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Abstract: Nowadays, HSI classification can reach a high classification accuracy when given sufficient
labeled samples as training set. However, the performances of existing methods decrease sharply
when trained on few labeled samples. Existing methods in few-shot problems usually require another
dataset in order to improve the classification accuracy. However, the cross-domain problem exists in
these methods because of the significant spectral shift between target domain and source domain.
Considering above issues, we propose a new method without requiring external dataset through
combining a Generative Adversarial Network, Transformer Encoder and convolution block in a
unified framework. The proposed method has both a global receptive field provided by Transformer
Encoder and a local receptive field provided by convolution block. Experiments conducted on Indian
Pines, PaviaU and KSC datasets demonstrate that our method exceeds the results of existing deep learning
methods for hyperspectral image classification in the few-shot learning problem.

Keywords: generative adversarial networks; transformers; few-shot learning

1. Introduction

By analyzing hyperspectral images (HSIs), we can explore both abundant spatial
information and rich spectral information [1–3]. Compared with RGB images, it can be
applied in fields such as mineral detection, disaster prevention and precision agriculture by
precisely classifying each pixel [4–6]. In environmental protection, HSI can detect gas [7],
oil spills [8], water quality [9,10] and vegetation coverage [11,12].

There are hundreds of spectral bands in each pixel taken from a hyperspectral image
and thus forms a three-dimensional data cube. Every spectral band in the cube can be seen
as a 2D image. By analyzing the vast amount of information in this 3D cube, each pixel
can be predicted with a unique label, and various classes are discriminated as accurately as
possible. Through the rapid development of classification accuracy, HSIs have become the
foundation of military, agriculture and astronomy.

In the early times, researchers mainly focused on traditional machine learning meth-
ods such as logistic regression [13], neural networks [14], principal component analysis
(PCA) [15] and support vector machines (SVM) [16]. However, these methods cannot fully
utilize the non-linear information in the high-dimensional hyperspectral data.

In the deep learning era, the convolutional neural network (CNN) has achieved sat-
isfactory results with the invention of different models. The CNN can effectively capture
features from raw pixels by exploiting the shape, layout and texture of ground objects
which combines both the spatial information and spectral information. In [17], a 2D-CNN
and a 1D-CNN are combined together to explore more useful features for classification
from spatial information and spectral information. Since a 3D-CNN have more advantages
in processing the 3D information, Li et al. [18] and Chen et al. [19] developed a classifi-
cation framework consisting of 3D convolution blocks to process the cubes around each
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pixel. In [20], Xu used the dual-channel model to combine a 3D-CNN and a 2D-CNN to
learn useful spatial information and spectral information of HSIs. Then, this extracted
information is merged and put into a classification block formed of fully connected layers
to improve the accuracy. Recently, the SOTA in hyperspectral image classification has been
able to reach 99% classification accuracy in the condition of sufficient labeled data.

However, these good results are obtained only under the condition of sufficiently
labeled data. While a human can classify new classes by learning a few labeled samples,
the performance of these methods decreases sharply when labeled samples are scarce. It is
time-consuming and costly to label the data manually. If we only train the network until
enough pixels have been labeled, it will be impossible to perform classification in real time.
Learning how to obtain good results under the condition that there are only a few labeled
classes has recently attracted more and more attention. The so-called few-shot classification
means that each class is given K-labeled samples as training data to make predictions on
the whole dataset. Usually, the value of K will be set to a small number here, which is 5, 10,
15, 20 and 25 in our experimental settings.

In order to solve a few-shot problem, the unlabeled data and outer dataset are consid-
ered to solve the problem [21]. Semi-supervised methods and active learning methods have
been proposed based on the assumption that there is no severe shift between the two data
distributions which are the target domain data and source domain data. VSCNN [22] uses
active learning to select valuable samples from uncertain dataset to form training sample set
and improve the small sample classification. However, affected by various environmental
conditions such as light or atmosphere, even the pixels from the two different domains,
which are the target domain and source domain, have the same labeled class, and the target
and source domain usually have significant spectral shift. Domain-adaptation methods are
proposed in order to solve this cross-domain problem.

DCFSL [23] is proposed by combining few shot learning and a domain adaptation strat-
egy in the conditional adversarial manner together to address the issue that there may be dif-
ferent data distributions between the target domain and the source domain. MDL4OW [24]
improves the classification accuracy by identifying unknown classes. MDL4OW uses
the statistical mode EVT to estimate the unknown score and a new evaluation metric to
evaluate the accuracy. These methods try to both solve the few-shot learning problem by
applying a framework of utilizing other datasets. However, the fitness of outer dataset is
still a burden of the few-shot problem.

In combination with metric learning, domain adaptation can solve the few-shot learn-
ing problem without involving an external dataset. Metric learning can learn a relationship
between sample pairs by mapping the samples into a metric space. In this space, the
distance between the samples of same classes will be as close as possible and the distance
between the samples without the same classes is as large as possible. S-DMM [25] proposes
a model based on metric learning and then learns the similarity between sample pairs using
a Siamese network and an auto-encoder. S-DMM solves the cross-scene HSI classification
by applying the deep learning method. However, the metric learning method has the defect
of being very time-consuming.

Solving the few-shot problem while being time-efficient and without using other data
is not a trivial task. Nevertheless, the above methods cannot meet the requirements. In
summary, the few-shot problem in classifying HSI faces the following challenges:

How to reach a high accuracy in few-shot problem. Considering the cost of manu-
ally labeling every pixel in a hyperspectral image, reaching a satisfying accuracy result
under the condition of giving a few training samples can bring great economic benefits.
However, this is difficult because the network relies on learning the distribution of labeled
samples to make predictions. If the amount of training data is not large enough, it will be
very difficult for the network to achieve high accuracy.

How to solve the few-shot problem without involving an outer dataset. Because of
the existence of severe shifts in the sample distribution between the source dataset and the
target dataset, finding an appropriate outer dataset as the source dataset is a hard task. As
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we want to solve the few-shot problem by applying different datasets successfully, it may
be a better choice to achieve high accuracy without including an outer dataset. In this way,
searching for useful source datasets for every target dataset will not be required.

How to solve the few-shot problem with a fast speed. The proposed methods usually
have huge time requirements to solve the above problem because of the defects in the
methods themselves, such as metric learning. In some cases, classifying an HSI as quick as
possible is very important.

Considering the above problems, we propose a new method employing all the benefits
of convolution blocks and Transformer Encoders to solve few-shot learning in this paper.
Convolution blocks have the benefits of shared weight, spatial subsampling and local
receptive fields, and Transformer Encoders have the advantages of dynamic attention,
better generalization and global context fusion. Combined with a generative adversarial
network, this method can ensure the similarity between generated and original samples.
We do not use any other dataset or unlabeled data in this paper to solve the few-shot
learning problem. The main contributions of our paper are as follows:

(1) For the first time, a convolution block, Transformer Encoder and Generative Adver-
sarial Network are combined together to realize the few-shot classification of HSIs.
Through this model, we can learn the data distribution by only using a few samples
and can reach a high accuracy on different datasets. With this efficient model, we also
achieve the aim of not using outer datasets.

(2) We solve the few-shot problem with better time efficiency. Considering the time
consumption of training Transformers, we speed up the training time by combining
the Transformer Encoder with convolution blocks.

(3) The method proposed in the paper achieved good classification results on the Indian
Pines, PaviaU and KSC datasets compared with other few-shot learning methods.

2. Related Work
2.1. Transformer Combined with Convolution

Convolution blocks can capture local features efficiently by using local receptive fields.
While self-attention-based architectures, such as Transformers [26], have the advantages
that convolution-based architectures do not have, they can capture global information
by dynamic attention and global context fusion. LSTM and CNN are combined by re-
placing the feature fusion block with LSTM in Wang et al. [27]. SENet [28] uses the
squeeze operation and excitation operation to obtain the relationship between channels.
Moreover, SENet is improved by CBAM [29] through adding spatial attention. The Split-
Attention block is introduced in ResNeSt [30] to extract the attention between multi-layer
feature-maps. Swin-Transformer and UperNet are combined for segmentation in hyper-
spectral image classification in Xu et al. [31]. TRS [32] combines the ResNet with the Trans-
former by replacing the convolutions in the ResNet with a Multi-Head Self-Attention layer.
SATNet [33] improves the self-attention mechanism by introducing a spectral attention
mechanism to extract the spectral-spatial features. HSI-BERT [34] first tries self-attention-
based architecture and then proposes BERT as the framework to classify HSIs. HSI-BERT
can obtain good results under the condition of sufficient samples. Recently, ViT [35] has been
proposed to try using a Transformer on the image classification and obtain state-of-the-art
performance by training and testing on the ImageNet dataset. The Transformer comes from
the nature processing language. Its main idea is to split images into patches, treat these patches
as tokens and then input them into standard Transformer layers repeatedly. CVT [36] combines
both the convolution block and the Transformer Encoder and has the advantage of learning
local and global relations efficiently.

2.2. Generator Combined with Self-Attention

The generative adversarial network [37] is an efficient method for solving few-shot
learning problems by generating more samples to train a discriminator to achieve the best
classification result. However, the GAN is hard to train because the information cannot flow
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efficiently across the generator and discriminator, which is the essential point to generate
samples having distributions similar to real samples. At first, the GAN is included to
solve small-sampled problems which take the training set on a small percent considering
the whole dataset. CA-GAN [38] uses collaborative and competitive training and uses joint
spatial–spectral hard attention modules to solve small-sampled problems by suppressing less
useful features and emphasizing more discriminative ones. SaGAAN [39] adds the cross-
domain loss term to generate high-quality generated samples and includes the self-attention
mechanism to reduce unintentional noises. While the few-shot problem requires taking a lower
and fixed number of samples in every class as the trainset, these methods deteriorate greatly in
this condition.

3. Methodology

In order to learn the data distribution with only a few samples, the neighbors around a
pixel are taken as a whole, which represent this pixel label and input the network as training
sample. This cube around a pixel has a window size of W ×W, which has W in width and
W in height. Considering the spectral bands have N channels, the whole cube has a size of
W ×W × N. In our network, this network will use a dual-channel block and fusion block
to make a classification. The dual-channel block will learn the spatial information and
spectral information around the label pixel and compress the cube to an appropriate size.
The output of the dual-channel block is the input of the fusion block, and the fusion block
will perform the final classification through learning the input. A generator is used to gen-
erate a same-sized cube to promote the classification accuracy. In the ablation experiments,
classification results are improved by the generator. The whole network is shown in Figure 1.

Figure 1. The overall framework of the proposed method for few-shot classification. As can be seen,
the framework is a classic Generative Adversarial Network framework.

3.1. Transformer Encoder

Transformer Encoder, as a self-attention-based architecture, has achieved great success
in natural language processing (NLP) by training on a large text corpus with over 100B
parameters. The main idea of Transformer Encoder is the use of a self-attention mechanism,
which learns three matrices representing query, key and value and then obtains the long-
distance relationship using Equation (1):

A(x1) =
n

∑
i=1

(
Q1Ki

T
√

d
)Vi, (1)

Attention(x1, x2, ..., xn)

= so f t max(A(x1), A(x2), ..., A(xn)),
(2)
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where V, K and Q are the abbreviations of value, key and query, respectively. d is the
dimensions of Q and K, and n defines the sequence length of x. By learning the attention
matrix of each node, the Transformer Encoder can obtain the global relationship between
nodes. The architecture of the Transformer Encoder used in this paper is shown in Figure 2.

Figure 2. The Transformer Encoder module in this paper.

3.2. Spatial Feature Extraction

At first, the spectral information is compressed by applying 1× 1 convolution kernels
while not decreasing original spatial relationships. The spectral bands are decreased from N
bands to 3 bands to make this channel focus on the spatial correlations. After spectral feature
extraction, each pixel in a patch can provide more useful spatial information for few-shot
classification. The compressed cube is passed through three successive hybrid convolution
and Transformer Encoder layers. This channel splits the cube into M patches, and every patch
has p in width and p in height, where M = (W/p)2. The relationship between each patch will
be learned by the Transformer through dot-product attention, and convolution manipulation
is applied after every Transformer Encoder in order to obtain the local attention while also
attaining the global attention. A ReLU activation function is applied after each convolution
manipulation, and a batch normalization layer is applied after each ReLU activation function.
The detailed structure of Spatial Feature Extraction is shown in Table 1.

Table 1. The detailed structure of Spatial Feature Extraction.

Stage Output Spatial Feature Extraction

S1 15 × 15 × 200 (1 × 1,3,stride 1)

S2 15 × 15 × 3 Attention
(3 × 3,3,stride 1)

S3 15 × 15 × 3 Attention
(3 × 3,3,stride 1)

S4 15 × 15 × 3 Attention
(3 × 3,3,stride 1)
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3.3. Spectral Feature Extraction

Two-dimensional convolution and self-attention blocks are used in this channel to
compress N bands gradually in order to learn spectral information. The input cube with
size of W ×W × N (width and height both have W pixels, and spectral bands are N) is
split into M groups. Each group’s width and each group’s height both have p pixels, where
M = (W/p)2. The bands in every pixel will learn the relationship with other bands in
the same group through group-divided attention. The group-divided self-attention is
shown in Figure 3. This group-divided self-attention will make the remaining spectral
information focuses on the pixels in the original p × p group and learns the spectral
correlation between the pixels in the original p× p group. Before every self-attention block,
the cube is convoluted with a kernel of 3 in size and 1 in stride in order to introduce the
spatial subsampling, joint weighting and local receptive fields of the convolution block into
this channel. This step will also realize suitable spectral information. A ReLU activation
function is applied after each convolution manipulation, and a batch normalization layer is
applied after each ReLU activation function.

Figure 3. The Group-divided Self-attention.

The dual-channel block is shown in Figure 4. In order to illustrate it clearly, the
network sample of a 3D cube in Indian Pines is used as an example. This cube has a size of
15× 15× 200 (width and height both have 15 pixels, and the number od spectral bands is
200). The detailed structure of Spectral Feature Extraction is shown in Table 2.

Figure 4. The dual-channel module that extracts spatial features and spectral features.

Table 2. The detailed structure of Spectral Feature Extraction.

Stage Output Spectral Feature Extraction

S1 15 × 15 × 200 (1 × 1,97,stride 1)

S2 15 × 15 × 97
Reshape
Linear

Reshape
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Table 2. Cont.

Stage Output Spectral Feature Extraction

S3 25 × 27 × 3 × 97 Group-divided Self-attention
Reshape

S4 15 × 15 × 97 (3 × 3,47,stride 1)

S5 15 × 15 × 47
Reshape
Linear

Reshape

S6 25 × 27 × 3 × 47 Group-divided Self-attention
Reshape

S7 15 × 15 × 47 (3 × 3,27,stride 3)

S8 5 × 5 × 27
Reshape
Linear

Reshape

S9 25 × 3 × 27 Group-divided Self-attention
Reshape

3.4. Fusion Block

The spectral channel obtains the output size of p × p × f , where f = (W/p)2 × 3.
The spatial channel obtains the output size of W ×W × 3. Then, we reshape the output of
the spatial channel into a cube of size p× p× f and concatenate it with spectral channel
output at the last dimension. By using these two channels, we can abandon the posi-
tion embedding, which is used in ViT [35] to retain positional information. In order to
fuse the information extracted from two channels represented by spatial and spectral, a
fully connected layer is applied at the last dimension to obtain the output size p× p× f .
After that, the p× p× f cube and an extra learnable embedding are passed to three succes-
sive convolution and Transformer Encoder hybrid layers. This extra learnable embedding
is used as a classification token to obtain prediction results by going through an MLP.
The Fusion Block is shown in Figure 5.

Figure 5. The Fusion Block that learns the class token to obtain the classification result.

3.5. Generator

In the NLP domain, the Transformer takes words as a sequence and computes the
importance between each word. However, a hyperspectral image cannot be divided pixel-
by-pixel, as this would result in a sequence that is too long to process in terms of both
computational cost and efficiency. Inspired by some GANs which generate images layer-
by-layer, we iteratively upscale the image size to reduce the computation cost and enhance
network generation ability. We use shufflepixel and Transformer Encoder iteratively to
make the resolution four times larger at each iteration. The Generator is shown in Figure 6.
The detailed structure of the Generator is shown in Table 3. The framework of our system
is shown in Algorithm 1.
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Table 3. The detailed structure of the Generator.

Stage Output Generator

S1 256 × 4 × 4 Attention
Deconvolution

S2 64 × 8 × 8 Attention
Deconvolution

S3 16 × 16 × 16 Attention
Deconvolution

S4 15 × 32 × 32 Attention
Deconvolution

S5 15 × 15 × 200 Attention
Deconvolution

Figure 6. The Generator.

Algorithm 1 The framework of our system

Input:
The training data selected from K classes. The class labels of training samples. The test
data from K classes.

Output:
1: Extracting the spatial information through the Spatial Feature Extract.
2: Extracting the spectral information through the Spectral Feature Extract.
3: Fusing the two channels’ information through the Fusion Block.
4: Generating random noises from uniform distribution.
5: Generating samples from the generator by using the random noises.
6: Training the network through the generated samples.

RETURN: The labels of test data;

4. Experiments

In this section, three leading HSI data sets are selected to conduct HSI classifica-
tion experiments. The experiments are implemented on the pytorch open source software
framework using the NVIDIA 3080Ti graphics card.

The Indian Pines dataset was gathered in 1992 and has 224 bands. The AVIRIS stands
for airborne visible infrared imaging spectromet, and its data were gathered in northwestern
Indiana. The band’s visible and infrared spectra range from 400 to 2500 nm, and 200 spectral
bands are used in this paper because of the atmospheric absorption compared with the original
224 bands. The size of the dataset is 145 × 145, and some of these pixels are labeled to
16 classes. Table 4 shows the data division of the Indian Pines dataset for this experiment.

The Pavia University dataset was gathered by the ROSIS sensor in 2002 and has 115 bands.
The ROSIS stands for Reflective Optics System Imaging Spectrometer, and its data were gathered
over the University of Pavia campus during a flight campaign. The band’s visible and infrared
spectra range from 430 to 860 nm, and the ground resolution of this dataset is 1.3 m. Affected by
noise and water absorption, some bands were abandoned, and 103 spectral bands are used in
this paper. The size is 610× 340 in this dataset, and some of these pixels are labeled to 9 classes.
Table 5 shows the training and testing data division of the Pavia University dataset.



Remote Sens. 2022, 14, 3426 9 of 18

Table 4. The land cover category and data division of the Indian Pines Dataset.

Class No. Class Name Training Test

1 Alfalfa 15 31
2 Corn-notill 15 1413
3 Corn-mintill 15 815
4 Corn 15 222
5 Grass-pasture 15 468
6 Grass-trees 15 715
7 Grass-pasture-mowed 15 13
8 Hay-windrowed 15 463
9 Oats 15 5
10 Soybean-notil 15 957
11 Soybean-mintill 15 2440
12 Soybean-clean 15 578
13 Wheat 15 190
14 Woods 15 1250
15 Buildings-Grass-Trees-Drives 15 371
16 Stone-Steel-Towers 15 78

Total 240 10,009

Table 5. The land cover category and data division on the Pavia University dataset.

Class No. Class Name Training Test

1 Asphalt 15 6616
2 Meadows 15 18,634
3 Gravel 15 2084
4 Trees 15 3049
5 Painted metal sheets 15 1330
6 Bare Soil 15 5014
7 Bitumen 15 1315
8 Self-Blocking Bricks 15 3667
9 Shadows 15 932

Total 135 42,641

The Kennedy Space Center dataset was gathered by NASA AVIRIS in 1996 and has
224 bands. The band’s visible and infrared spectra range from 400 to 2500 nm, and the
ground resolution of this dataset is 18 m. Because of the existence of water absorption,
some affected and low SNR bands were abandoned, and 176 spectral bands were used
in this paper. The size of the dataset is 512 × 614, and some of these pixels are labeled to
13 classes. Table 7 shows the training and testing data division of the KSC dataset.

Table 6. The land cover category and data division on the Kennedy Space Center dataset.

Class No. Class Name Training Test

1 Scrub 15 746
2 Willow swamp 15 228
3 Cabbage palm hammock 15 241
4 Cabbage palm/oak hammock 15 237
5 Slash pine 15 146
6 Oak/broadleaf hammock 15 214
7 Hardwood swamp 15 90
8 Graminoid marsh 15 416
9 Spartina marsh 15 505

10 Cattail marsh 15 389
11 Salt marsh 15 404
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Table 7. Cont.

Class No. Class Name Training Test

12 Mud flats 15 488
13 Water 15 912

Total 195 5016

To demonstrate how our method performs, we compared our method with eight
different methods, including SVM [40], 2D-CNN [41], 3D-CNN [18], HSI-BERT [34],
CA-GAN [38], DCFSL [23], VSCNN [22] and S-DMM [25]. DCFSL, VSCNN and S-DMM are
the few-shot learning methods in hyperspectral image classification and obtain good results.
DCFSL can utilize other datasets by combining few-shot learning and a domain adaptation
strategy in the conditional adversarial manner. VSCNN uses active learning to select valu-
able samples from uncertain dataset to form training sample set and improve the few-shot
learning ability. S-DMM can learn more features by learning the similarity between sample
pairs using a Siamese network and an auto-encoder based on metric-learning.

For the fairness of the experiments, all the methods use their optimal parameters.
The experiment is divided into five groups for IP and PU by the number of training
samples, and the training samples of every class in each group have the numbers of 5, 10,
15, 20 and 25, respectively. In addition, the experiment is divided into three groups for
Kennedy Space Center by the number of training samples, and the training samples of
every class in each group have the numbers of 15, 20 and 25, respectively. Taking five per
class for example, five samples are randomly selected from every class as the samples for
training and the left samples are used as the testing set. We adopt the overall accuracy (OA)
as the evaluation metric to measure the classification performance. All experiments are
averaged on 10 times independent training results.

The above experiments are shown in Tables 8–10. From the tables, we can find that
as more samples are labeled, the accuracy reaches a higher score. Our proposed method
outperforms in all conducted experiments, which demonstrates the ability of our method
regardless of the change in the number of labeled samples. When other methods can obtain
a good result on single dataset but cannot fit to the others, it means they do not have good
adaptation ability, which is essential in few-shot learning problems. Because we cannot
predict what dataset we will encounter, we need to have good results on different datasets.

Given 15 labeled samples as training samples per class, the corresponding classification
maps of all the selected methods in IP dataset are shown in Figure 7. In addition, the
corresponding detailed maps of PU and KSC are shown in Figures 8 and 9, respectively.
It can obviously be seen that our classification map matches best with the image labeled
with ground truth in all the images, which means that other methods assigned more
incorrect labels to the pixels compared to our method. Moreover, Tables 11–13 show the
detailed accuracy of every class classification with 15 labeled samples as training samples
on different datasets.

Our method achieves better results on most land classes. In particular, on the In-
dian Pines dataset, our method obtains the highest classification results on 13 classes
out of 16 classes. For the classes “Corn-notill”, “Soybean-mintill” and “Woods”, where
the proportion between the number of testing sets and the number of training sets is
huge, our method obtains classification results of 78.77%, 81.39% and 97.28%, respectively.
Our method is greatly improved compared with other methods in category 3 and 11.

On the Pavia University dataset, our method obtains the highest classification results
on four classes out of nine classes. For the class “Meadows” and “Bare Soil”, where the
proportion between the number of testing set and the number of training sets is huge, our
method obtains classification results of 97.57% and 100.0%, respectively. Our method is
greatly improved compared with other methods in category 2.

On the KSC dataset, our method obtains the highest classification results on 6 out of
13 classes. For the classes “Scrub” and “Water”, where the proportion between the number



Remote Sens. 2022, 14, 3426 11 of 18

of testing sets and the number of training sets is huge, our method obtains classification
results of 99.87% and 100.0%, respectively. Our method is greatly improved compared with
other methods in category 2.

It can be seen that our method can make full use of a small number of training samples
to extract effective features. From the perspective of AA, our method reaches the highest on
the Indian Pines and KSC dataset. From the perspective of kappa, our method reaches the
highest perfromance on three dataset. It can be seen that the classification results of each
category are relatively balanced in the case of unbalanced proportion of training samples.
Ablation experiments are shown in Tables 14–16. By introducing the generative adversarial
network, the OA can be improved by around 2%. As can be seen, the classification results
after adding the generator improve greatly.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. The classification maps for the IP with compared methods. (a) Source Image. (b) Ground
Truth. (c) SVM. (d) 2D-CNN. (e) 3D-CNN. (f) HSI-BERT. (g) CA-GAN. (h) DCFSL. (i) VSCNN.
(j) S-DMM. (k) Our proposed method. (l) Legend.
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Table 8. The classification results of our proposed and other leading methods on Indian Pines (%).

Number SVM 2D-CNN 3D-CNN HSI-BERT CA-GAN DCFSL VSCNN S-DMM Ours

5 42.01 ± 1.77 39.81 ± 1.10 47.66 ± 1.83 40.08 ± 1.70 51.52 ± 1.81 67.23 ± 1.21 66.70 ± 1.56 60.70 ± 1.85 76.25 ± 0.92
10 51.34 ± 1.28 55.61 ± 1.89 54.46 ± 1.00 52.79 ± 0.77 70.77 ± 1.11 72.14 ± 0.66 80.06 ± 1.14 64.89 ± 0.94 86.28 ± 0.77
15 57.41 ± 1.40 57.72 ± 1.90 58.94 ± 1.27 58.50 ± 1.56 75.52 ± 1.28 77.45 ± 1.78 83.06 ± 1.04 67.04 ± 1.65 87.47 ± 1.45
20 64.32 ± 1.11 60.79 ± 1.53 65.89 ± 1.08 62.03 ± 1.31 80.54 ± 1.06 82.18 ± 1.02 86.13 ± 1.35 68.73 ± 1.24 89.26 ± 0.53
25 68.11 ± 0.63 64.39 ± 1.62 73.23 ± 1.30 66.87 ± 1.42 83.38 ± 0.86 83.20 ± 0.62 88.22 ± 1.40 69.05 ± 0.59 93.01 ± 1.14

Table 9. The classification results of our proposed and other leading methods on Pavia University (%).

Number SVM 2D-CNN 3D-CNN HSI-BERT CA-GAN DCFSL VSCNN S-DMM Ours

5 62.53 ± 1.87 63.74 ± 1.30 62.92 ± 1.01 18.14 ± 1.59 64.63 ± 0.60 78.03 ± 1.39 71.95 ± 1.78 76.64 ± 0.62 85.95 ± 0.58
10 71.92 ± 1.97 66.37 ± 0.72 72.43 ± 1.64 58.12 ± 1.15 72.55 ± 1.40 85.86 ± 1.73 75.45 ± 1.09 83.26 ± 0.77 91.40 ± 1.39
15 78.67 ± 1.79 77.53 ± 1.50 75.24 ± 0.84 75.31 ± 1.59 76.81 ± 0.91 90.71 ± 0.56 81.63 ± 1.81 88.30 ± 1.03 93.20 ± 0.59
20 80.19 ± 1.60 79.51 ± 1.67 80.87 ± 1.08 76.10 ± 1.45 83.82 ± 0.85 93.68 ± 0.91 83.52 ± 1.36 92.26 ± 0.80 94.69 ± 0.76
25 81.72 ± 0.87 83.77 ± 1.70 82.97 ± 0.88 79.11 ± 1.62 84.99 ± 0.78 94.66 ± 0.83 87.19 ± 1.72 93.37 ± 1.97 96.38 ± 0.42

Table 10. The classification results of our proposed and other leading methods on the Kennedy Space Center dataset (%).

Number SVM 2D-CNN 3D-CNN HSI-BERT CA-GAN DCFSL VSCNN S-DMM Ours

15 84.83 ± 1.51 80.53 ± 1.31 87.18 ± 1.00 82.93 ± 0.94 91.17 ± 1.54 97.59 ± 1.03 80.15 ± 0.62 95.83 ± 1.68 98.39 ± 0.63
20 86.49 ± 1.94 82.26 ± 0.84 90.53 ± 1.41 86.47 ± 0.67 94.34 ± 0.62 98.10 ± 1.32 85.44 ± 1.07 97.96 ± 1.32 99.54 ± 0.40
25 89.26 ± 0.54 86.23 ± 1.43 91.22 ± 1.00 90.16 ± 1.52 97.04 ± 1.87 99.16 ± 0.84 87.15 ± 1.92 98.08 ± 0.62 99.84 ± 0.15

Table 11. The classification results of our proposed and other leading methods on the Indian Pines dataset (%).

IP15 SVM 2D-CNN 3D-CNN HSI-BERT CA-GAN DCFSL VSCNN S-DMM Ours

class1 54.84 ± 0.58 70.97 ± 0.66 83.87 ± 1.02 93.55 ± 1.25 100.0 ± 0.0 100.0 ± 0.0 90.32 ± 1.08 91.67 ± 1.80 100.0 ± 0.0
class2 30.71 ± 1.85 34.89 ± 1.53 38.08 ± 0.85 42.60 ± 1.58 61.78 ± 0.65 60.79 ± 1.68 75.94 ± 1.78 47.18 ± 0.86 78.77 ± 1.03
class3 43.93 ± 0.85 48.47 ± 1.71 41.84 ± 1.32 48.22 ± 0.83 68.22 ± 0.77 78.77 ± 1.05 85.03 ± 1.61 44.88 ± 1.29 92.15 ± 1.42
class4 57.21 ± 1.08 58.56 ± 1.96 52.70 ± 0.56 81.98 ± 0.55 92.34 ± 1.58 94.59 ± 1.89 95.95 ± 0.95 33.04 ± 0.74 99.1 ± 0.9
class5 62.82 ± 0.56 81.41 ± 1.69 74.79 ± 1.96 86.54 ± 0.72 82.69 ± 1.86 85.68 ± 0.85 91.03 ± 1.78 78.44 ± 1.46 95.30 ± 0.66
class6 81.82 ± 0.50 91.75 ± 1.21 87.27 ± 1.84 87.83 ± 0.62 89.51 ± 1.55 96.64 ± 1.02 97.34 ± 1.38 92.50 ± 1.66 95.94 ± 0.73
class7 84.62 ± 1.05 92.31 ± 0.92 100.0 ± 0.0 92.31 ± 1.57 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
class8 88.12 ± 1.82 86.83 ± 0.56 94.38 ± 1.75 68.03 ± 0.84 99.78 ± 0.21 92.22 ± 1.93 97.84 ± 1.23 85.26 ± 1.94 100.0 ± 0.0
class9 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0 100.0 ± 0.0
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Table 11. Cont.

IP15 SVM 2D-CNN 3D-CNN HSI-BERT CA-GAN DCFSL VSCNN S-DMM Ours

class10 52.77 ± 1.08 63.64 ± 1.63 64.26 ± 0.53 59.98 ± 1.52 76.28 ± 0.51 71.89 ± 1.85 80.88 ± 1.51 66.74 ± 0.91 86.00 ± 0.32
class11 52.75 ± 0.66 48.69 ± 1.48 41.43 ± 0.54 46.68 ± 0.93 64.22 ± 1.60 65.66 ± 0.99 73.32 ± 1.08 70.39 ± 1.03 81.39 ± 1.18
class12 52.08 ± 0.92 47.58 ± 0.56 41.70 ± 1.74 39.45 ± 1.03 78.72 ± 0.66 73.18 ± 0.85 88.41 ± 0.53 40.82 ± 1.11 73.18 ± 1.29
class13 93.68 ± 0.76 97.89 ± 1.75 99.47 ± 0.53 86.32 ± 0.95 99.47 ± 0.53 100.0 ± 0.0 98.95 ± 1.04 99.49 ± 0.51 100.0 ± 0.0
class14 80.80 ± 0.78 58.80 ± 1.49 84.24 ± 1.76 70.48 ± 0.81 82.32 ± 1.23 93.28 ± 0.69 84.24 ± 1.50 81.35 ± 0.69 97.28 ± 1.12
class15 42.32 ± 1.11 57.68 ± 1.46 70.89 ± 1.45 62.53 ± 1.21 92.99 ± 1.68 87.87 ± 0.50 86.52 ± 0.58 68.35 ± 1.49 83.83 ± 0.81
class16 88.46 ± 1.57 94.87 ± 1.12 97.44 ± 1.60 84.62 ± 0.56 92.31 ± 1.29 100.0 ± 0.0 98.72 ± 1.24 98.80 ± 0.74 100.0 ± 0.0

OA 57.41 ± 1.40 57.72 ± 1.90 58.94 ± 1.27 58.50 ± 1.56 75.52 ± 1.28 77.45 ± 1.78 83.06 ± 1.04 67.04 ± 1.65 87.47 ± 1.45
AA 66.68 ± 1.67 70.90 ± 1.36 73.27 ± 1.30 71.94 ± 1.31 81.21 ± 0.84 87.54 ± 0.57 90.28 ± 0.58 74.93 ± 1.08 92.68 ± 0.47

kappa 52.29 ± 1.29 52.82 ± 1.09 54.06 ± 1.68 53.63 ± 1.05 72.69 ± 0.57 74.65 ± 0.72 80.89 ± 0.63 62.44 ± 1.63 85.78 ± 1.31

Table 12. The classification results of our proposed and other leading methods on the Pavia University dataset (%).

PU15 SVM 2D-CNN 3D-CNN HSI-BERT CA-GAN DCFSL VSCNN S-DMM Ours

class1 66.28 ± 0.50 40.10 ± 0.77 70.41 ± 1.25 68.91 ± 1.50 60.16 ± 0.67 74.55 ± 0.86 83.27 ± 1.63 96.97 ± 0.82 89.07 ± 1.13
class2 82.10 ± 0.87 93.15 ± 1.82 73.10 ± 1.44 87.44 ± 1.53 72.83 ± 0.92 97.20 ± 1.33 76.96 ± 0.54 81.15 ± 1.29 97.57 ± 1.46
class3 64.78 ± 1.19 83.01 ± 1.62 73.80 ± 0.61 33.59 ± 1.20 98.03 ± 0.73 80.57 ± 0.58 81.91 ± 0.91 92.69 ± 1.19 67.08 ± 0.69
class4 85.93 ± 1.12 90.03 ± 0.67 89.37 ± 1.07 69.86 ± 1.42 89.44 ± 0.83 94.62 ± 1.54 86.86 ± 0.54 97.50 ± 1.41 88.03 ± 0.69
class5 99.32 ± 0.68 98.5 ± 1.5 96.39 ± 1.97 92.18 ± 1.00 99.7 ± 0.29 100.0 ± 0.0 99.55 ± 0.45 100.0 ± 0.0 100.0 ± 0.0
class6 72.34 ± 1.61 52.11 ± 0.66 69.68 ± 0.64 48.54 ± 1.09 79.94 ± 1.35 90.37 ± 1.25 82.81 ± 1.44 84.73 ± 0.98 93.80 ± 0.78
class7 87.22 ± 1.52 68.44 ± 1.30 86.46 ± 1.50 66.92 ± 0.51 90.04 ± 0.69 92.47 ± 1.40 77.94 ± 1.52 97.71 ± 0.58 99.47 ± 0.53
class8 78.13 ± 1.82 76.85 ± 0.57 77.09 ± 1.83 83.50 ± 1.54 81.95 ± 1.65 81.62 ± 1.25 93.58 ± 1.32 93.23 ± 1.42 93.07 ± 1.13
class9 99.89 ± 0.10 100.0 ± 0.0 86.05 ± 0.94 88.73 ± 1.03 97.32 ± 1.72 100.0 ± 0.0 71.84 ± 1.55 99.89 ± 0.10 96.67 ± 0.57

OA 78.67 ± 1.79 77.53 ± 1.50 75.24 ± 0.84 75.31 ± 1.59 76.81 ± 0.91 90.71 ± 0.56 81.63 ± 1.81 88.30 ± 1.03 93.20 ± 0.59
AA 81.78 ± 1.06 78.02 ± 0.64 80.26 ± 1.41 71.08 ± 0.71 76.94 ± 0.76 90.20 ± 0.67 83.86 ± 0.55 93.76 ± 0.77 91.60 ± 0.55

kappa 72.32 ± 0.88 70.17 ± 0.60 68.43 ± 1.65 67.00 ± 1.33 71.02 ± 1.51 87.73 ± 1.67 76.46 ± 1.70 84.90 ± 1.65 91.00 ± 1.07
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Table 13. The classification results of our proposed and other leading methods on the Kennedy Space Center (%).

KSC15 SVM 2D-CNN 3D-CNN HSI-BERT CA-GAN DCFSL VSCNN S-DMM Ours

class1 70.38 ± 0.85 86.23 ± 1.60 89.41 ± 1.92 85.66 ± 0.71 88.20 ± 0.71 96.92 ± 1.68 97.15 ± 0.61 96.01 ± 1.49 99.87 ± 0.12
class2 81.14 ± 1.70 74.44 ± 1.09 86.40 ± 1.50 90.35 ± 1.03 85.53 ± 1.04 86.40 ± 0.90 91.28 ± 1.48 88.84 ± 1.03 100.0 ± 0.0
class3 94.19 ± 1.75 72.46 ± 1.98 85.06 ± 1.21 49.79 ± 0.78 95.02 ± 0.76 98.76 ± 0.94 80.09 ± 0.92 99.19 ± 0.81 96.68 ± 0.44
class4 43.04 ± 1.95 76.29 ± 0.76 54.01 ± 0.66 51.90 ± 0.89 90.72 ± 0.59 82.28 ± 1.34 42.29 ± 1.21 54.96 ± 1.08 86.08 ± 1.18
class5 73.97 ± 1.05 42.55 ± 1.29 83.56 ± 0.56 58.90 ± 1.54 90.41 ± 1.19 91.78 ± 1.66 58.09 ± 0.61 80.79 ± 0.86 93.84 ± 1.35
class6 66.36 ± 1.24 46.89 ± 1.03 76.64 ± 0.89 89.72 ± 1.21 94.39 ± 0.53 97.66 ± 0.77 70.59 ± 0.73 96.35 ± 1.07 100.0 ± 0.0
class7 94.44 ± 0.99 78.82 ± 0.65 100.0 ± 0.0 94.44 ± 1.13 100.0 ± 0.0 100.0 ± 0.0 70.00 ± 1.34 100.0 ± 0.0 97.78 ± 0.40
class8 91.11 ± 1.40 76.16 ± 0.80 92.55 ± 1.86 76.68 ± 1.71 86.78 ± 0.75 100.0 ± 0.0 62.81 ± 1.30 99.29 ± 0.50 96.63 ± 0.92
class9 87.52 ± 1.55 84.80 ± 1.65 60.59 ± 1.97 76.44 ± 0.90 86.73 ± 1.39 100.0 ± 0.0 74.55 ± 0.88 100.0 ± 0.0 99.60 ± 0.40

class10 87.92 ± 0.91 75.26 ± 1.22 93.32 ± 0.97 96.92 ± 1.01 86.12 ± 0.69 99.74 ± 0.26 61.48 ± 1.49 100.0 ± 0.0 99.49 ± 0.51
class11 98.27 ± 1.20 97.24 ± 1.90 93.07 ± 1.15 96.78 ± 1.80 92.57 ± 0.74 100.0 ± 0.0 78.68 ± 1.24 100.0 ± 0.0 100.0 ± 0.0
class12 87.91 ± 1.98 74.33 ± 1.98 93.85 ± 0.59 71.31 ± 1.77 88.52 ± 1.08 99.18 ± 0.81 78.24 ± 1.31 98.99 ± 0.87 97.95 ± 1.26
class13 97.81 ± 1.96 92.17 ± 1.30 100.0 ± 0.0 97.37 ± 0.56 100.0 ± 0.0 100.0 ± 0.0 99.89 ± 0.10 100.0 ± 0.0 100.0 ± 0.0

OA 84.83 ± 1.51 80.53 ± 1.31 87.18 ± 1.00 82.93 ± 0.94 91.17 ± 1.54 97.59 ± 1.03 80.15 ± 0.62 95.83 ± 1.68 98.39 ± 0.63
AA 82.62 ± 0.74 75.20 ± 0.85 85.27 ± 1.16 79.71 ± 0.81 84.64 ± 0.84 96.36 ± 1.74 74.24 ± 1.72 93.42 ± 0.72 97.53 ± 1.11

kappa 83.17 ± 1.90 78.23 ± 0.91 85.73 ± 0.60 80.99 ± 1.97 90.20 ± 1.67 97.31 ± 1.83 77.81 ± 1.96 95.35 ± 0.53 98.20 ± 1.20
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(i) (j) (k) (l)

Figure 8. The classification maps for the PU with compared methods. (a) Source Image. (b) Ground
Truth. (c) SVM. (d) 2D-CNN. (e) 3D-CNN. (f) HSI-BERT. (g) CA-GAN. (h) DCFSL. (i) VSCNN.
(j) S-DMM. (k) Our proposed method. (l) Legend.
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(i) (j) (k) (l)

Figure 9. The classification maps for the KSC with compared methods. (a) Source Image. (b) Ground
Truth. (c) SVM. (d) 2D-CNN. (e) 3D-CNN. (f) HSI-BERT. (g) CA-GAN. (h) DCFSL. (i) VSCNN.
(j) S-DMM. (k) Our proposed method. (l) Legend.

Table 14. The ablation experiments on Indian Pines (OA) (%).

Number Without Generator With Generator

5 74.24 ± 2.15 76.25 ± 0.92

10 84.52 ± 1.43 86.28 ± 0.77

15 85.76 ± 1.87 87.47 ± 1.45

20 87.15 ± 1.51 89.26 ± 0.53

25 90.43 ± 1.65 93.01 ± 1.14

Table 15. The ablation experiments on the Pavia University dataset (OA) (%).

Number Without Generator With Generator

5 83.34 ± 2.12 85.95 ± 0.58

10 88.04 ± 2.21 91.40 ± 1.39

15 91.56 ± 2.38 93.20 ± 0.59

20 92.14 ± 2.98 94.69 ± 0.76

25 94.89 ± 2.12 96.38 ± 0.42

Table 16. The ablation experiments on the Kennedy Space Center (OA) (%).

Number Without Generator With Generator

15 96.82 ± 1.32 98.39 ± 0.63

20 97.54 ± 1.63 99.54 ± 0.40

25 98.12 ± 1.32 99.84 ± 0.15
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5. Conclusions

In this paper, we propose a new method that combines a Generative Adversarial Net-
work, convolution block and Transformer Encoder in a unified framework. The proposed
method has both a global receptive field provided by the Transformer Encoder and a local
receptive field provided by the convolution block. In order to perform better in the few-shot
learning problem, the Generative Adversarial Network is used to provide more training
data. Experiments conducted on the Indian Pines, PaviaU and KSC datasets demonstrate
that our method exceeds the results of existing deep learning methods for hyperspectral
image classification in the few-shot learning problem.
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