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Abstract: We present a simple iterative pre-distortion algorithm for achieving a rapid linear frequency
sweep of semiconductor lasers. The algorithm achieves the desired frequency swept linearity with
only four iterations. We derive a general formula for iterative pre-distortion by establishing the
relationship between the laser output frequency and the drive current. The linear frequency-swept
laser source obtained by this algorithm can be used in FMCW LiDAR systems. Experimentally, we
investigated the algorithm using a 1550 nm distributed feedback (DFB) laser, achieving frequency
swept excursion of 30.26 GHz, and frequency swept slope of 504 THz/s. We analyzed the linearity
of the frequency swept results for the fourth iteration, achieving less than 5 MHz root mean square
(RMS) value of frequency swept nonlinearity.

Keywords: iterative pre-distortion; FMCW LiDAR; frequency swept nonlinearity; zero crossings method

1. Introduction

Light detection and ranging (LiDAR) technologies have many applications in three-
dimensional (3D) imaging systems [1,2], autonomous driving [3,4], remote sensing [5,6] and
other domains. In general, there are two different categories of LiDAR, one is pulsed time-
of-flight (TOF) LiDAR and the other is frequency modulated continuous wave (FMCW)
LiDAR. Compared to TOF LiDAR, FMCW LiDAR uses coherent detection [7–9] to extract
frequency information, thus it can be immune to direct sun light and interference from other
LiDAR transmitters [3]. However, there is an unique advantage for a specially designed
FMCW LiDAR which can simultaneously measure the 3D positions and one dimensional
speed of a target in a single measurement spot so that it is often called four-dimensional
(4D) measurement LiDAR [10,11].

There is a linearly frequency-swept laser source in a FMCW LiDAR system as an
emitter of which three optical parameters significantly determine the performance of the
LiDAR [12]. One is the coherent length or linewidth of the frequency-swept light source
determines the maximum detection distance that a FMCW LiDAR can reach. The second
one is the frequency swept excursion of the laser source which determines the distance
resolution. The larger the frequency sweep excursion, the higher distance resolution is. The
last one is the most important for a LiDAR which is frequency swept linearity of the laser
source because it related to the ranging accuracy of the FMCW LiDAR directly.

In order to obtain a high linearity of the frequency swept light wave, the most effective
method is to modulate a semiconductor laser externally [13]. However, a broadband
arbitrary waveform generator (AWG) is required as a necessary piece of equipment for
generating a broadband ideal linearly frequency swept electrical signal that leads to a
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kind of light source which is too bulky and too expensive. Another method that generates
linearly frequency swept light waves is called an electrical driving semiconductor laser,
directly or internally [14,15], which does not require expensive AWG. Therefore, this
method has received a large amount of attention. For most semiconductor lasers, however,
the frequency of the output does not change linearly with the injected drive current to
the laser [16,17]. Especially at high repetition rate of injected drive current, a significant
nonlinearity of the frequency-time curve cannot be avoided, which means that is impossible
to maintain a high ranging accuracy in this sort of FMCW LiDAR [18].

There are two main approaches to fix the problem in an internal drive semiconductor
laser system, especially when the semiconductor laser itself is a distributed feedback laser
diode (DFB-LD) [16,19]. One is to use a phase-locked loop (PLL) to drive a DFB-LD for
generation of a perfect linearly frequency-swept light waves, and the other is use an open
electric circuit to drive a DFB-LD based on a pre-distortion technique. However, for the
closed PLL, the frequency swept rate has to be pretty slow due to the intrinsic relaxation
oscillation effect of a DFB-LD. For example, the group in the Montana State University
generated a linearly frequency swept light source within a broad excursion of 4.8 THz
in 800 ms, of which the frequency swept slope is only 6 THz/s at the extremely low
repetition rate of 1.25 Hz [14]. Obviously, it is not practical for detection of a moving
target. Pre-distortion techniques usually involve mathematical modeling of the system
and then experimental optimization of the parameters. Minissale et al. used γ correction
techniques [20] by establishing a power function relationship between the laser output
frequency and the drive voltage, and experimentally determining the control parameters to
achieve a frequency swept nonlinearity correction [21]. Karlsson measured the response
of the laser at different modulation frequencies and compensated for the nonlinearity by
building a linear time-invariant model of the laser using a pre-distortion technique [22].
Yao et al. used a digitally integrated, self-training method to generate the pre-distortion
curves, but the method requires a long convergence time [23].

Several typical applications of iterative pre-distortion techniques have been published
recently. Wu’s group at UC Berkeley succeeded in generation of a linearly frequency swept
output from a DFB-LD based on the pre-distortion technique, so called iterative learning
control approach, at the repetition rate of 4 kHz over the swept excursion of 45 GHz with the
frequency swept slope of 360 THz/s [19]. Chen’s group in Tsinghua University improved
the linearly frequency-swept system with a homemade chip device using the similar pre-
distortion method [24]. The repetition rate is 1 kHz and frequency swept excursion is
5.6 GHz so that the maximum frequency swept slope is about 11.1 THz/s. Wu’s group at
Shanghai Jiao Tong University proposes a novel method that combines an inverse function
pre-distortion algorithm with an iterative algorithm for linearly frequency-swept [25]. The
repetition rate is 1 kHz and the frequency swept excursion is 26 GHz, and the frequency
swept slope of 52 THz/s.

In the above reported pre-distortion techniques, all of them use the iterative learning
control method, and the residual nonlinearity reaches 1.8 × 10−8, and the root mean
square value of the frequency swept nonlinearity is less than 1.5 MHz [19]. However,
the convergence and convergence speed of this method strongly depend on the manually
selected scale factor, and the optimal scale factor is different for different lasers, which
needs to be obtained through a trial-and-error process several times. A similar approach
was used by Ming H Chen et al. The laser source in the experiment consisted of a DFB-LD
and an external micro-ring resonator (MRR), so the iterative learning control required
consideration of thermal conduction effects, and the residual nonlinearity was less than
4.1 × 10−9 for 50 iterations of the method, and the RMS value of the frequency swept
nonlinearity was suppressed to within 0.21 MHz [24]. The iterative algorithm of Wu Kan
et al. usually requires the driving waveform obtained by the inverse function pre-distortion
algorithm as the start of the iterative algorithm, and requires a suitable choice of coefficients
for the exponential term in the iterative algorithm, which further increases the complexity
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of the algorithm. The residual nonlinearity reaches 5.19 × 10−8, and the root mean square
value of the frequency swept nonlinearity is 1.5 MHz [25].

In this paper, a simple iterative pre-distortion method based on the zero-crossing
method [26,27] is proposed to achieve a laser frequency swept linear output, and it is
experimentally verified with a narrow linewidth DFB-LD of 1550 nm. After four pre-
distortion iterations, the RMS value of the DFB-LD frequency swept nonlinearity is less
than 5 MHz. The experimental results reach the expected requirements. This algorithm
does not require complex control systems and tedious data post-processing to achieve
frequency swept linearization, and is independent of the specific laser. This frequency swept
linearization method opens up the application of FMCW laser sources and is particularly
suitable for low-cost, easy-to-install, high-performance systems.

2. The Principle of DFB-LD Output Linearly Frequency-Swept Light Wave

The schematic of implementing the DFB-LD linearly frequency-swept is shown in
Figure 1. The drive current waveform obtained by the iterative pre-distortion algorithm
that makes the DFB-LD linearly frequency swept is pre-input into the arbitrary function
generator (AFG), and the drive module of the DFB-LD is synchronized with the AFG,
the pre-distortion current that is injected into the DFB-LD is shown in Figure 1a. Under
this current drive, the DFB-LD outputs the frequency swept light wave of the cycle, and
its time-frequency curve is shown in Figure 1b. After passing through the isolator, the
frequency swept light wave is divided into two beams by a 90:10 coupler. 90% of the
light wave is output directly, and the other 10% is sent to an unbalanced fiber optic Mach-
Zehnder interferometer (MZI) to generate autocorrelation external differential interference,
and the time-frequency curves of the two-frequency swept light waves with differential
time delay τ are shown in Figure 1c. The photodetector (PD) converts the two coherently
superimposed light waves into electrical signals, which are acquired by an oscilloscope
(OSC) after passing through a band-pass filter (BPF), and the time-frequency curves of the
MZI beat signals are obtained by the zero-crossing method (ZCM) (see Figure 1d).
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Figure 1. Experimental schematic diagram of DFB-LD linearly frequency-swept. (a) pre-distortion
current injected into the DFB-LD; (b) time-frequency curve of the DFB-LD output frequency swept
light wave; (c) time frequency curves of the two frequency swept light waves with differential time
delay τ; (d) time frequency curve of the beat signal. The red solid line indicates the fiber, and the blue
solid line indicates the cable. DFB: distributed feedback laser; MZI: Mach-Zehnder interferometer; PD:
photodetector; BPF: band-pass filter; OSC: oscilloscope; AFG: arbitrary function generator; Driver:
driver of the laser.
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Assuming that the electric field of the frequency swept light wave at the input (1) of
MZI in Figure 1 is

E(t) = A cos[φSFL(t)] (1)

where A denotes the field amplitude, φSFL(t) denotes the phase of the DFB output light
wave.

Assume that the laser output light wave frequency is

ωSFL(t) = ω0 + ξd · t (2)

where ω0 is the light carrier frequency and ξd is the linearly frequency swept slope, both of
which are constants.

FMCW LiDAR requires the instantaneous frequency of the DFB-LD output light wave
to vary linearly with time.

The phase in Equation (1) is expressed as

φSFL(t) = ω0t +
1
2

ξdt2 + θ (3)

where θ denotes the initial phase of the light wave.
At the unbalanced MZI emitting end, the total light intensity is obtained by coherent

superposition of the two light fields expressed by Equation (4), which is expressed by
Equation (5).

E1(t) =
√

2
2 E(t− τ) =

√
2

2 A cos[φSFL(t− τ)]

E2(t) =
√

2
2 E(t) =

√
2

2 A cos[φSFL(t)]
(4)

where τ is the fiber time delay of the unbalanced MZI.

I(t) =

{√
2A
2

cos[φSFL(t− τ)] +

√
2A
2

cos[φSFL(t)]

}2

(5)

The photocurrent signal output from PD is proportional to the light intensity. Since
the high frequency component in Equation (5) is beyond the response range of the pho-
todetector, and when the photocurrent signal passes through BPF, the expression of the
photocurrent signal contains only the differential frequency component. Therefore, we can
get the expression of photocurrent as

ibeat(t) ∝
RA2

2
cos[φSFL(t)− φSFL(t− τ)] (6)

where R is the responsiveness of the photodetector. The phase of the photocurrent is
denoted as φbeat(t):

φbeat(t) = φSFL(t)− φSFL(t− τ) (7)

When the time delay τ is sufficiently small, we can obtain the relationship as follows:

φbeat(t) = φSFL(t)− φSFL(t− τ) =
dφSFL(t)

dt
τ (8)

where dφSFL(t)
dt is the instantaneous frequency ωSFL(t) of the output light wave of the

DFB-LD, and if ωSFL(t) varies linearly with time, we get from Equation (2):

dφSFL(t)
dt

=
d(ω0t + 1

2 ξdt2 + θ)

dt
= ω0 + ξdt = ωSFL(t) (9)

Thus, the phase φbeat(t) of the photocurrent can be expressed as

φbeat(t) = ωSFL(t) · τ = (ω0 + ξd · t) · τ = ξdτ · t + ω0τ (10)
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The time derivative of Equation (10) yields the time-frequency curve ωbeat(t) of the
photocurrent beat frequency signal.

ωbeat(t) =
dφbeat(t)

dt
(11)

Substitution of Equation (10) into Equation (11) reveals that the time-frequency curve
ωbeat(t) of the photocurrent beat-frequency signal should be the same as Figure 1d, where
the beat signal frequency is kept constant in an up or down-sweep period, noted as fbeat,
which is equal to ξdτ

2π .
However, the relationship between the instantaneous frequency ωSFL(t) of the DFB-

LD output light wave and the driving current of the DFB-LD is nonlinear, which can be
expressed as

ωSFL(t) = ω0 + KSFL(i) · i(t) (12)

where i(t) is the driving current of the DFB-LD. KSFL(i) is the proportionality factor, which is
generally not a constant and can be seen as a function of the driving current i(t). As shown
in Figure 2, when the drive current i(t) is an ideal triangular waveform as in Figure 2a,
the output frequency ωSFL(t) of the DFB-LD does no longer change linearly with time
as ideal, but as shown in Figure 2b, which results in the time-frequency curve ωbeat(t) of
the unbalanced MZI output beat-frequency signal is no longer constant ξdτ. Therefore,
the DFB-LD must be driven by a current with a distorted triangular waveform, namely
pre-distortion technique, to achieve the DFB-LD linearly frequency swept output. In other
words, pre-distortion is applied on the basis of the ideal triangular waveform to obtain a
distorted triangular waveform current as shown in Figure 2c to drive the DFB-LD, aiming
to make the time-frequency curve of the instantaneous frequency ωSFL(t) of the output
light waveform of the DFB-LD an ideal triangular waveform as shown in Figure 2d.
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The method to determine the shape of the driving DFB-LD current (distorted triangular
wave) is as follows.

Substituting Equation (8) into the instantaneous frequency of the photocurrent beat
signal obtained from Equation (11), the time-frequency curve of the beat signal can be
obtained proportional to the first-order derivative of the time-frequency curve of the
DFB-LD, as shown in Equation (13).

ωbeat(t) =
dφbeat(t)

dt
=

d
dt

[
dφSFL(t)

dt
τ

]
= τ

dωSFL(t)
dt

(13)
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The scale factor KSFL(i) in Equation (12) can be determined by substituting Equation (12)
into Equation (13):

ωbeat(t) =
di(t)

dt

(
τKSFL + τi

dKSFL
di

)
=

di(t)
dt
· Fdist(i) (14)

where Fdist(i) is a distortion function related to the scale factor KSFL(i):

Fdist[i(t)] = τKSFL + τi
dKSFL

di
(15)

It is obtained by several measurement and iterations. In addition, Fdist(i) is also a
function of time as the driving current i(t) varies with time.

We can drive the DFB-LD in Figure 1 with the continuously obtained pre-distortion
driving current waveform through an iterative algorithm, so that the frequency ωbeat(t) of
the photocurrent beat frequency signal constantly converges to a constant.

The specific iterative method starts from the ideal triangular wave driving current,
let di(t)

dt in Equation (14) be the constant ξi, i.e., apply the ideal triangular wave driving
current to the DFB-LD, the photocurrent beat signal is recorded by the OSC in Figure 1, the
instantaneous frequency ωbeat(t) of this signal is found by the zero-crossing method, and it
is noted as ω

(0)
beat(t). Finally, the initial distortion function Fdist[i(t)] can be calculated from

Equation (14), denoted as F(0)
dist[i(t)].

F(0)
dist[i(t)] =

ω
(0)
beat(t)

ξi
(16)

where ξi is the slope of the triangular wave driving current, after which F(0)
dist[i(t)] is brought

back to Equation (14), and the ωbeat(t) on the left side of the equal sign of Equation (14) is
made equal to the constant 2πξdτ to obtain the following equation.

ξdτ =
di(t)

dt
· F(0)

dist[i(t)] (17)

It can be known easily that Equation (17) is a first-order differential equation, and the
integration gives the first-order pre-distortion drive current i(1)(t).

i(1)(t) =
∫

ξdτ

F(0)
dist[i(t)]

dt (18)

Input the obtained first-order pre-distortion drive current i(1)(t) into the AFG again to
drive the DFB-LD in Figure 1, and record the photocurrent beat signal again, and obtain
the time-frequency curve ω

(1)
beat(t) of the beat signal by the zero-crossing method. Apply

Equation (14) again to find the first-order distortion function F(1)
dist[i(t)].

F(1)
dist[i(t)] =

ω
(1)
beat(t)

di(1)(t)
dt

=
ω
(1)
beat(t)
ξdτ

F(0)
dist [i(t)]

=
ω
(1)
beat(t)
ξdτ

F(0)
dist[i(t)] (19)

The distortion function F(1)
dist[i(t)] is brought to Equation (14) again, solved for the

first-order differential equation, and then the second-order pre-distortion drive current
i(2)(t) is calculated.

i(2)(t) =
∫

ξdτ

F(1)
dist[i(t)]

dt (20)
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The second-order pre-distortion drive current i(2)(t) is used to drive the DFB-LD again,
thus obtaining the time-frequency curve ω

(2)
beat(t) of the beat signal and the second-order

distortion function F(2)
dist[i(t)].

F(2)
dist[i(t)] ==

ω
(2)
beat(t)
ξdτ

F(1)
dist[i(t)] (21)

Iterate in accordance with this method until ω
(N)
beat(t) converges to a constant ξdτ, at

which point the drive current i(N)(t) is

i(N)(t) =
∫

ξdτ

F(N−1)
dist [i(t)]

dt (22)

where F(N−1)
dist [i(t)] is

F(N−1)
dist [i(t)] =

ω
(N−1)
beat (t)

ξdτ
F(N−2)

dist [i(t)] ≈ F(N−2)
dist [i(t)] (23)

3. Experimental Results of Pre-Distortion Current Drive DFB-LD Output Frequency
Swept Light Wave

The experimental system used a commercial narrow linewidth DFB-LD laser with
a linewidth of 157 kHz, center wavelength of 1550 nm, and maximum output power of
75 mW. The differential time delay time of the MZI two-arm fiber is 4.66 ns. The delay
fiber length is sufficiently small, the MZI employs a polarization-preserving fiber, and it
is vibration isolated, so that the delay time t can be assumed to be completely constant
with time. The beat signal was acquired by an OSC (MSOS804A, Keysight Technologies,
Santa Rosa, CA, USA). The corresponding time-frequency curve ωbeat(t) was calculated by
the zero-crossing method. During the experiments, the sampling rate of the oscilloscope
is usually set to be 2 GS/s. The drive current waveform is preset into AFG (AFG3252,
Tektronix), and the voltage output signal of the AFG modulates the drive module of
the DFB-LD. The bias current of the DFB-LD is 200 mA and the amplitude is ±80 mA.
According to the correspondence between current and voltage, the bias voltage applied by
AFG to the laser driver is 2 V and the amplitude is ±800 mV. The initial input voltage is a
standard triangular wave, and the modulation period of the triangular wave is 120 µs, as
shown in Figure 3a.

Remote Sens. 2022, 14, x FOR PEER REVIEW 8 of 12 
 

 

mW. The differential time delay time of the MZI two-arm fiber is 4.66 ns. The delay fiber 
length is sufficiently small, the MZI employs a polarization-preserving fiber, and it is 
vibration isolated, so that the delay time t can be assumed to be completely constant with 

time. The beat signal was acquired by an OSC (MSOS804A, Keysight Technologies, Santa 

Rosa, CA, USA). The corresponding time-frequency curve ( )beat t  was calculated by the 

zero-crossing method. During the experiments, the sampling rate of the oscilloscope is 
usually set to be 2 GS/s. The drive current waveform is preset into AFG (AFG3252, 

Tektronix), and the voltage output signal of the AFG modulates the drive module of the 
DFB-LD. The bias current of the DFB-LD is 200 mA and the amplitude is ±80 mA. 

According to the correspondence between current and voltage, the bias voltage applied 
by AFG to the laser driver is 2 V and the amplitude is ±800 mV. The initial input voltage 
is a standard triangular wave, and the modulation period of the triangular wave is 120 

μs, as shown in Figure 3a. 

(a)

(b)

(c)

(d)

T=120 μs T=120 μs 

Δf=244 kHz

fpp=2.54 MHz

Δf=2.66 MHz
fbeat=2.58 MHz

fbeat=2.36 MHz

 

Figure 3. (a,b) shows the triangular wave drive voltage and the time frequency curve of the 
corresponding beat signal, respectively; (c,d) show the 1st pre-distortion drive voltage and the time 
frequency curve of the corresponding beat signal, respectively. 

When the no pre-distortion triangular waveform shown in Figure 3a is injected into 
the drive module of the DFB-LD, the time-frequency curve of the beat signal at the MZI 

output will deviate from the ideal constant frequency. As shown in Figure 3b, the 
time-frequency curve varies slowly with time over a wide bandwidth ∆f (2.66 MHz). This 

indicates that the frequency of the DFB-LD is not linear with time; this conclusion is also 
verified later in Figure 5a. 

Figure 3c shows the drive voltage waveform obtained after the 1st pre-distortion, 

which obviously deviates from the ideal triangular waveform. As can be seen in Figure 
3d, the corresponding ∆f of the time-frequency curve of the beat signal is greatly reduced 

to 244 kHz. The 10 times optimization of ∆f indicates that our pre-distortion method is 
effective. It is noticeable that there is a frequency mutation at the transition between the 

up and down-sweep in Figure 3d. The frequency peak-to-peak value fpp is 2.54 MHz. This 
is caused by the unique laser relaxation oscillation effect of DFB-LD, which can be 
attenuated by special design of the shape of the driving current inflection point. During 

the experiments, only 80% of the light waves in the linearly frequency-swept range are 
utilized, and the LiDAR data generated by light waves output near the current inflection 

point are automatically screened out and not counted as valid data. 
After more iterations of pre-distortion, the linearity of the frequency variation of the 

DFB-LD output light wave with time becomes higher and higher. Figure 4b shows the 

experimental results of the 4th iteration, which shows that the ∆f is reduced by another 
2.5 times, from 244 kHz to 98 kHz. However, higher orders of iterations do not 

necessarily lead to better results. As shown in Figure 4d, the frequency variation range ∆f 
has increased slightly to 121 kHz. This may be attributed to the accumulation of multiple 
iterations. During each iteration operation, the 40-cycle signal acquired by the OSC are 

Figure 3. (a,b) shows the triangular wave drive voltage and the time frequency curve of the cor-
responding beat signal, respectively; (c,d) show the 1st pre-distortion drive voltage and the time
frequency curve of the corresponding beat signal, respectively.

When the no pre-distortion triangular waveform shown in Figure 3a is injected into the
drive module of the DFB-LD, the time-frequency curve of the beat signal at the MZI output
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will deviate from the ideal constant frequency. As shown in Figure 3b, the time-frequency
curve varies slowly with time over a wide bandwidth ∆f (2.66 MHz). This indicates that
the frequency of the DFB-LD is not linear with time; this conclusion is also verified later in
Figure 5a.

Figure 3c shows the drive voltage waveform obtained after the 1st pre-distortion,
which obviously deviates from the ideal triangular waveform. As can be seen in Figure 3d,
the corresponding ∆f of the time-frequency curve of the beat signal is greatly reduced
to 244 kHz. The 10 times optimization of ∆f indicates that our pre-distortion method
is effective. It is noticeable that there is a frequency mutation at the transition between
the up and down-sweep in Figure 3d. The frequency peak-to-peak value fpp is 2.54 MHz.
This is caused by the unique laser relaxation oscillation effect of DFB-LD, which can be
attenuated by special design of the shape of the driving current inflection point. During the
experiments, only 80% of the light waves in the linearly frequency-swept range are utilized,
and the LiDAR data generated by light waves output near the current inflection point are
automatically screened out and not counted as valid data.

After more iterations of pre-distortion, the linearity of the frequency variation of the
DFB-LD output light wave with time becomes higher and higher. Figure 4b shows the
experimental results of the 4th iteration, which shows that the ∆f is reduced by another
2.5 times, from 244 kHz to 98 kHz. However, higher orders of iterations do not necessarily
lead to better results. As shown in Figure 4d, the frequency variation range ∆f has increased
slightly to 121 kHz. This may be attributed to the accumulation of multiple iterations.
During each iteration operation, the 40-cycle signal acquired by the OSC are filtered and
smoothed for improvement of the accuracy of the zero-crossing method. Meanwhile, some
of valid data are also filtered, resulting in the deviation from the optimal solution.
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Figure 4. (a,b) shows the 4th pre-distortion drive voltage and the corresponding time-frequency curve
of the beat signal, respectively; (c,d) are the 8th pre-distortion drive voltage and the corresponding
time frequency curves of the beat signal, respectively.

In order to calculate the time frequency curve of the frequency swept light wave output
by the DFB-LD under current drive, we extract the phase φbeat(t) of the beat frequency
signal by Hilbert transform (HT). 40-period beat signal of the MZI output obtained from
the OSC are used to obtain the time frequency curve fSFL(t) of the frequency swept light
wave by direct calculation of Equation (10); Figure 5a,d, respectively. Figure 5a,d shows
the frequency swept results of the laser output light wave driven by the no pre-distortion
triangular waveform voltage and the 4th pre-distortion voltage, respectively. Figure 5a,d
show the frequency swept light wave of 180 us, which contains a complete frequency swept
process. As shown in Figure 5a, the frequency swept waveform has a large nonlinearity
under the no-predistortion triangular voltage drive, especially in the initial part where the
frequency swept slope is flipped, and the frequency swept bandwidth is 29.47 GHz. As
shown in Figure 5d, the frequency swept nonlinearity has been corrected more under the
fourth-order predistortion voltage drive, and the frequency swept bandwidth is increased
to 30.26 GHz.
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Figure 5. Experimental results of linearly frequency-swept obtained by DFB-LD after iterative pre-
distortion. (a) shows the laser frequency swept results obtained under the triangular wave voltage
drive; (b,c) show the frequency swept curves of laser frequency swept down and up-sweep in the
effective region and the corresponding residual errors under the triangular wave voltage drive. The
blue curve in the figure indicates the laser frequency swept waveform, which corresponds to the left
vertical axis, and the red curve indicates the residual errors, which corresponds to the right vertical
axis. (d) shows the laser frequency swept results obtained under the 4th pre-distortion voltage drive;
(e,f) are the frequency swept curves of the laser frequency swept down and up-sweep in the effective
region and the corresponding residual errors under the 4th pre-distortion voltage drive.

In Figure 5a, the frequency of the DFB-LD output light wave shows a significant
nonlinearity with time driven by the no pre-distortion triangular waveform voltage. To
characterize the magnitude of this nonlinearity, we select 80% of the up and down-sweep
regions in the DFB-LD frequency swept range as the effective region, as the shaded region
in Figure 5a. The linearity of the laser frequency swept can also be expressed by the
linear regression coefficient r2 = 1 − SSres/SStot, where SSres residual sum of squares, SStot
total sum of squares, r2 is a constant less than 1, the higher the linearity the closer to 1,
we adopted 1 − r2 to represent the residual nonlinearity. The 1− r2 and the RMS value
fnl,rms of the frequency swept nonlinearity in these two effective regions are calculated and
shown in Figure 5b,c, respectively. It can be seen that 1− r2 for the down and up-sweep is
0.00791 and 0.00108, respectively, both at 10−3 level. The corresponding fnl,rms is 642 MHz
and 242 MHz, both in the order of a few hundred MHz. As we expected, the situation
has improved significantly after the 4th iteration. The linearity of the frequency swept is
enhanced obviously, as show in Figure 5d. Both 1− r2 reaching the 10−7 level in the same
shaded region is an improvement of 4 orders of magnitude. fnl,rms is also reduced by two
orders of magnitude, in the order of a few MHz (see Figure 5e,f).

It is worth mentioning that our method is able to achieve the DFB-LD linearly
frequency-swept light wave output with a minimum number of iterations. In Figure 6, the
1− r2 of the down and up-sweep of a different iteration number is given. As can be seen
from the figure, the best results appear in the 4th iteration, but when the number of itera-
tions exceeds the 4th, the frequency swept linearity deteriorates because noise is introduced
at each iteration with the algorithm, and with the accumulation of noise leads to a change
in the trend of the frequency swept nonlinearity towards deterioration. Therefore, the 4th
pre-distortion waveform is selected as the final drive voltage for linearly frequency-swept
output, in our experiments.
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4. Conclusions

In this paper, we propose an iterative pre-distortion algorithm to achieve high per-
formance frequency swept linearization, and demonstrate that the iterative pre-distortion
algorithm can be used to correct the frequency swept nonlinearity of the laser with DFB-LD
at 1550 nm. Through multiple experiments and analysis, the best frequency swept lineariza-
tion is achieved at the 4th iteration. When the laser is driven with the pre-distortion current
generated by the 4th iteration, a linear frequency change of 30.26 GHz can be achieved in
60 µs. We have obtained satisfactory results with iterative pre-distortion algorithms. Never-
theless, as we expected, the frequency swept curve of the DFB-LD output light wave is not
completely linear. The algorithm provides a realistic basis for the next step of application
of an optoelectronic phase-locked loop to achieve accurate linear frequency swept.
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