposed
MRF-based technique, which also incorporates spatial-contextual and multiscale informa-
tion in the mapping process, compared to the pixelwise decision fusion algorithm. A visual
analysis of the corresponding classification maps (see Figure 10) indicates, as expected, that
the use of the Markovian approach yields higher spatial smoothness than the output of the
pixelwise fusion method. In the specific considered fusion problem, in which one of the two
sources is inherently associated with a zonization, spatial information is also conveyed by
the OD zones themselves. A case-specific example is shown in Figure 11, which focuses on
a detail of the port of Genoa. Comparing the classification maps obtained by the pixelwise
and Markovian methods (see Figure 11b,c, respectively), it is possible to note how the
ships around the docks, which are outside the OD zones, are mostly labelled with the
urban land-use class of the adjacent OD zones in the output of the MRF-based approach.
Indeed, in terms of the semantics of the urban land-use classes, this is correct because
ships are generators and attractors of mobility demand. More generally, the opportunity to
address mobility/EO data fusion with different levels of spatial smoothness is generally a
desired byproduct because it can be used to match the requirements of the specific urban
application. For example, while the result of the Markovian fusion method is spatially
more regular and clearly emphasises the land use of the various neighbourhoods, the result
of the pixelwise fusion method allows to draw the attention to small-scale spatial features
associated with urban vegetation.

It is worth noting that the pixels assigned to the urban land-use classes in Figure 10
tend to be spatially organised in connected regions. This is consistent with the aforemen-
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tioned discretisation into the OD zones and with the semantics of the considered land-use
classes. In particular, it can be noticed in Figure 10b that, among the effects of the contri-
bution associated with the OD zones in the energy (10), it is favoured that pixels outside
the zones are assigned to nonland-use classes. This is a desired behaviour because urban
land-use semantics are defined only within the city area.

Indeed, the boundaries of the OD zones are determined by administrative criteria
that consider the subdivision of the city into neighbourhoods, thus implicitly relating to
land use but generally without taking land cover into account. Consistently, in the case
of several zones of both maps in Figure 10—especially the zones at the outskirts of the
city—a large portion of the zone territory is covered by vegetation. On the one hand, the
administrative definition of these zones formally includes large portions of forestland. On
the other hand, the proposed techniques correctly discriminate the portions of urban and
vegetated cover within each zone and assign the former to the urban land-use classes.

(a) (b) (c)

Figure 11. Details of (a) the Sentinel-2 false colour composite and the classification maps generated
by (b) the proposed pixelwise decision fusion method and (c) the developed Markovian region-based
technique. Size of the crop area: 300 ˆ 300 pixels, 3 km ˆ 3 km.

The considered previous techniques for land-cover and land-use mapping obtained
very high values of PA and UA for “water bodies” and of UA for “vegetation”, similar
to the accuracies achieved by the proposed methods for these classes (see Table 2). This
is an expected result, thanks to the consolidated capability of nonparametric supervised
classifiers such as random forest in the application to such a land-cover mapping task [72].
However, in the case of the pixelwise classification using the spectral channels or the addi-
tional features, the discrimination of the urban land-use classes was quite poor. Majority
aggregation over the OD zones led to improvements for “residential” and “working” but
did not allow “mixed” zones to be distinguished. The proposed techniques obtained sig-
nificantly more accurate discrimination of the urban land-use classes than the considered
baseline approaches. This is also reflected in the values of OA, AA, and κ of the proposed
and comparison methods (see Table 2). These results confirm the challenge of distinguish-
ing urban land use purely on the basis of remote-sensing imagery and further support
the opportunity to fuse them with mobility demand data through the proposed methods.
In particular, the comparison between the results of the developed algorithms and of the
soft-majority approaches suggests that not only the spatial discretisation into the OD zones
but also the transport demand features play an important role in the identification of the
urban land use of the city neighbourhoods.

A visual analysis of the corresponding maps (see the details in Figure 12) also confirms
these comments. Compared to the map generated by applying random forest only to
the spectral channels (see Figure 12d), the results obtained in the stacked feature space
including spectral channels, NDVI and texture descriptors (see Figure 12f), exhibits an
improved spatial regularity, especially within the portion of the image associated with
the urban fabric. This is explained by the use of spatial information through texture
analysis. Nevertheless, in both maps, the discrimination among the urban land-use classes
is also visually quite poor. In both cases, pixels drawn from the same city area and
neighbourhood are assigned to different urban land-use classes, i.e., the land use of each
area or neighbourhood is not recognised.
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(a) (b) (c)

(d) (e) (f) (g)

Figure 12. Details of (a) the Sentinel-2 false colour composite, (b) the ground truth for the urban land
uses of the OD zones, and the maps obtained by (c) the proposed pixelwise decision fusion method;
(d) the classification of only the spectral channels; (e) the soft-majority voting applied to the pixelwise
posteriors estimated from only the spectral channels; (f) the classification in the stacked feature space
of spectral channels, NDVI, and texture features; and (g) the soft-majority voting applied to the
pixelwise posteriors estimated in the stacked feature space. Size of the crop area: 300 ˆ 300 pixels,
3 km ˆ 3 km.

In the classification maps generated through soft-majority voting, on the OD zones, of
the pixelwise posteriors predicted by random forest (see Figure 12e,g), the spatial structure
partially reflects that of the OD zones. However, compared to the ground truth of the urban
land use of the zones (see Figure 12b), the labelling obtained by the proposed approach (see
Figure 12c, which focuses on the pixelwise decision fusion algorithm), is more accurate than
the labelling yielded by soft-majority voting. This visually confirms the potential of the
joint use of remote-sensing and mobility demand data—not only through the zonization
but also through the OD matrix—and the effectiveness of the developed multimodal fusion
approach. It is also worth noting that the ground truth in Figure 12b regards only the
urban land-use classes (i.e., it is a crop of Figure 9b), whereas the portion of the scene in
Figure 12a clearly also includes vegetated areas, which are correctly detected in the result of
the proposed approach. We also recall that the considered soft-majority voting operates on
the urban land-use classes but does not act on the pixels assigned to nonurban land covers
in Figure 12d,f. In contrast, the developed approach performs a probabilistic decision
fusion that, on each pixel, considers all classes in Ω.

As mentioned in Section 1, to the authors’ knowledge, this paper is the first one
exploring the potential of the joint use of remote-sensing and mobility demand data in
the framework of urban land-use and land-cover mapping. Therefore, comparison with
state-of-the-art techniques using the same types of input data is not feasible. The most
common case of combination of remote-sensing and ancillary data for land-use and land-
cover mapping involves OSM and not mobility demand. Indeed, studies using the fusion
of OSM and remote-sensing data confirm the advantages of integrating satellite imagery
with complementary information. For example, in [19], their combination allowed for
performing land-cover mapping of large-scale urban areas through ensemble learning
techniques (e.g., random forest) in an efficient way. Similarly, in [26], OSM data were used
to incorporate semantic information to the geographical objects extracted by a deep learning
method in order to improve the results of urban scene classification in complex urban areas.
On the one hand, a direct comparison between the results in these previous papers and
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those in the present work is hindered by the fact that different case studies and data sets
were used. On the other hand, consistently with the results in these previous works, the
experimental validation discussed in the present section has confirmed—in the case of
the proposed methods and of the use of the OD matrix—that the integration of remote-
sensing images with suitable ancillary data favours a more accurate land-use classification
output than when only EO imagery is used. Furthermore, the proposed approaches, as
compared to techniques based on the fusion of OSM and EO data, can explicitly benefit
from measurements associated with mobility demand from/to the city districts, which, as
discussed in Section 3, are intrinsically related to the land use in those districts.

7. Conclusions

In this paper, a probabilistic methodology for the multimodal fusion of remote-sensing
imagery and transport-demand data has been developed to address the challenging task
of urban land-use and land-cover mapping. The goal of this work was to investigate the
potential of mobility demand data (namely, Origin-Destination matrix data) and of their
joint use with EO images. Two novel techniques have been developed for this purpose. The
first addresses the aforementioned multimodal fusion problem on a pixelwise probabilistic
basis. The second one integrates this probabilistic framework and the spatial structure of
the mobility data within a region-based multiscale Markov random field model.

The results of the experimental validation, conducted on a case study associated with
the city of Genoa, Italy, suggest the capability of the proposed techniques to identify the
classes corresponding to the main land covers and urban land uses (i.e., “residential”,
“working”, and “mixed” areas). Both proposed methods obtained high accuracies in the
discrimination of urban land-use classes, thus suggesting the effectiveness of the proposed
approach in taking advantage of the two input sources of information.

In particular, the developed techniques obtained remarkably higher accuracies than
previous approaches to land-use and land-cover mapping based only on remote-sensing
data and considering spectral and textural features. These results indicate the usefulness
of the integration of methodological contributions stemming from remote sensing and
transport-system engineering in the framework of the complex task of land-use mapping in
urban environments. Furthermore, the proposed methods more accurately discriminated
land use compared to soft-majority approaches in which satellite imagery was jointly
used only with the spatial discretization associated with transport data. This confirms the
potential of the proposed techniques for the fusion of remote-sensing imagery with the
Origin-Destination matrix—and not only with its associated spatial zonization.

A comparison between the two proposed algorithms confirms the relevance of MRF
models in remote-sensing image analysis. While both developed techniques generated
accurate classification maps, improved performance was achieved by the Markovian region-
based method compared to the pixelwise decision-fusion algorithm. On the one hand, this
is an expected result due to the modelling of spatial-contextual information performed
by the proposed MRF. On the other hand, the specific proposed MRF model, in turn,
benefits from multiple sources of information, including multiscale segmentation results
extracted from the input EO image and the spatial zonization associated with the OD
matrix. From this perspective, the experimental results suggest the effectiveness of the
adopted fusion strategy that is aimed at taking advantage of the multimodal, multiscale,
and spatial information conveyed by satellite and mobility datasets.

Thanks to the ever-increasing availability of up-to-date mobility demand data, the
proposed methodologies could also be beneficial in spatial planning applications. First, their
use at different times allows to analyse the temporal evolution and dynamics of an urban
area, thus making land-use changes appreciable even where cadastral data have not been
updated, yet. This, in turn, can pave the way for the planning and design of interventions
on the transport supply (in terms of both infrastructure and services) capable of meeting
the needs arising from the changes in the urban areas. In this respect, since the OD matrix
of a given city is normally updated on a regular basis, a possibly useful extension of the
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proposed region-based Markovian approach could be a multitemporal generalisation [51].
This extension would fuse such multitemporal OD data with a corresponding satellite
image time series (SITS) to determine the temporal evolution of urban land use. Moreover,
updated urban land-use information extracted through the proposed approaches could
also be exploited to plan medium- or long-term interventions on urban areas to balance
transport demand (e.g., location of residence, workplace and economic activities) and
reduce travel times, congestion, and pollution. In addition, the proposed methodologies
could be scaled from an urban level to a wider level (e.g., regional level), to include
entire conurbations and analyse the relationships between a city and the towns close to it,
provided that satellite and OD matrix data are available.

The main limitation of the present study lies in the discretisation level of the OD
zonization. On the one hand, this discretisation derives from the structure of the mobility
demand in the considered urban area and consequently relates to the urban land use of the
city districts. On the other hand, if this discretisation was spatially refined, then the number
of “mixed” zones and their overlapping with the “working” and “residential” classes
could possibly be reduced. This spatial refinement could be accomplished by, first, further
discretising the available OD zones following the principles described in Section 3, and
then, by appropriately expanding the OD matrices (i.e., increasing their dimension to the
number of the newly created zones) [75]. Nevertheless, a subset of city districts associated
with the “mixed” class would still remain; as a matter of fact, “mixed” zones are not
necessarily linked to a lack of information, but they are an intermediate class indicating city
neighbourhoods where both residential and working activities are intrinsically coexisting.
A further limitation of the developed methods is the need for input ground-truth data to
be used for training purposes. On the one hand, this is not a peculiarity of the proposed
approaches, but it is a well-known requirement of every supervised classifier for land-use
or land-cover mapping applications. On the other hand, it is worth noting that, in the
proposed approach, training data are necessary at the pixel level only for the land-cover
classes, whereas the training set for the urban land-use classes is at the level of OD zones.
This means that the training data are not supposed to specify the urban land-use label of
individual pixels—which would be a rather strict operational requirement—but only the
urban land-use label of the city neighbourhoods associated with entire OD zones.

A further possible future generalisation of the present study may involve the combi-
nation of the developed MRF model (or generally of probabilistic graphical models) with
deep neural networks [24,76]. This would require addressing the trade-off between the
expected advantage of current architectures of convolutional neural networks in terms of
classification accuracy and the increased computational burden and training data require-
ments. Moreover, a relevant extension of this work could be to exploit remote-sensing data
in the estimation of the OD matrix and of its spatial discretisation, thus taking advantage
of satellite imagery in the modelling of urban mobility demand [75].
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