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Abstract: The accurate quantification of evapotranspiration (ET) is critical to the sustainable man-
agement of irrigated agriculture. In this study, we proposed a remote sensing data fusion method
for predicting ET, coupling a surface energy balance system model with an enhanced spatial and
temporal adaptive reflectance fusion model utilizing remote sensing inversion with satellite data
from Landsat and MODIS. The method was tested for a case study with cotton fields under film-
mulched drip irrigation (FMDI) in the Manas River Basin. Areas under FMDI were identified, and
ET patterns were evaluated for a 21-year period spanning from 2000 to 2020. A field experiment,
a regional survey, and data retrieved from the literature provided results demonstrating that the
method allowed reliable estimation of ET distribution with simultaneously, relatively high spatial
and temporal resolutions at both field and regional scales. ET was found to decline from upstream
to downstream in the basin, with the difference gradually diminishing over time. Supported by
the promotion of FMDI technology, the area under cotton production in the basin increased by an
average of 4.9% annually. Limited irrigation quotas to farmers and, therefore, water application per
area led to a decreasing ratio of relative water supply for potential ET and, thus, to a reduction in
average actual ET of 7.5 mm year−1. The average ET in the basin declined to about 415.7 mm in
2020, 287.2 mm lower than its water demand. The dynamics of fused ET provide a reliable scientific
basis for agricultural water resources planning and management and for the sustainable utilization
of water and soil resources in the basin. The method, with simultaneously high temporal and spatial
resolutions, should have both local and global practical potential.

Keywords: ET (evapotranspiration); energy balance; machine learning; Landsat; MODIS

1. Introduction

Evapotranspiration (ET) is a principal component of the hydrological cycle, affected
by both biophysical and environmental processes at the interface between soil, vegetation,
and atmosphere. Reliable evaluation of ET is essential for sustainable agricultural and
ecological water management, especially in arid and semiarid regions [1]. Methods of
monitoring and estimating ET are greatly scale-dependent. Considerable progress has
recently been made on the point (farm) scale. For example, weighing lysimeters, eddy
covariance systems, the Penman–Monteith formula, and Bowen ratio systems are all exam-
ples of methods successfully applied to analyze point-scale water balance and ET dynamics
for farmland water management [2]. Obtaining ET at the regional scale is influenced by
many complicated factors, including spatial variation, human activity, and labor costs,
and involves characteristics unlike those at the point scale [3]. Remote sensing has been
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demonstrated as effective and powerful in monitoring and evaluating regional ET through
repeated acquisition of multi-band and multi-temporal information over large areas [4,5].

Enormous effort has been made to estimate ET through remote sensing inversion
using empirical statistical and energy balance models. Comparatively speaking, energy
balance models are more mechanical and practical by taking full consideration of the surface
thermodynamic characteristics and energy balance processes [6]. As one of the most widely
and successfully applied energy balance models, the Surface Energy Balance System model
(SEBS) uses sensible heat flux to determine the surface energy balance index pixel-by-pixel
through considering the effects of additional dry and wet limits. This enables the expression
of the uneven distribution of water and energy typically found in arid and semiarid areas,
thus significantly enhancing simulation accuracy [7,8]. Moreover, parameters related to
complex aerodynamic resistances needed for the calculation process in SEBS can be readily
estimated using meteorological data and underlying surface characteristics inversed from
remote sensing data. Monitoring or estimation of regional ET is dependent on accurate
identification or classification of surface features. The underlying surface in those arid or
semiarid regions can often be comprised of complex landscapes, including farmland, forest,
wasteland, roads, rivers or canals, reservoirs, buildings, and other components.

The arid inland Manas River Basin (MRB) is a typical oasis agricultural area in northern
Xinjiang, China, with cotton as the dominant cultivated crop. Sustainable development
of local oasis agriculture in the MRB is restricted by the shortage of water resources and
soil salinization due to scarce precipitation and intense evaporation [9]. Beneficial for
its ability to save water, alleviate salinization, and enhance crop yield, the technology of
film-mulched drip irrigation (FMDI) has been applied successfully and widely in Xinjiang
since its development in the MRB at the end of the last century [10]. In recent years, oasis
agriculture in the region has been influenced by combined environmental and management
changes. Climate change and changes in the watershed’s hydrological cycle have been
responded to and accompanied by the adoption of water-saving technologies and an
adjustment of agricultural cultivation methodologies. This has resulted in unpredictable
patterns of soil water–salt dynamics, including ET [11], and especially the necessity for
understanding the spatiotemporal variation of ET in cotton fields under film-mulched drip
irrigation (CFFMDI) in the MRB.

The ET of CFFMDI, affected by many complex and continuously changing factors, such
as meteorological, soil environmental, and crop growth conditions, fluctuates drastically
over time. Too large a time interval between acquisitions of remote sensing images used
for inferring ET would result in inaccurate capturing of ET dynamics. Both high temporal
and spatial resolutions are therefore required for estimating regional ET of CFFMDI in
the MRB. Unfortunately, current remote sensing estimation of regional ET is mostly based
on limited data sources, e.g., Landsat or MODIS. Due to technical or cost constraints, it is
difficult to simultaneously achieve high resolution of both time and space [12]. Among
commonly used remote sensing image sources, the Landsat series satellites provide a high
spatial resolution of up to 30 m, as well as great potential in vegetation index extraction
and monitoring of land cover dynamic change. However, Landsat is limited by a long,
up to 16-day, revisit cycle and is susceptible to atmospheric conditions, such as cloud
cover and aerosols, that disturb image acquisition [13]. In contrast, MODIS images are
acquired daily, but with a lower spatial resolution of 250–1000 m, making effective analysis
of complex underlying surfaces difficult. Hence, we hypothesized that fusing remote
sensing data from both Landsat and MODIS would be an efficient and economical method
to simultaneously meet the requirements of high spatial and temporal resolutions for the
estimation of regional ET in CFFMDI in the MRB.

Traditional image fusion methods, such as luminance–hue–saturation (IHS) transform,
principal component analysis, and wavelet transform [14], were proposed mainly through
fusing high-resolution panchromatic data and low-resolution multispectral data to improve
the spatial resolution, but not the temporal resolution [12]. The widespread application of
big data and cloud computing has given birth to data fusion technologies designed to meet



Remote Sens. 2022, 14, 3438 3 of 22

the requirements for simultaneous, high spatial and temporal resolutions using various
remote sensing data sources [15]. For example, as one of the most widely used spatiotem-
poral fusion models, the Spatial and Temporal Adaptive Reflectance Fusion Model can
effectively fuse remote sensing images mainly based on weight function [16]. However,
implicated by mixed pixels, especially when images of critical periods are missing, this
model is only feasible for the fusion of surface parameters, such as normalized differential
vegetation index (NDVI), which change slowly with time, and it is likely to fail in effec-
tively capturing the sharp fluctuations of surface features and, thus, to lead to an irrational
calculation of ET [4]. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion
Model (ESTARFM) was proposed to overcome the above shortcoming by assuming that the
reflectance of features changes linearly over a period of time, and the corresponding values
of mixed pixels are linearly combined by spectral values of different surface features [12].
A conversion coefficient was introduced into the model to solve the mixed-pixel problem,
making the selection of similar pixels and temporal weight calculation more reasonable
and thereby improving the fusion accuracy of a complex surface. ESTARFM has been
successfully applied in surface reflectance fusion [8]. Nevertheless, further attention should
be paid to the applicability and effectiveness of ESTARFM in remote sensing monitoring
and estimation for regional ET.

The objectives of this study were to (1) propose and verify a remote sensing data fusion
method to estimate ET with simultaneously high temporal and spatial resolutions by cou-
pling the models of SEBS and ESTARFM; and (2) analyze the past 21 years’ (2000–2020) tem-
poral and spatial variation of fused ET in CFFMDI over growing seasons (April–September)
in the MRB so as to provide reasonable strategies of allocation management and sustainable
utilization for local agricultural water resources. The spatial distributions of CFFMDI were
identified using a Random Forest (RF) algorithm based on the downloaded Landsat images
of the basin for the last 21 years. Both Landsat and MODIS series remote sensing data
were employed to estimate (by SEBS) and fuse (by ESTARFM) regional ET distributions.
Measurements from a field irrigation experiment, a regional survey, and literature retrieval
for CFFMDI were used to verify the method at both farmland and regional scales.

2. Materials and Methods
2.1. Overview of Study Area

The MRB is located at the northern foot of Tianshan Mountain and the southern margin
of the Junggar Basin (Figure 1a), covering an area of about 33,400 km2. With gradually
decreasing elevation from 1748 masl in its southeast to 175 masl in its northwest, the MRB
consists of typical mountain–oasis–desert geomorphic features [17], among which oasis
(43◦27′–45◦21′N, 85◦1′–86◦2′E) covers about 11,090 km2 (Figure 1b). The basin is a typical
continental arid climate zone, with annual average precipitation of 110–210 mm, free water
evaporation of 1600–2300 mm, average relative humidity of 65%, mean temperature of
6.0–6.9 ◦C, and maximum temperature of 41 ◦C. Limited by strong evaporation and scarce
precipitation, local agricultural production is heavily dependent on irrigation.

The soil texture in the basin is mainly silty clay loam, including sierozem soil, meadow
soil, and saline soil, with poor fertility. Farmland in the MRB is located mostly mid- and
downstream, with only small areas farmed upstream. The most heavily salinized area is
near belts of shallow (around 1.2 m below the surface) flowing groundwater (Figure 1b) [17].
The technology of FMDI has been widely promoted and applied in local areas since its local
development in 1999. Almost all the irrigated areas in the MRB are equipped with FMDI
and the agriculture is highly mechanized. Besides the main crop of cotton, a small number
of other crops, such as grape vineyards, wheat, maize, and pepper, are cultivated in the
MRB. The annual growing season of cotton typically lasts from April to September, with its
early growth stage between April and early May, middle from mid–late May to the end of
August, and final in September. Considering that this study concerned the spatiotemporal
evolution dynamics of ET in the cotton fields of the MRB since the promotion of FMDI, we
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studied the annual local cotton growing seasons from April to September over a 21-year
period from 2000 to 2020.
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2.2. SEBS for Estimating Daily ET

As a typical single-source energy balance model focusing on the theoretical relationship
between net radiation flux and its component fluxes, including soil, sensible, and latent
heat, the SEBS estimates the ET-incorporated atmospheric turbulent (latent heat) flux
through a combination of remote sensing images (Landsat or MODIS data) and surface
meteorological data [7]. In a word, ET can be conveniently calculated based on the turbulent
latent heat flux estimated on the known net radiation flux, soil heat flux, and sensible heat
flux. Among the simulation processes, taking both short- and long-wave radiation into
consideration, net radiation flux was estimated with surface reflectance (calculated using
fitting formula varying according to remote sensing data source), emissivity (calculated
based on NDVI), and radiation temperature obtained from remote sensing images [18,19].
Then, soil heat flux was estimated through splitting net radiation flux according to the
vegetation coverage calculated from NDVI [7,20]. Finally, the turbulent sensible heat flux
was estimated through iteratively solving three nonlinear equations between the variables
of friction velocity, sensible heat flux, and Obukhov length, which were established on
the similarity theory of atmospheric boundary layer [21,22]. The input parameters and
status variables, such as temperature, wind speed, and NDVI, required for the equations
were readily measured, with no need to consider complicated surface energy balance
terms [7]. For the convenience of reference, the corresponding theoretical background and
simulation procedure of SEBS for estimating daily ET are supplemented in Section S1 of
the Supplementary Materials.

2.3. ESTARFM for Fusing Remote Sensing Data

As previously mentioned, the energy balance parameters (e.g., surface albedo, emis-
sivity, temperature, atmospheric transmittance, etc.) required for ET estimation by SEBS
have different time and spatial resolutions, depending on whether the inversion source
originated from Landsat or MODIS remote sensing images. The spatial resolution is 30 m
for ETLandsat (mm d−1, representing the ET distribution estimated using Landsat remote
sensing images) every 16 d, and is 1000 m for daily ETMODIS (mm d−1). To simultaneously
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ensure high resolution of ET evaluation over both time and space, ETLandsat and ETMODIS
were fused through ESTARFM to obtain the dynamics of daily evapotranspiration rate
ETESTARFM (mm d−1) during the growing season of CFFMDI in the MRB [23]. Detailed
theoretical background and the data fusion procedure are attached in Section S2 of the
Supplementary Materials.

As demonstrated in Section S2, every ETESTARM-p at the predicted time tp was fused
through four series of ETLandsat-m, ETLandsat-n, ETMODIS-m, and ETMODIS-n at two reference
times tm and tn, and one serial of ETMODIS-p at tp. To fully understand the dynamics of
crop water consumption and use efficiency, daily evapotranspiration would be expected
to be fused through ESTARFM, using ETMODIS of each growing day as the input infor-
mation. However, during the entire growth period of the crop, only those days under
favorable atmospheric conditions (such as without clouds, aerosols, or dust) were effective
to acquire good-quality MODIS images for estimating ETMODIS and then fusing ETESTARM.
Consequently, the METRIC (mapping evapotranspiration with internalized calibration)
algorithm, a time reconstruction method of remote sensing inversion results, was chosen to
obtain the missing ETESTARM through linear interpolation of the ratio between ETESTARM
and reference ET by taking into account the effect of changes in physiological characteristics
during vegetation growth on ET [24]. The corresponding fusion process of ETESTARM is
summarized and illustrated in a flow chart in Figure 2.

2.4. Data Used for Remote Sensing Inversion and Model Validation
2.4.1. Remote Sensing Data

A total of 48 Landsat images (path 144, row 29, spatial resolution 30 m) with no
uncommon environmental phenomena, such as clouds, aerosols, or dust (i.e., under clear
sky conditions), covering the study area and the annual crop growing season in the 21 years
from 2000 to 2020 were selected for land-use classification (i.e., identification of cotton
fields) and ET estimation. The images were downloaded from the national geological
survey explorer database (www.earthexplorer.usgs.gov (accessed on 10 January 2021)),
with their specific overpass dates and other details shown in Table S1 of Section S3. All
images were calibrated and atmospherically corrected using the QUAC (Quick Atmospheric
Correction) module. Influenced by SLC-off Landsat7 ETM+, gaps of the images from
2002–2005 and 2012 were filled based on the triangulation algorithm [25]. Among the
48 images that underwent a series of preprocessing, 42 images were used for the inversion
of the surface parameters NDVI, vegetation coverage, surface albedo, and temperature
to estimate ET using SEBS. Given that the boll opening stage of cotton is the best time
to identify cotton fields in this study area [26], a total of 21 scenes of Landsat remote
sensing images (Table S1) during August–October of each year were selected for land-use
classification and to identify CFFMDI in the MRB through the RF method, a machine
learning algorithm. If there was no relevant image that could meet the above screening
conditions, the cloudless image in the near period was used to replace it. Compared with
Landsat, the freely available Copernicus Sentinel-2 should be feasible to provide more
advanced multispectral images with finer spatial resolution (10–20 m) and shorter revisit
time (3–10 d). However, the related satellite was not put into operation until 2016. To
keep the consistency of remote sensing data from different sources during the considered
21-year period, only Landsat images were used for both surface feature classification and
ET estimation in this study. Remote sensing images for ET estimation and fusion also
originated from the moderate-resolution imaging spectroradiometer (MODIS) database,
Level-1 and Atmosphere Archive & Distribution System (https://ladsweb.modaps.eosdis.
nasa.gov (accessed on 12 May 2020–10 January 2021)). The MODIS data (with horizontal
bands H23 and H24, vertical band of V04, temporal resolution of 1 d, and spatial resolution
of 1000 m) included surface reflectance (MOD09GA) and temperature (MOD11A1) during
April–September of each year from 2000 to 2020, covering the same study area and period
as those for Landsat images. All the downloaded images were visually inspected, and
only those with effective data covering more than 75% of the MRB were selected for
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ET estimation. The gaps of the images were also filled based on the nibble function in
Python2.7 (Guido Van Rossum, The Netherlands). Prior to estimation, the remote sensing
data prepared for SEBS were preprocessed with all the original images reprojected into
World Geodetic System 1984/Universal Transverse Mercator 45 North coordinate system
using the MODIS Reprojection Tool.

Remote Sens. 2022, 14, 3438 6 of 23 
 

 

 
Figure 2. Flow chart of the fusion process for ETESTARFM with high spatiotemporal resolution. 

2.4. Data Used for Remote Sensing Inversion and Model Validation 
2.4.1. Remote Sensing Data 

A total of 48 Landsat images (path 144, row 29, spatial resolution 30 m) with no un-
common environmental phenomena, such as clouds, aerosols, or dust (i.e., under clear 
sky conditions), covering the study area and the annual crop growing season in the 21 
years from 2000 to 2020 were selected for land-use classification (i.e., identification of cot-
ton fields) and ET estimation. The images were downloaded from the national geological 
survey explorer database (www.earthexplorer.usgs.gov (accessed on 10 January 2021)), 
with their specific overpass dates and other details shown in Table S1 of Section S3. All 

Figure 2. Flow chart of the fusion process for ETESTARFM with high spatiotemporal resolution.

The Digital Elevation Model (DEM) data required for atmospheric transmittance
inversion came from the ASTER GDEM V2 dataset of Geospatial Data Cloud (http://
www.gscloud.cn/ (accessed on 19 September 2020)) at the Computer Network Information
Center, Chinese Academy of Sciences, with a spatial resolution of 30 m. The data were
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processed into a format consistent with the spatial reference and resolution of Landsat and
MODIS images, and then spliced and clipped according to the range of the study area.

2.4.2. Meteorological Data

In order to obtain the reference evapotranspiration and potential evapotranspiration,
daily meteorological data of the study area over the 21 years were retrieved from the
single meteorological station in the Hutubi study area available via the China Meteorology
Data Sharing Service System (http://cdc.cma.gov.cn/ (accessed on 10 January 2021)).
Furthermore, to obtain the spatial distributions of various daily meteorological variables
with the same coordinate system and spatial resolution as those for Landsat and MODIS
images during the calculation process of SEBS in the basin, an inverse distance-weighting
interpolation was performed using collected meteorological data from 42 weather stations
in Xinjiang (Figure 1a) [27].

2.4.3. Ground Observation Data

(1) Validation Data for ET

The accuracy of ET estimation was evaluated using measured and surveyed values at
both farm and regional scales, alternatively using water balance or eddy covariance. For the
water balance process, farmland-scale data concerning irrigation schedule and root-zone
soil water storage were measured in a field irrigation experiment, and regional-scale irriga-
tion and crop data were collected from the Shihezi Water Resources Bureau. Precipitation
data at both scales were obtained from the China Meteorology Data Sharing Service System.
Addition farmland-scale ET data retrieved from the literature were measured using an
eddy covariance system [11].

(a) Irrigation experiment

From April to September 2019, an irrigation experiment with field-grown cotton
under FMDI was carried out at a cotton breeding base of Xinjiang Agricultural University
(44◦26′28′′N, 85◦40′29′′E, altitude 430 m). The site, belonging to the middle reach of the
MRB, is indicated by a green star in Figure 1b and located in the Zhongjiazhuang Town,
Shihezi City, Xinjiang. The soil in the root zone of 0–100 cm was silt loam, comprising
three distinct soil layers of 0–30, 30–60, and 60–100 cm with bulk density of 1.44, 1.63,
and 1.46 g cm−3, respectively. In the experiment, cotton (Xinnongda 4) was planted in
15 plots (6.9 m × 7.5 m) under FMDI and conventionally managed according to local
practice. In addition to 37.5 mm of germination water, the crop was irrigated eight times
with 60 mm water each time, for a total of 480 mm during the whole growth period after
germination. The eight irrigation events were conducted on 22 June, 2, 10, 21 and 30 July,
and 9, 18 and 25 August, respectively. An auger (2 cm in diameter by 15 cm) was used to
sample soil cores on 9 and 29 July, 8, 10 and 15 August, and 15 and 28 September for a total
of 7 soil sampling times. In each plot, soil was sampled beneath a drip tape or planting
row, from the surface to a depth of 100 cm at an interval of 10 cm, and used to measure
soil water content through traditional weighing method. Hence, soil water content was
determined for 1050 samples from the 15 plots. Root-zone water balance components in the
field experiment included irrigation, precipitation, ET, deep leakage/recharge, runoff, and
soil water storage. Since the local farmland is mostly distributed in the flat area, and the
single effective rainfall is usually small during the crop growing period in the study area
under persistent drought and scarce rainfall conditions [28,29], no runoff was observed
in the CFFMDI. In addition, due to the fact that the planned moist layer in the soil of
CFFMDI is not more than 60 cm and local groundwater depth is greater than 2 m, another
component—deep leakage/recharge in field water balance—was considered negligible [29].
Therefore, average ETWBF (mm d−1) was estimated based on measured soil water content
distributions, irrigation, and precipitation amount during a water balance period, which
was then used to verify and evaluate ETESTARFM.

http://cdc.cma.gov.cn/
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(b) Regional survey

Lots of results have shown that little change of root-zone soil water storage is found
throughout a growing season for CFFMDI in Xinjiang; thus, it is often assumed to be
negligible in the regional soil water balance [28]. Therefore, the regional-scale total evapo-
transpiration TETWBR (mm) of cotton fields during each growing season (April–September)
from 2000 to 2020 was evaluated using the collected data of irrigation amount and precipi-
tation from different irrigation districts in the MRB to further validate the fusion method of
ETESTARFM. There are ten irrigation districts in the basin. However, only six of them (i.e.,
Anjihai, Manas, Xiayedi, Shihezi, Mosuowan, and Jingouhe) provided effective irrigation
data for the regional-scale water balance. The six irrigation districts are distributed in the
upstream, midstream, and downstream of the river basin (Figure 1b), with a total area of
9135 km2, accounting for about 82.3% of the oasis irrigated area in the MRB.

(c) Retrieved ET data

At farmland scale, in addition to the above field irrigation experiment, ETEC (mm d−1),
measured through an eddy covariance system, was retrieved from the literature [11]. The
relevant field measurements were conducted between April and September 2012 in a cotton
field under FMDI at the Wulanwusu Agricultural Experimental Station of the 8th Agri-
cultural Division, Xinjiang Production and Construction Corps (44◦16′48′′N, 85◦49′11′′E,
altitude 469 m, indicated by a red triangle in Figure 1b), located in the middle upstream of
the MRB. The eddy covariance system was installed in the center of the experimental field
(330 m × 120 m) within a wide range of similar surrounding environments, with the same
planting pattern and fertigation management for cotton to avoid margin effects.

(2) Data for Land-Use Classification and Accuracy Validation

In order to classify the features and verify the identification accuracy of CFFMDI by
the RF remote sensing inversion model, the center coordinates of samples of various surface
features in the MRB were recorded by portable GPS during the period of July–August in
2018 and 2019. A total of 500 samples containing different crops, such as cotton (246 points),
grape vineyard (48), pepper (30), maize (96), and wheat (80), were collected in each year.
Other surface features, including wasteland, construction land, and water body, which
were more easily identified through visual interpretation from the remote sensing images
than crops, were not investigated in the field, and the samples were directly selected from
the correspondingly downloaded images of each year. Then, according to the spectral and
texture characteristics of the samples shown in the image, the visual interpretation labels
were established. Thereupon, the samples of other years without sampling were selected
by manual visual interpretation based on the labels [30]. The above procedure provided a
total of 9685 classification samples of pepper (186 samples), grape vineyard (567), water
body (580), cotton (2268), corn (1023), wheat (1592), wasteland (1710), and construction
land (1759) in the 21 years. Limited by its small planting area, pepper samples were not
selected before 2015. Each sample field covered an area of about 0.36 km2 with 400 pixels.
After vectorization of all the recorded classification samples, a sample set was formed, in
which 50% were randomly selected to train the RF classifier, and the other 50% were used
to verify the classifier.

2.5. Model Verification and Accuracy
2.5.1. Remote Sensing Identification of Cotton Fields

The image recognition accuracy was evaluated based on the confusion matrix, through
comparing the classification results with the verification samples pixel-by-pixel. The
evaluation indices were chosen as the producer’s accuracy (PA), user’s accuracy (UA),
overall accuracy (OA), and Kappa coefficient [30,31].

2.5.2. Verification of Estimated ET

Before verifying ET estimation results with measurements, the fusion accuracy was
tested using six series of estimated ETLandsat and ETMODIS distributions on 14 June, 1 and
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17 August 2018, respectively. As described in Sections 2.3 and S2, the two reference times
tm and tn were set as 14 June and 17 August, respectively, and the remaining 1 August
was designed as the prediction time tp. With the four series of ETLandsat and ETMODIS
on tm and tn combined with ETMODIS on tp, the ETESTARFM of tp (1 August) was fused.
Thereupon, the fused ETESTARFM was compared with the estimated ETLandsat on tp to
evaluate the fusion accuracy, using four statistical indices: the coefficient of determination
(R2), root-mean-square error (RMSE), relative error (RE), and mean absolute error (MAE).

After the fusion accuracy test, the accuracy of the fusion estimation (ETESTARFM) was
further evaluated with the water balance results from the irrigation experiment (ETWBF)
as well as the retrieved ETEC at the farmland scale. For the regional scale, the fused
ETESTARFM distributions during each growing season were summed and compared with
the total evapotranspiration amount TETWBR in the six data-collected irrigation districts.
The estimation accuracy was also evaluated using the indices of R2, RMSE, RE, and MAE.

3. Results and Discussion

ET estimation and fusion should be based on the remote sensing inversion of surface
feature classification (Figure 2). In this study, the RF algorithm-based inversion model of
classification was rigorously tested and evaluated through comparing the classification
results with the verification samples, as stated in Sections 2.4.3 and 2.5.1. To concentrate
on the subject of data fusion, the corresponding results and discussion related to land-use
identification and classification, such as accuracy evaluation and dynamics of CFFMDI
in the MRB, are provided in Section S4 of the Supplementary Materials. Overall, the
established inversion model of classification should be rationally applicable in estimating
and fusing ET of CFFMDI in the MRB.

3.1. Verification of ET Estimation
3.1.1. Fusion Accuracy of ESTARFM

Based on the five series of ETLandsat and ETMODIS on 14 June and 17 August and
ETMODIS on 1 August 2018 (Figure 3a–e), ESTARFM was used to implement data fusion
and to obtain the fused ET distribution on 1 August (ETESTARFM, Figure 3g). The fusion
accuracy of the ESTARFM algorithm was tested by comparing the fused ETESTARFM with
the correspondingly estimated ETLandsat (Figure 3f). With the same spatial resolution of
30 m for both ETLandsat and ETESTARFM, 1000 values of ETESTARFM were randomly selected
from Figure 3g and compared with the ETLandsat located at the same sites corresponding
to the selected ETESTARFMs in Figure 3f (Figure 4). The results showed that the fused
ETESTARFM was in good agreement with the estimated ETLandsat, with statistical character-
istics including maximum, minimum, and mean very similar to each other (Figure 4a), and
with R2 of 0.77, RMSE of 0.36 mm d−1, MAE of 0.31 mm d−1, and −11.1% ≤ RE ≤ 13.6%
between them (Figure 4b).

In addition, in order to display the fusion estimation effect more clearly, an ET distri-
bution with 800 × 400 pixels (covering an area of 288 km2) was randomly selected from
ETLandsat in Figure 3f and compared with that at the same location from ETESTARFM in
Figure 3g, each of which were enlarged and are shown in Figure 3h,i, respectively. The
enlarged results of Figure 3h,i also demonstrated high similarity and small differences,
with the mean absolute error of 0.46 mm d−1 (Figure 3j) and the mean absolute relative
error of 12.2% (Figure 3k) between them. Therefore, the recommended ESTARFM fusion
algorithm should be able to successfully couple ET distributions estimated from Landsat
and MODIS remote sensing images.
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Figure 3. Distribution maps of ET in cotton fields under film-mulched drip irrigation in the Manas
River Basin, respectively estimated using SEBS based on the remote sensing images from Landsat
(ETLandsat) or MODIS (ETMODIS), and using ESTARFM (ETESTARFM) based on the fusion of ETLandsat

and ETMODIS: (a) ETMODIS and (b) ETLandsat on 14 June 2018; (c) ETMODIS and (d) ETLandsat on
17 August 2018; (e) ETMODIS, (f) ETLandsat, and (g) ETESTARFM on 1 August 2018; (h) Selected partial
detail distribution of ET in (f); (i) Correspondingly selected partial detail distribution of ET in (g), in
comparison with that of (h); (j) Absolute errors of ET between (h,i) (|AE|); and (k) Absolute relative
errors of ET between (h,i) (|RE|).
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Figure 4. Comparisons of fused ETESTARFM and estimated ETLandsat in cotton fields under film-
mulched drip irrigation in the Manas River Basin on 1 August 2018: (a) Table for the statistical
characteristics of fused ETESTARFM and estimated ETLandsat; and (b) 1:1 diagram (R2: coefficient of
determination; RMSE: root-mean-square error; RE: relative error; MAE: mean absolute error).
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3.1.2. Comparisons of ET Estimation with Measurements

It remains necessary to verify the accuracy of ET estimation results through the mea-
sured data, which were respectively taken from the field experiments and regional survey.
SEBS was applied to invert ET of CFFMDI with the downloaded Landsat and MODIS
images of the MRB for the growing seasons from 2000 to 2020, and to consequentially
obtain 48 ETLandsat and 2462 ETMODIS distribution maps. The 2462 daily-scale and 30 m
spatial-resolution ETESTARFM distribution maps for different years were fused by ESTARFM,
which were then extended to a daily serial of ETESTARFM, with 150 distribution maps for
each growing season and 3150 in total for the 21 years, through the METRIC algorithm and
utilized to compare with the measurements at both farmland and regional scales as follows.

(1) Verifications at farmland scale

Monitoring based on ETEC at the Wulanwusu Agricultural Experimental Station
produced 150 sets of ET data covering the entire 150 d FDMI cotton growing period [11].
Values of ET were found to range from 0.86–6.06 mm d−1 with a mean of 3.14 mm d−1

(Figure 5a). The experimental station (44◦16′48′′N, 85◦49′11′′E, Figure 1b) falls into the
pixel situated on the southeastern side of the Jingouhe Irrigation District in the northern
part of the upstream section of the MRB. The corresponding pixel in the distribution maps
of ETESTARFM was then determined to pick up the 150 sets of the fused ETESTARFM values
during the same growing period as that for the measured ETEC. The fused ETESTARFMs
generally compared well with the measured ETEC, with R2, RMSE, and MAE of 0.77,
0.58 mm d−1, and 0.42 mm d−1, respectively, between them (Figure 5b). Although the
minimum RE reached as low as −114.7%, more than 60% of |RE|s were within 10%. In
addition, the statistics of the two serials were similar to each other with the exception of
the minimum value (Figure 5a). Considering the influence of complex factors, such as
spatial variability and dramatic changes in meteorological conditions, the above errors
should be within an acceptable range for the inversion of evapotranspiration using remote
sensing data.
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Figure 5. Comparisons of ETEC measured by an eddy covariance system and ETESTARFM fused
by ESTARFM in cotton fields under film-mulched drip irrigation at the Wulanwusu Agricultural
Experimental Station in 2012: (a) Table for the statistical characteristics of measured ETEC and fused
ETESTARFM; and (b) 1:1 diagram (R2: coefficient of determination; RMSE: root-mean-square error; RE:
relative error; MAE: mean absolute error).

Farmland-scale water balance data that originated from an irrigation experiment at
Xinjiang Agricultural University’s cotton breeding base provided seven sampling times (six
growing stages for water balance) in CFFMDI, covering 81 d of growth period from 9 July to
28 September in 2019. During each growing stage, daily ET was first calculated in each plot
by the water balance method and then averaged over 15 duplicate plots to obtain a mean
value (ETWBF). The calculation process yielded six average values of ETWBF for different
growing stages of cotton under FMDI, with a maximum, minimum, and mean of 5.22, 2.50,
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and 4.40 mm d−1, respectively (Figure 6a). These values were slightly different from those
measured in the Wulanwusu Agricultural Experimental Station located in upstream MRB
(Figure 5a). Probably affected by soil spatial variability, great differences in ETWBF were
found among the 15 duplicate plots, and the maximum deviation of ETWBF reached as high
as 1.68 mm d−1 (Figure 6b). The cotton breeding base-located pixel was determined to be
in the middle part of the Jingouhe Irrigation District in the southern midstream area of the
basin (44◦26′28′′N, 85◦40′29′′E, Figure 1b). A total of 81 fused ETESTARFM distribution maps
were included in the six growing stages, whereupon a daily average value of ETESTARFM
was calculated for each balance growing stage and compared with the correspondingly
measured ETWBF in Figure 6b. The evaluation indices of R2, RMSE, MAE, and RE were
0.63, 0.78 mm d−1, 0.59 mm d−1, and −56.7% to 54.4% (with a mean of 4.8%), respectively.
Moreover, the statistical characteristics were roughly similar to each other for the two series
of measured ETWBF and fused ETESTARFM. Cammalleri et al., (2014) also evaluated the
effect of remote sensing inversion through comparing inverted ETs with measured values
obtained from farmland water balance [4]. They studied cotton growth in a field experiment
conducted in a semiarid area near Amarillo, Texas, USA (35◦11′N, 102◦4′W), covering a
larger range of ET that varied between 0.9 and 7.2 mm d−1 than that in the current study
(Figure 6a). The corresponding RMSE in their study was between 1.11 and 1.81 mm d−1, a
little higher than that shown in Figure 6b (0.78 mm d−1) for the field irrigation experiment
in this study.
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Figure 6. Comparisons of the fused ETESTARFM by ESTARFM and measured ETWBF in the field
experiment for cotton growth under film-mulched drip irrigation in 2019: (a) Table for the statistical
characteristics of measured ETWBF and fused ETESTARFM; and (b) 1:1 diagram (R2: coefficient of
determination; RMSE: root-mean-square error; RE: relative error; MAE: mean absolute error).

In the process of remote sensing data fusion, ETESTARFM fully combines the rich spatial
distribution information of ETLandsat and the advantages of ETMODIS in the description of
temporal dynamics. The verification results based on both the eddy covariance system
and the field water balance method showed that the fused ETESTARFM should be applicable
to basically meet the requirement of ET estimation at the farmland scale for the CFFMDI
in MRB.

(2) Verifications at regional scale

The ET amount, TETWBR (mm), for each growing season was calculated using the
water balance method in each of the six irrigation districts, Anjihai, Manas, Xiayedi, Mo-
suowan, Shihezi, and Jingouhe, in the MRB for a total of 126 values over the 21 years of the
study. Seasonal TETWBR was characterized by large differences between years and irriga-
tion districts and averaged 528 mm, ranging from 373 mm to 663 mm, affected strongly by
water supply (Figure 7a).
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Figure 7. Comparisons of the annual total evapotranspiration between TETWBR measured at regional
scale and TETESTARFM fused by ESTARFM in cotton fields under film-mulched drip irrigation in the
Manas River Basin from 2000 to 2020: (a) Table for the statistical characteristics of measured TETWBR

and fused TETESTARFM; and (b) 1:1 diagram (R2: coefficient of determination; RMSE: root-mean-
square error; RE: relative error; MAE: mean absolute error).

The fused daily distribution maps of ETESTARFM were superimposed to obtain the total,
TETESTARFM (mm), distribution throughout the basin during each year’s growing season.
Thereupon, TETESTARFM for each irrigation district in each of the 21 years was collected and
compared with the corresponding TETWBR (Figure 7). The errors including RMSE, MAE,
and |RE| between measured TETWBR and simulated TETESTARFM were small, with values
of 37.1, 28.7 mm, and less than 26%, respectively, and R2 was as high as 0.75 (Figure 7b).
Moreover, the statistical characteristics of the two series were also very similar to each
other (Figure 7a). This successful remote sensing estimation of ET continues previous
success in regional evapotranspiration inversion. For example, the regional-scale ET of
irrigated farmland in the Hetao Irrigation District of Inner Mongolia, China was estimated
using a model of Surface Energy Balance Algorithm for Land and verified through a water
balance method [6], showing a good estimation with acceptable RMSE (26.1 mm) and MAE
(29.8 mm), roughly comparable to the corresponding values in this study.

In summary, the ET verification results based on different scales and measurement
methods indicate that the proposed ESTARFM for ET fusion through integrating ETLandsat
and ETMODIS estimated by SEBS was effective and rational to estimate both farmland- and
regional-scale ET with simultaneously high temporal and spatial resolutions. Theoretically
speaking, more advanced multispectral images with higher spatial and temporal resolutions
(e.g., Sentinel-2) than the remote sensing data employed in this study should produce more
accurate fusion results when incorporated into the ESTARFM model and should therefore
be the topic of further evaluation.

3.2. Dynamics of ET in CFFMDI in the MRB
3.2.1. Spatial Distribution Characteristics

The distribution of total evapotranspiration TET during the growing season of each
year from 2000 to 2020 for CFFMDI in the MRB was estimated. To illustrate, the results
from five-year intervals including the years 2000, 2005, 2010, 2015, and 2020 are shown
in Figure 8. Accompanying the popularity and adoption of FMDI technology and the
subsequent expansion of the cotton planting area, changes in the basin regarding water
supply dynamics resulted in inconsistent spatial and temporal distributions of ET in
CFFMDI [32,33]. We estimated that, from 2000 to 2020, the cotton growing season TET
fluctuated tremendously, ranging between 38.5 and 699.4 mm with a mean of 529.6 mm
throughout the basin. This is similar to other results reported for the region [11,34].
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As for the spatial distribution, TET generally tended to decrease from the upstream to
the downstream parts of the basin, also shown by its relative corresponding mean value
in the various sections during the years represented in Figure 8. (1) Upstream TET: The
upstream is characterized by high terrain, a deep groundwater table, and abundant fresh
surface water resources for irrigation. Therefore, the area suffers neither from lack of
water for irrigation nor soil salinization and thus has the basin’s highest average values of
TET. From 2000 to 2020, the average TET in the upstream region was 565.7 mm, about 7%
(36.1 mm) higher than the average of the basin as a whole (Figure 8). The maximum TET in
the entire basin, with the value of 696.4 mm, was observed in the upstream zone (Figure 8b).
(2) Downstream TET: The TET in the downstream portion of the basin was relatively small,
with a mean 29–103 mm lower than that in the upstream area (Figure 8). A minimum
value of 38.5 mm was found in 2005 (Figure 8b), which could have been caused by an
extreme lack of water supply for irrigation, severely salinized stress, or even the mismatch
of pixels between cotton fields and other non-farmland features, such as construction land
or wasteland (Figure S1). The overall average value of TET in the basin’s downstream
section was about 499.1 mm, approximately 88% of that upstream. Among all the pixels,
the proportion of TET not exceeding 300 mm in the past 21 years was less than 0.5%. It is
worth noting that the promotion of FMDI technology has gradually made it possible to
reclaim and utilize originally medium and severe saline wasteland, leading to a continuous
downstream increase in area of cotton fields (Figure S2). The statistical report from the
Shihezi Water Resources Bureau showed that, limited by the ability of water supply for
irrigation, the irrigation quota (i.e., the irrigation amount per unit area during the whole
growth period) of cotton fields was found to gradually decline from 470.8 mm in 2000 to
306.3 mm in 2020. As a result of declining irrigation quota, cotton ET in the downstream
section (and also the entire basin) was significantly weakened (Figure 8) and decreased
185.9 (231.6) mm from its peak in 2005 to 2020 (Figure 8b,e). The main reason is that the
water supply in 2005 was the maximum at this stage. (3) Midstream TET: The value of TET
in the midstream (including the statistics of maximum, minimum, and mean, as shown
in Figure 8) generally fell between that for the upstream and downstream sections. The
southern part of the midstream section neighbors the northern upstream section, sharing
its high terrain, deep groundwater table, and good irrigation conditions, and thus, typically
has high TET. Areas of low TET in the midstream CFFMDI are mainly concentrated around
belts of shallow flowing groundwater, reservoirs, rivers, and canals, with intense phreatic
water evaporation and, thus, severe soil salinization [17]. However, the planting proportion
of this part is still relatively low (Figure S2).

3.2.2. Basin-Scale Intra-Season Dynamics of ET and Water Supply

With the declining mean TET values for different sections of up-, mid-, and down-
stream in the MRB, the differences between the sections were also observed to gradually
decrease from 2000 to 2020. In the following analysis on the dynamic changes of ET, the
basin was therefore considered as a single unit. The dataset of daily ETEC measured at
the upstream Wulanwusu Agricultural Experimental Station (Figure 1b), covering a com-
plete growing season of cotton in 2012 [11], was used as a reference (Figure 9). In order
to more intuitively demonstrate the relationship between ET and its main impact factors,
the dynamics of leaf area index (LAI), mean air temperature (T), and total water supply
(irrigation plus precipitation, I + P) measured in the Wulanwusu Agricultural Experimental
Station are also included in Figure 9. Analysis of intra-season dynamics for the average
ETESTARFM over the entire basin, based on the 150 distribution maps of fused ETESTARFM
of cotton fields, shows an uneven distribution with large variation during the growing
season (Figure 9). This variability likely was a function of multiple complex factors, such as
crop physiology, meteorological conditions, and irrigation events. The dynamics of fused
ETESTARFM were very similar to the measured ETEC (R2 = 0.79), increasing over time to a
single peak value and then decreasing. This pattern reflects the typical dynamic character-
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istics of ET in CFFMDI, which are likely dominated by temperature and irrigation and are
thus contemporaneous with regional hydrological and thermal changes [34].
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Figure 9. Dynamics of leaf area index (LAI), mean air temperature (T), total water supply of irrigation
and precipitation (I + P), and daily evapotranspiration rate measured by an eddy covariance system
(ETEC) in the Wulanwusu Agricultural Experimental Station and estimated by remote sensing
fusion as an average over the entire Manas River Basin (ETESTARFM ) during the growing season
(April–September) of cotton fields under film-mulched drip irrigation in 2012.

The minimum ETESTARFM (0.61 mm d−1) was found in the seedling stage (2 May),
mainly due to the low air temperature resulting in slow cotton growth and small leaf
area, as well as the film mulch that inhibited soil evaporation. From the bud stage on,
the temperature rises, the cotton enters into a rapid growth period, and contingent upon
sufficient water supply, ET increases. Crop growth, water demand, and therefore, ET
continue at peak levels until the flowering and boll setting stage. A large amount of water
is usually supplied to irrigate cotton at this stage for almost all the irrigation districts in the
MRB, thus often leading to the maximum ET [11]. For example, a maximum ETESTARFM of
5.93 mm d−1 was found on 27 July 2012 (Figure 9), a day in the middle of the flowering
and boll setting stage. Beginning in late August, the temperature gradually drops, and
the cotton enters the boll opening stage, with its growth rate gradually slowing down
until the final defoliation stage. Crop ET decreases correspondingly, until irrigation water
application is no longer necessary.

The values of TET per growth stage in 2012, calculated from ETESTARFM (Figure 9),
were 55.1, 88.5, 255.6, and 63.5 mm at seedling (27 April–1 June, 36 days in total), bud
(2 June–27 June, 26 days), flowering and boll setting (28 June–29 August, 63 days), and
boll opening stage (30 August–23 September, 25 days), respectively. The TET for the
annual growth periods overall was as low as 462.7 mm in 2012 (Figure 10). The average
irrigation amount (I) of the involved six irrigation districts was 38.0, 84.0, 318.0, and 0.0 mm,
respectively, for the corresponding stages. The example year of 2012 was dry, with only
16.1 mm of effective precipitation (P) occurring at the seedling stage during the whole
growing season (Figure 10). The total water supply (I + P) in 2012 was 456.1 mm, with a
precipitation component of only about 3.5%, indicating that the source of ET was almost
totally irrigation.
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Figure 10. Actual evapotranspiration (TET), irrigation amount (I), effective precipitation (P), ratio of
water supply to evapotranspiration ((I + P)/TET) and relative water supply ((I + P)/TETp), mean of
actual evapotranspiration (Mean TET), and mean of potential evapotranspiration (Mean TETp) for
cotton fields under film-mulched drip irrigation in the Manas River Basin from 2000 to 2020.

3.2.3. Basin-Scale Inter-Season Dynamics of ET and its Sustainability Effects

By superposing and accumulating all the fused daily-scale ETESTARFM distribution
maps of the annual cotton growing seasons, the variation dynamics of TET as a function of
year and their inter-season mean TET were obtained (Figure 10). Over the last 21 years,
the TET of CFFMDI in the MRB ranged from 391.2 to 623.2 mm, with a mean of 529.6 mm,
very similar to the reported value of 501.3 mm ± 13.9 mm in this area [35]. Although
TET demonstrated inconsistent fluctuation patterns in different years, it could be roughly
divided into two periods according to its relationship with the mean TET. The TET values
in the first 10 years were greater than the mean TET, and those in the second period were
lower. This is likely related to the aforementioned gradually declining irrigation quota
resulting from the promotion and adoption of FMDI technology and the expansion of
cotton fields.

At a regional inter-season scale in arid and semiarid areas, most of the scarce precipita-
tion falling prior to the growing season is usually quickly consumed through evaporation
and has little impact on later crop growth; hence, the variation of root-zone soil water
storage is often assumed to be negligible throughout a growing season [34,36]. In addition,
effective precipitation (P) in arid oasis areas is typically very limited with little variation.
For example, the average P during the growing season in the MRB between 2000 and 2020
was 88.2 mm, accounting for 17% of the mean TET (Figure 10). Irrigation is undoubtedly
the lifeblood of oasis agriculture, that is, water demand and consumption of crops and
root-zone salt leaching are all dependent on irrigation [8]. Decreasing the irrigation amount
(including leaching) leads to the decline in soil water content (or potential) and an increase
in salt content in the root zone, which further inhibits root water uptake and crop evapo-
transpiration [37]. As shown in Figure 10, the ratio of water supply to evapotranspiration
((I + P)/TET) was mostly above 95% and even reached nearly 100% in some years. As the
change of P was small and its proportion in water supply was very low, TET had a good
correlation with I (R2 = 0.88, Figure 10). Over the past 21 years, the area of cotton fields
expanded at a rate of about 119 km2 year−1 in the MRB, but without any supplemental
water supply for irrigation. The irrigation quota was reduced by 164.5 mm from 2000 to
2020, resulting in an average 7.5 mm year−1 decrease in TET, from 573.8 mm to 415.7 mm.
Especially after 2010, the supply of irrigation water resources failed to meet the needs
for cotton field expansion, causing TET to fall below the mean TET (529.6 mm), with a
particularly obvious decline in the most recent three years from 2018 to 2020 (Figure 10).
The decrease in TET was found to be nearly inevitable both in historic cotton fields and in
fields located in newly reclaimed wasteland. The historic fields were obviously affected by
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gradually declining irrigation quotas. The cotton fields in newly reclaimed wastelands were
rather impacted by severe salinity stress and insufficient water supply, leading to typically
low TET levels. Nevertheless, small abnormal fluctuations in TET were apparently due
to changes in the cultivated cotton field area (Supplementary Materials Figures S2 and S3).
For example, in 2005, the decrease in cotton field area led to a significant increase in TET
(to 647.3 mm), while after 2018, an opposite changing process was observed as TET rapidly
decreased to 391.2 mm before slowly rising (Figure 10).

The annual water demand (i.e., potential evapotranspiration, TETp) of cotton under
FMDI during 2000–2020 was estimated by multiplying the reference evapotranspiration [2],
with the crop coefficient taken as the recommended values of 0.45, 1.15, and 0.46 for the
initial (from 27 April–1 June, 36 days in total), middle (2 June–29 August, 89 days), and final
(30 August to 23 September, 25 days) growth stages of cotton [10]. Influenced by changing
meteorological conditions, inconsistent but similar values of TETp were estimated for
different years, ranging from 668.7 to 737.4 mm with a mean TETp of 702.9 mm (Figure 10).
The value of the mean TETp was about 170 mm higher than the mean TET, reflecting that
water supply failed to meet the water demand and that the cotton suffered from relatively
serious water stress. Especially with the promotion of FMDI technology and the expansion
of cotton fields, a larger difference between TET and TETp and lower relative water supply
((I + P)/TETp) were found. By 2020, the value of actual TET was 287.2 mm less than the
mean TETp, and the water supply could only meet 56% of the water demand (Figure 10).

At the beginning of this century (2000–2007), when the technology of FMDI began
to be promoted, water supply in most irrigation districts was likely roughly sufficient for
irrigation requirements, part of which would undoubtedly be consumed for salt leaching,
especially in those cotton fields newly reclaimed from moderate to severe saline lands.
Hence, the ratio of (I + P)/TETp was basically higher than 0.8 (Figure 10). However, the sta-
tistical yearbook showed that cotton yield at this time was not more than 2050 kg hm−2 [38].
From then on, due to the benefit of long-term application of FMDI, the root-zone saliniza-
tion of cotton fields would gradually be alleviated to form more positive soil environments
for cotton growth [10]. Subsequently, higher cotton yields between 2400 and 2513 kg hm−2

were reported in the more recent years of 2012–2018, in spite of the fact that the corre-
sponding (I + P)/TETp was at even lower levels due to the shortage of water supply [38].
It should be noted that the contribution to yield enhancement may also originate from
agricultural scientific and technological progress, such as the breeding and application of
drought-resistant and salt-tolerant varieties, advances in agronomy, and mechanization [39].
Nevertheless, the dynamics of root-zone salinity of CFFMDI in the MRB and its impact on
crop water demand, consumption, and yield are beyond the scope of this study and require
further research.

In summary, under the premise of limited water resources in the basin, the promotion
of FMDI technology has brought a few benefits, such as the expansion of cultivated land
area and the increase in production potential on one hand. On the other hand, ensuing
problems cannot be ignored. For example, irrigation water supply has become increasingly
unsustainable, agricultural production capacity has been negatively affected, and the
non-sustainable use of water and soil resources has become increasingly prominent. The
following measures would be helpful to alleviate the tension between the expansion of the
cotton production area and the limitation of irrigation water supply in the MRB.

(1) Appropriately control the expansion of cultivated land and optimize cropping struc-
ture. If the total amount of available water resources cannot meet the requirements of
cropland expansion and planned crop cropping systems, it may lead to the reduction
in crop ET and yield [8] and may also increase the risk of secondary salinization
because of the weakened leaching capacity of the root zone [37,40,41]. Based on
the rigid constraint of irrigation water resource-bearing capacity, the potential scale
of expansion of cultivated lands must be determined and crop planting optimized
in order to maximize agricultural and water productivity and promote sustainable
development [8,35].
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(2) Explore high-efficiency root-zone salt removal measures. The current mean value of
root-zone soil salt content is about 4.8 g kg−1 in CFFMDI [29,32], representing a main
factor inhibiting crop ET and yield in the arid MRB. Decreasing root-zone salt content
will inevitably be beneficial for enhancing ET, yield, and water productivity [37,41,42].
Traditional salt removal measures of water conservancy projects, such as drainage
ditches, subsurface pipes, and wells, utilize a large amount of water resources for
leaching, which may often impede their wide application in an arid oasis such as the
MRB. Therefore, it is necessary to further explore root-zone salt removal measures
with low fresh-water consumption and high salt-drainage efficiency, e.g., biological
reclamations [43], salt removal by fabric coverings [39], or even irrigation with water
extremely low in salts made possible by desalination [40,42,44].

(3) Strengthen the research on water-saving mechanisms and technologies to understand
the ET dynamics of crops and reduce extravagant water consumption. Breeding and
selection of drought- and salt-tolerant varieties, as well as the development and
adoption of water-saving irrigation methods and agronomic measures (e.g., drip
irrigation, mulching, no-tillage, regulated deficit irrigation scheduling, shading, etc.),
can be useful to reduce water requirements or extravagant water consumption of
crops without a cost to yield [45]. In addition, as shown in Figure 10, the water
demand (TETp) of CFFMDI reached as high as about 700 mm during the growing
season. This number was estimated using a method mainly for field crops without
any consideration of the fact that the cotton was drip-irrigated under mulch. Further
research is needed to investigate and quantify potential overestimation of TETp under
conditions of film mulching [5].

4. Conclusions

Based on both measured data (from our field experiment, the regional survey, and
literature retrieval) and downloaded images of Landsat and MODIS, this study system-
atically tested a remote sensing inversion model for surface feature classification and a
fusion model for ET estimation of CFFMDI in the MRB. The tested models were applied
to simultaneously identify cotton fields and estimate daily distribution of ET with a high
spatial resolution of 30 m for a 21-year time period scanning from 2000 to 2020. The spa-
tiotemporal evolution characteristics and sustainability effects of ET were discussed. The
main conclusions from the study were:

(1) The remote sensing inversion model of surface feature classification based on the RF
algorithm reliably identified the CFFMDI in the MRB, with overall accuracy of identi-
fication above 0.88. Apparently, due to the continuous promotion and application of
FMDI technology, a large number of originally salinized wastelands in the mid- and
downstream areas of the MRB were gradually reclaimed into cotton fields, resulting
in an area-wide annual expansion rate of 4.9% for the past 21 years.

(2) By combining SEBS and ESTARFM, ET distributions were fused to meet the require-
ments of high spatial and temporal resolutions for CFFMDI in the MRB at both
farmland and regional scales. The statistical characteristics of the fused results agreed
well with those of measured series, with the coefficient of determination between
them more than 0.77.

(3) The spatial distribution of ET of cotton fields in the MRB, potentially affected by
numerous complex factors such as topography, geomorphology, hydrology, farm
management including irrigation, and salinization, indicated a number of phenomena.
Fields with low ET values were mainly concentrated in the basin’s more seriously
salinized areas, such as belts of shallow flowing groundwater, low-lying terrain,
proximity to reservoirs and river channels, and the edge of desert, as well as other
areas far away from rivers and thus difficult to irrigate. In general, the overall ET was
found to gradually decrease from the upstream to the downstream zones, with the
difference between them decreasing in recent years as ET decreased over the entire
basin as a result of cotton field expansion and irrigation water supply shortage.
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(4) The intra-season daily distribution of ET varied over a large range but was character-
ized by a trend of first increasing to a single peak and then decreasing. This trend was
contemporaneous with local hydrothermal changes mainly dominated by air tem-
perature and irrigation. The minimum (0.61 mm d−1) and maximum (5.93 mm d−1)
average ET of CFFMDI in the MRB appeared at the seedling stage and the flowering
and boll setting stage, respectively. Over the 21 years from 2000 to 2020, the aver-
age total annual evapotranspiration TET was determined to be around 529.6 mm
for the CFFMDI in the MRB. With the continuous increase in cotton field area and
the gradual decrease in irrigation quotas, the TET decreased year by year, with an
average decreasing rate of 7.5 mm year−1. By 2020, its value was as low as 415.7 mm,
much lower than the local water requirement of cotton, 702.9 mm. In order to avoid
non-sustainable utilization of water and soil resources, it is necessary to appropriately
control the expansion scale of cultivated lands, optimize and adjust the cropping
structure, explore efficient methods of root-zone salt removal, and strengthen research
and development of water-saving agricultural mechanisms and technologies.

The remote sensing data fusion method proposed in this study should have great po-
tential for the monitoring and evaluation of regional evapotranspiration or other variables
with simultaneous requirements for high temporal and spatial resolutions, particularly in
arid and semiarid areas. The dynamics of fused evapotranspiration for CFFMDI in the
MRB provide a reliable scientific basis for local agricultural water resources planning and
management and for the sustainable utilization of water and soil resources. However, it
remains to be further studied how to scientifically resolve the contradiction between the
expansion of cultivated land area, shortage of water resources supply, and limited bearing
capacity of water resources.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14143438/s1. Section S1: SEBS for estimating daily ET; Section S2:
ESTARFM for fusing remote sensing data; Section S3: Information of Landsat images used in this
study; Section S4: Results and discussion about land-use identification and classification. Table S1.
Specification of Landsat 5, Landsat 7, and Landsat 8 data used in this study; Table S2. Classification
accuracy statistics in 2018 and 2019. Figure S1. Confusion matrix of surface feature classification in
(a) 2018 and (b) 2019. Note: Each column represents the real category of the instance, and each row
represents the predicted category of the instance. The main diagonal value is producer’s accuracy;
Figure S2. Dynamic spatial distribution of cotton fields, non-cotton agricultural fields, and non-
farmland in the Manas River Basin in (a) 2000; (b) 2005; (c) 2010; (d) 2015; (e) 2020; Figure S3.
Changing process of the area for cotton fields, non-cotton agricultural fields, and non-farmland in the
Manas River Basin from 2000 to 2020.
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