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Abstract: Road traffic elements are important components of roads and the main elements of struc-
turing basic traffic geographic information databases. However, the following problems still exist
in the detection and recognition of road traffic elements: dense elements, poor detection effect of
multi-scale objects, and small objects being easily affected by occlusion factors. Therefore, an adaptive
spatial feature fusion (ASFF) YOLOv5 network (ASFF-YOLOv5) was proposed for the automatic
recognition and detection of multiple multiscale road traffic elements. First, the K-means++ algorithm
was used to make clustering statistics on the range of multiscale road traffic elements, and the size of
the candidate box suitable for the dataset was obtained. Then, a spatial pyramid pooling fast (SPPF)
structure was used to improve the classification accuracy and speed while achieving richer feature
information extraction. An ASFF strategy based on a receptive field block (RFB) was proposed to
improve the feature scale invariance and enhance the detection effect of small objects. Finally, the
experimental effect was evaluated by calculating the mean average precision (mAP). Experimental
results showed that the mAP value of the proposed method was 93.1%, which is 19.2% higher than
that of the original YOLOv5 model.

Keywords: object detection; road traffic multiple elements; adaptively spatial feature fusion; spatial
pyramid pooling fast; basic traffic geographic information database

1. Introduction

Road traffic elements are important components of roads, which are the main contents
for basic traffic geographic information database construction and are especially impor-
tant for the development of basic traffic geographic information. Road traffic element
information includes road centerlines, road intersections, zebra crossings, bus stations,
roadside parking spaces, and other information [1]. Their accurate recognition and de-
tection can provide important data support for automatic driving, improving intelligent
transportation systems, promoting smart cities, and updating basic traffic geographic infor-
mation databases. Currently, most research has focused on the detection and recognition of
single-element traffic signs [2–4], extraction of road network information [5–8], real-time
monitoring of road conditions [9,10], etc. while there are few studies on the extraction of
road traffic multielement information, and there are mis-detection and missing detection
of small traffic elements. At the same time, the difficulty of detection of juxtaposed dense
traffic elements are also one of the problems restricting the update of traffic geographic
information. This has caused some trouble to the automatic detection and recognition of
road traffic elements. Therefore, it is important to improve the detection accuracy and
precision of small traffic elements and juxtaposed dense traffic elements for the automatic
detection and recognition of road traffic elements.

Small object detection is one of the most challenging problems in computer vision.
Taking the definition of an object in COCO datasets [11] as an example, small objects refer
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to objects with fewer than 32 × 32 pixel points. Small objects are easy to ignore in detection
due to the small number of pixels in the image and the few available features, resulting in
the phenomenon problem of missed detection. However, many scholars have improved the
detection of small objects through strategies such as data enhancement, multiscale learning,
contextual feature learning, and generative adversarial learning. For example, Yu et al. [12]
proposed a vehicle detection method for aerial vehicles based on a deep neural network and
traditional method. This method uses a deep segmentation network to mine the symbiotic
relationship between roads and vehicles and then detects small vehicles based on a visual
attention mechanism of spatiotemporal constraint information. Xiao et al. [13] proposed
a semi-supervised fully convolutional neural network for extracting fine-grained road
scene information using UAV images, which solved the problem of the high cost of labeled
samples and implemented a fine-grained road scene resolution scheme for UAV remote
sensing images. Wang et al. [14] proposed a multitask generative adversarial small object
detection network which introduced artificial texture loss and center mask into the genera-
tor, making it easier for the generator to generate super resolution images and thus easier
for small object detection. Xu et al. [15] proposed a feature enhancement network named
FE-YOLO for remote sensing object detection to achieve real-time detection. FE-YOLO
can accommodate remote sensing object detection under different backgrounds and can
effectively improve the accuracy of remote sensing small object detection. Qing et al. [16]
proposed a RepVGG-YOLO network that can be used for remote sensing image detection
from arbitrary angles. Hu et al. [17] proposed a PAG-YOLO network by considering the
global and local relationships in the input image. This network can adaptively redistribute
the weight distribution of different scale features from spatial dimension and channel
dimension through an attention-guided feature optimization module for the detection
of small vessels. Kim et al. [18] proposed an ECAP-YOLO network, the model in which
was based on the YOLOv5 network to discover small objects by adding a detection layer,
reducing the computational power used for small target detection, improving its detection
rate, and optimizing the detection of small objects. Liu et al. [19] proposed a method based
on YOLOv3 for UAV perspective target detection. The method improves the whole network
structure based on YOLOv3 by optimizing the resblock and adding convolution operations
to enrich the spatial information and expand the UAV reception range for small target
detection. Because the size of small objects only accounts for a small part of an image, their
features are susceptible to the influence of weather illumination and occlusion, resulting
in the phenomenon of detection error. Therefore, the detection of small objects is more
difficult and challenging.

With the development of UAV technology, UAVs have been applied in all walks of
life, such as the military, agriculture, electricity inspection, and transportation fields. UAVs
play an important role in the transportation field because of their high efficiency, clear
image acquisition, and high flexibility. UAVs can be used for cruising, vehicle tracking
and identification, road traffic condition detection, etc. Lee et al. [20] proposed a set of
comprehensive road monitoring systems using UAVs, aerial mapping cameras, and deep
learning algorithms. The system can be used for road maintenance and management as well
as autonomous vehicle roadmap planning. Some scholars use images collected by UAVs
to monitor road damage, which greatly reduces the cost of manual visual interpretation.
For example, Hong et al. [21] used UAVs to collect images of roads to detect and identify
pavement cracks using an improved recognition method based on U-Net. The algorithm
was made possible by a convolution block attention module, an improved encoder, and
a strategy of fusing long and short skip connections. It enables the ability to predict road
cracks with high accuracy on UAV images. Scholars have also implemented the extraction
of road regions from UAV images. For example, Sultonov et al. [22] proposed an improved
algorithm for automatic road extraction from UAV images, which is based on a lightweight
model with depth separable convolution and ConvMixer initial blocks for extracting road
regions from UAV images.
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The main research of UAVs in the field of traffic and some strategies and methods for
improving small target detection were introduced above. Similar to the above scholars, for
this study, which collected road traffic element information by UAV, the problem that needs
to be solved is the mis-detection and missed detection of small and juxtaposed dense road
traffic elements. In our previous studies [1], we initially realized the automatic detection
and recognition of road traffic element information. However, in the study, we also
found that there are problems of incorrect and missed detection when detecting small and
juxtaposed dense road traffic elements. Therefore, to solve the problems of poor detection
of multiscale road traffic elements and difficult detection of small road traffic elements, an
ASFF-YOLOv5 network is proposed for the automatic detection and recognition of road
traffic multielements. The network improves the detection accuracy, reduces the problems
of small object incorrect and missed detection, and realizes the automatic detection and
recognition of road traffic multielements. It provides a new method for updating the basic
traffic geographical information databases.

The main contributions of this paper are as follows:

(1) The K-means++ [23] clustering method was used for data processing to obtain the
optimal candidate box size of the object so that the detection anchor box is more
consistent with a multielement road traffic dataset.

(2) To address the problems of low detection accuracy, serious error detection and missed
detections of road elements, and difficult recognition of small dense objects, an ASFF-
YOLOV5 algorithm was proposed. In this algorithm, the classification accuracy and
speed of multiple elements of road traffic are improved using the SPPF [24] structure.
Moreover, by integrating the ASFF [25] structure of the RFB module [26], the receptive
field is improved and the feature information of detection objects at different scales is
improved to achieve richer feature information extraction, especially the detection
and recognition ability of small objects.

(3) The proposed ASFF-YOLOv5 algorithm was proven to be superior in detecting
multiple elements of road traffic through comparative experiments and ablation
experiments and provides a new solution for updating basic traffic geographical
information databases.

The rest of this paper is organized as follows. Section 2 describes the datasets used in
this study. Section 3 details the proposed method, followed by the experiments and results
in Section 4. A discussion is presented in Section 5. Finally, our conclusions are outlined
in Section 6.

2. Datasets and Scale Statistics

In this study, the multielement road traffic datasets produced in previous studies [1]
were used as the experimental data, and the sample data are shown in Figure 1. The experi-
mental data were captured by Hava MEGA-V8 and DJI FC6310 with a spatial resolution of
0.05 m and 0.1 m, respectively. In this study, representative multielement road traffic data
were selected as the research object. The selected elements are zebra crossings, roadside
parking spaces, and bus stations named zebra_crossing, parking_space, and bus_station.
In the dataset division, the training data accounted for 90%, and the rest were the test data.

The default size of the anchor box in the YOLOv5 network is obtained by clustering
according to the COCO dataset using the K-means algorithm [27], which is not applicable
to the road traffic multielement datasets proposed in this paper. Therefore, to be more
suitable for the object scale range of multielement road traffic datasets, the K-means++
clustering method was used to conduct scale statistics on UAV multielement road traffic
remote sensing images in this study.
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The K-means clustering algorithm is a typical iterative solution clustering algorithm.
The core idea of the K-means clustering algorithm is to divide an object set into n clusters
and randomly select a point as the cluster center. Iteration of the cluster center of each
cluster continues until all the points in each cluster no longer change. However, the
K-means clustering algorithm has some defects, and convergence depends heavily on the
initialization of the cluster center. Compared with the K-means clustering algorithm, the
K-means++ [23] clustering algorithm is improved in the initial random selection of the
cluster center. Therefore, the K-means++ clustering algorithm was selected in this research
for calculation. The K-means++ clustering algorithm selects cluster centers one by one
instead of randomly when initializing the cluster centers, and the sample points farther
away from other cluster centers are more likely to be selected as the next cluster center. The
initial cluster center was obtained using the K-means++ cluster center calculation, and then
the clustering result was obtained by the K-means clustering algorithm. In this study, the
road traffic element scale was defined as nine clusters, and the object candidate box size was
calculated by the K-means++ clustering algorithm. The results after K-means++ clustering
from the test results of different K-means in Section 4.3 are shown in Table 1. Compared
with the nonuse of the K-means++ algorithm, the mean average accuracy increase was
18.3%. Compared with K-means++ clustering, the mean average accuracy increase was 3%.
The result shows that the effect of K-means++ clustering conformed to the datasets of road
traffic elements.

Table 1. The results of K-means++ clustering.

Serial No. 1 2 3 4 5 6 7 8 9

x 10 15 16 19 23 25 33 52 125
y 17 29 19 38 22 26 70 34 123

3. Research Method

The proposed multielement road traffic detection method based on multiscale fea-
ture fusion includes data preprocessing, feature extraction, and feature fusion. First, the
K-means++ clustering algorithm is used for preprocessing, and the size of the candidate
box matching the multielement datasets of road traffic is obtained. Then, the main feature
extraction network integrated with an SPPF structure is used to extract the features of the
input feature map to achieve speed improvement and complete richer feature information
extraction. Second, through a fusion of an ASFF module after the feature extraction is
completely strengthened, the features of the pyramid through an RFB module expand the
receptive field. To further extract the features of different scale road traffic elements, the
features of the pyramid in the implementation of multiscale road traffic element feature
fusion makes full use of the features of road traffic elements of different maps and the
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details of the semantic information. Finally, the detection results of multielement road
traffic are output through the detection head, and their accuracy is evaluated. The specific
flow of the proposed method is shown in Figure 2.
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3.1. ASFF-YOLOv5

The pyramid module in the original YOLOv5 network [24] was borrowed from
PANet [28], and the YOLOv5 network structure diagram is shown in Figure 3. PANet
achieves multiscale feature fusion of the network by aggregating features from different
backbone layers and between detection layers. However, in PANet feature fusion, feature
information is extracted from deep and shallow feature maps continuously, and then the
feature map scale is transformed into the same scale. Then, simple addition is performed to
obtain feature fusion, which cannot make full use of feature information of different scales.
Therefore, the proposed ASFF-YOLOv5 algorithm makes full use of the feature information
of different scales to improve the detection effect of different scale objects.
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The ASFF-YOLOv5 network consists of three parts: a backbone feature extraction
network, a feature map pyramid network, and a classifier and regressor. In the ASFF-
YOLOv5 network, the backbone feature extraction network is used to extract the input
feature map. The feature map pyramid network achieves the feature fusion of multiscale
road traffic elements. The classifier and regressor obtain the detection results. Figure 4
shows a schematic diagram of the proposed method, in which the deepened color part
is the proposed SPPF module and ASFF + RFB module. Assuming that the size of the
input feature map in the network is 640 × 640 × 3, the feature extraction process of the
ASFF-YOLOv5 network is as follows:
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(1) The height and width are compressed in the feature layer by focusing the structure,
and the number of expansion channels is quadrupled to obtain a 320 × 320 × 12
feature map.

(2) A 320 × 320 × 64 feature map is obtained through a series of operations, such as
convolution, normalization, and activation functions.

(3) In the backbone feature extraction network, three effective feature layers are obtained
by stacking residual extraction, and the SPPF structure is introduced in the last effective
feature layer. The SPPF structure improves the classification accuracy and speed of
the feature map by using the maximum pooling of the same pooling kernel for feature
extraction; at this time, the three effective feature layers obtained in the backbone
feature extraction network are 80 × 80 × 256, 40 × 40 × 512, and 20 × 20 × 1024.

(4) The obtained effective feature layer is transferred to the PANet structure, and the
feature extraction is further enhanced through upsampling and downsampling. In
this stage, the proposed ASFF + RFB module is integrated and used for the extraction
of multiscale road traffic element information. It can achieve the enhancement of the
perceptual field, realize the extraction of feature information of detectors at different
scales, and complete the extraction of richer feature information.

(5) Three enhanced effective feature layers are obtained, and the prediction and regression
results are obtained by the classifier and regressor.
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3.2. ASFF + RFB Module

The ASFF-YOLOv5 algorithm enables improved feature scale invariance and object
detection by fusing the ASFF structure into the PANet structure. In the PANet structure
of the ASFF-YOLOv5 algorithm, the ASFF algorithm is introduced in each layer of the
FPN structure for weighted fusion after first enhancing the semantic feature extraction
top-down for the FPN structure [29]. The weight parameters are derived from the output
of the convolutional feature layer, and the weight parameters become learnable after
gradient backpropagation so that they can be adaptive when performing weighted fusion.
Meanwhile, an RFB module layer is introduced after the ASFF algorithm. This module
fuses the null convolution on top of Inception [30], thus effectively increasing the perceptual
field and realizing the feature extraction capability of the network. The PANet structure of
the proposed fused ASFF algorithm is shown in Figure 5.
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Taking ASFF-2 computational fusion as an example, X1, X2, and X3 are the feature
maps extracted from the YOLOv5 backbone network. First, the feature maps Level1, Level2,
and Level3 are obtained from the PANet structure. Then, ASFF-2 is obtained by fusing
them with the ASFF algorithm. The Level1 feature map is convolved to obtain the same
number of channels as the Level2 feature map, and then the feature map with the same
dimension as Level2 is upsampled to obtain X1→2. For the Level3 feature map, the number
of channels and dimensions are adjusted using convolution and downsampling operations
to keep the same number of channels and dimensions as Level2, and X3→2 is obtained. The
Level2 feature map is adjusted by the number of channels after the convolution operation
to obtain X2→2. After processing the three feature maps using the softmax function, the
weight coefficients α, β, and γ of X1→2, X2→2 and X3→2 are obtained, respectively, and
then the ASFF fusion calculation is performed with the following formula.

yl
ij = αl

ij·X1→l
ij + βl

ij·X2→l
ij + γl

ij·X3→l
ij (1)

where yl
ij is the new feature map obtained using the ASFF module. αl

ij, βl
ij, and γl

ij are the

weight coefficients of the three feature maps, and αl
ij, βl

ij, and γl
ij after softmax function

processing satisfy αl
ij + βl

ij + γl
ij = 1, αl

ij, βl
ij, and γl

ij ∈ [0, 1]. Xn→l
ij denotes the feature

vector of the feature map from layer n to layer l.
Through the ASFF algorithm, the multiscale feature fusion of the model is fully

realized by adjusting the feature fusion with the weight parameters. In addition, this study
introduces the RFB module along with the ASFF algorithm. Through multiple branch
convolution and dilated convolution, the RFB module can increase the receptive field more
effectively, improve the utilization of feature information, and improve the model’s ability
to recognize and detect small objects. In the multiple branch structures of the RFB module,
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the first layer of each branch is composed of convolution kernels of a specific size, and
the size of the first layer convolution kernels is 1 × 1, 3 × 3, and 5 × 5. Figure 6a shows
the effect diagram of the RFB module, and Figure 6b shows the structure diagram of the
RFB module. The rate represents the expansion coefficients of different dilated convolution
layers. The RFB module includes a dilated convolution layer to enhance the receptive field.
The final output of the RFB module concatenates the output feature maps of different sizes
and receptive fields to achieve the purpose of fusing different features.
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3.3. Spatial Pyramid Pooling Fast

The role of the SPP structure [31] in the YOLOv5 network is to implement a fixed
size feature vector as a fully connected layer output for images with different size inputs.
The SPP structure uses three convolution kernels of different sizes, 3, 5, and 9, to extract
features through the maximum pooling operation, enhance the feature expression ability of
the feature graph, and improve the network receptive field. The SPP structure is shown
in Figure 7a, which first performs 1 × 1, 3 × 3, 5 × 5, and 9 × 9 maximum pooling oper-
ations on the data transferred from the convolutional normalization activation function
(Convolution + Banch Normalization + SiLU, CBS) in parallel and then connects them to
the CBS structure by concatenation splicing. The CBS structure achieves feature fusion
and completes the feature extraction operation. However, the SPP structure increases the
computation of the program by parallel pooling operations with different sized convolu-
tional kernels, which degrade the performance. Therefore, the SPPF structure is used for
pooling to improve the performance of pooling while reducing the amount of program
computation. The SPPF structure replaces the parallel maximum pooling operation of three
convolutional kernels of different sizes in the original SPP with a serial operation of three
convolutional kernels of the same size. As shown in Figure 7b, the SPPF structure is similar
to the SPP structure. The operation of the SPPF layer first performs a 5 × 5 maximum
pooling operation on the data serially transferred from the CBS structure. Then, the data
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are passed into the CBS structure by concatenation splicing, which achieves a speed-up
while completing a richer feature information extraction.
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3.4. EIoU Loss

Through the above method, the object detection accuracy and overall recognition
efficiency of multielement road traffic are improved. However, the overall detection ac-
curacy is reduced if there is a parallel and dense phenomenon in road traffic elements,
such as roadside parking spaces. Because the anchor boxes of the parallel and dense object
detection overlap and block each other, part of the overlap is removed in the nonmaximal
suppression process, leading to the phenomenon of missed detection. In previous stud-
ies [1], the CIoU loss function [32] was used to solve this problem. The CIoU loss function
calculation considered the location information between the object box and the detection
box, such as the aspect ratio of the distance overlap area. When there is no overlap between
the object box and the detection box, backpropagation can still be carried out. However, in
the process of prediction box regression, if the prediction box and the true box increase or
decrease proportionally, the penalty term [32] defined by the CIoU loss function no longer
takes effect. Therefore, the EIoU loss function [33] was adopted in this study to solve this
problem. Compared with the CIoU loss function, EIoU [33] directly calculates penalty
terms for the width and height, avoiding the problem that the penalty terms do not work
when the prediction box and true box increase or decrease proportionally. At the same
time, the regression accuracy is improved using the EIoU so that more attention is given to
high-quality anchor boxes in the regression process.

The EIoU loss consists of three components, which are the overlap loss of the predicted
and true boxes, the center distance loss of the predicted and true boxes, and the edge length
loss of the height and width of the predicted and true boxes. Therefore, the EIoU loss
function is defined as:

EIoULoss = 1− IoU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(2)

where IoU [34] is the intersection ratio of the area of the prediction box and the real box.
ρ2(b, bgt) denotes the Euclidean distance between the prediction box and the center point
of the true box. ρ2(w, wgt) denotes the Euclidean distance between the predicted box and
the true box width. ρ2(h, hgt) denotes the Euclidean distance between the predicted box
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and the true box height. c denotes the diagonal distance between the prediction box and
the minimum outer rectangle of the true box. Cw denotes the closure width between the
prediction box and the true box. Ch denotes the closure height between the prediction box
and the true box.

4. Experimental Results and Analysis
4.1. Experimental Environment

The computer hardware configuration used in this study is an Ubuntu 20.04 system
with an Intel i7-8700 CPU and a GTX1070 graphics card configuration with 8 GB video mem-
ory. The training was performed using PyCharm software version 2020.1 (downloadable
from https://www.jetbrains.com/pycharm/download/ (accessed on 1 November 2021),
Prague, Czech Republic). In the experimental training, the weight decay coefficient of
training was set to 0.0005, the initial learning rate was 0.001, the confidence level was 0.5,
the IoU threshold was set to 0.65, and a total of 100 epochs were trained with 4000 iterations.

4.2. Evaluation Indicators

The experiments measured the accuracy of model detection by calculating the mAP,
average precision (AP), precision, and recall as model quantitative evaluation metrics,
which were defined as shown in Table 2.

Table 2. Evaluation indicators.

Evaluation
Indicators

Calculation
Formula Definition

Precision Precision = TP
TP+FP

TP represents the positive samples detected
correctly, indicating the number of road traffic
elements detected correctly. FP represents the
negative samples detected incorrectly, indicating
the number of objects detected as road traffic
element classes but actually other classes. FN
represents the positive samples detected
incorrectly, indicating the number of other
classes detected as actually road traffic
element classes.

Recall Recall = TP
TP+FN

AP AP =
∫ 1

0 p(r)dr

The value of AP is the size of the area
enclosed by p as a function of r in the range
[0, 1], where p is the precision and r is the recall.

mAP mAP = ∑N
i=1 APi

N

N represents the number of all categories in the test
set, i is the ith category, and APi is the
average precision rate of the ith category.

4.3. Comparison Experiments

To verify the effectiveness of the proposed method, the classical algorithm network
of object detection was compared in this study. The SSD [35], Retinanet [36], Faster
R-CNN [37], YOLOv3 [38], YOLOv4 [39], YOLOv5 [24] networks as well as the previ-
ous research were selected for comparison experiments with the proposed method. In
the experiment, the values of the AP, precision, recall, and mAP evaluation indexes were
calculated and compared when the multielement datasets of road traffic were trained. As
shown in Table 3, the recognition accuracy of multielement road traffic under different
network models was counted. Among them, the increased mAP values were calculated by
comparing each network and the proposed method.

https://www.jetbrains.com/pycharm/download/
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Table 3. Detection results of different networks.

Network Model Transport Elements AP/% Precision/% Recall/% mAP/% Rise Points

Faster R-CNN

zebra crossings 64.3 59.0 71.4

56.9 36.2bus stations 71.5 73.3 71.0

roadside parking spaces 35.0 31.5 48.8

Retinanet

zebra crossings 70.0 87.8 61.2

57.3 35.8bus stations 67.3 86.4 61.3

roadside parking spaces 34.5 74.3 24.4

SSD

zebra crossings 52.9 76.8 32.6

53.9 39.2bus stations 75.1 100.0 54.8

roadside parking spaces 33.8 73.4 14.7

YOLOv3

zebra crossings 84.3 87.4 80.4

81.5 11.6bus stations 83.8 88.9 77.4

roadside parking spaces 76.5 76.1 75.9

YOLOv4

zebra crossings 81.8 90.0 79.2

74.7 18.4bus stations 76.8 90.5 61.3

roadside parking spaces 65.4 70.2 71.0

YOLOv5

zebra crossings 85.3 75.2 82.0

73.9 19.2bus stations 65.2 50.9 58.1

roadside parking spaces 78.9 74.2 77.5

YOLOv4 + ECA

zebra crossings 94.3 90.1 93.9

90.5 2.6bus stations 99.6 91.3 100.0

roadside parking spaces 77.4 81.0 78.1

ASFF-YOLOv5
(YOLOv5 + ASFF + RFB)

zebra crossings 94.0 85.9 94.4

93.1bus stations 96.2 93.1 96.3

roadside parking spaces 83.7 86.9 88.6

Note: the best results are in bold font and the second best results are underlined.

To verify the accuracy of anchor positioning obtained by K-means++ clustering in
this study, the experimental results of the original YOLOv5 network, YOLOv5 + K-means,
and YOLOv5 + K-means++ were compared. Table 4 shows the detection results of
different K-means.

Table 4. Detection results of different K-means.

Network Model Transport Elements AP/% Precision/% Recall/% mAP/% Rise Points

YOLOv5

zebra crossings 85.3 75.2 82.0

73.9 18.3bus stations 65.2 50.9 58.1

roadside parking spaces 78.9 74.2 77.5

YOLOv5 + K-means

zebra crossings 93.4 84.0 92.5

89.2 3bus stations 95.3 74.0 83.4

roadside parking spaces 84.7 84.9 88.7

YOLOv5 + K-means++

zebra crossings 94.6 84.8 93.8

92.2bus stations 95.5 78.2 93.9

roadside parking spaces 86.0 86.9 88.9

Note: the best results are in bold font and the second best results are underlined.
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To verify the accuracy of the K-means++ clustering effect on anchor boxes, images
were selected for detection, and the detection effect under different K-means is shown
in Figure 8. From the viewpoint of detection accuracy and the size and location of the
anchor box, YOLOv5 had the lowest detection accuracy for the detectors, with an accuracy
of only 70.6%. The location of the candidate box does not include all the detectors to be
detected. The detection accuracy of YOLOv5 + K-means for detected objects ranked second,
with an accuracy of 87.9%. Although the positioning accuracy of the candidate boxes was
improved, there was still a slight gap. YOLOv5 + K-means++ had the highest detection
accuracy of 95.7% for detected objects, the positioning of candidate boxes was the most
accurate, there was no missing part, and the size of candidate boxes was appropriate. The
results showed that the K-means++ clustering algorithm used could make the position of
candidate boxes more accurate and the detection effect better.

Remote Sens. 2022, 14, x FOR PEER REVIEW 12 of 22 
 

 

70.6%. The location of the candidate box does not include all the detectors to be detected. 
The detection accuracy of YOLOv5 + K-means for detected objects ranked second, with an 
accuracy of 87.9%. Although the positioning accuracy of the candidate boxes was im-
proved, there was still a slight gap. YOLOv5 + K-means++ had the highest detection accu-
racy of 95.7% for detected objects, the positioning of candidate boxes was the most accu-
rate, there was no missing part, and the size of candidate boxes was appropriate. The re-
sults showed that the K-means++ clustering algorithm used could make the position of 
candidate boxes more accurate and the detection effect better. 

 
(a) (b) (c) 

Figure 8. Detection effects under different K-means: (a) YOLOv5; (b)YOLOv5 + K-means; and (c) 
YOLOv5 + K-means++. 

To verify the effectiveness of the proposed algorithm, an ablation experiment was 
conducted on the multielement road traffic datasets, and the experimental results after 
fusion of K-means++, SPPF, and ASFF were compared. The AP, precision, recall, and mAP 
values were calculated and compared. The ablation test results are shown in Table 5. 

Table 5. Results of ablation tests. 

Network Model Transport Elements AP/% Precision/% Recall/% mAP/% Rise Points 

YOLOv5 
zebra crossings  85.3 75.2 82.0 

73.9 19.2 bus stations 65.2 50.9 58.1 
roadside parking spaces 78.9 74.2 77.5 

YOLOv5 + SPPF 
zebra crossings  94.9 90.3 94.2 

90.7 2.4 bus stations 100.0 83 88.8 
roadside parking spaces 85.6 86.2 89.1 

YOLOv5 + K-means++ 
zebra crossings  94.6 84.8 93.8 

92.2 0.9 bus stations 95.5 78.2 93.9 
roadside parking spaces 86.0 86.9 88.9 

YOLOv5 + ASFF 
zebra crossings  91.3 92.1 94.1 

92.8 0.3 bus stations 100.0 91.6 95.1 
roadside parking spaces 77.1 91.4 89.0 

ASFF-YOLOv5 
(YOLOv5 + ASFF + 

RFB) 

zebra crossings  94.0 85.9 94.4 
93.1  bus stations 96.2 93.1 96.3 

roadside parking spaces 83.7 86.9 88.6 
Note: the best results are in bold font and the second best results are underlined. 
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(c) YOLOv5 + K-means++.

To verify the effectiveness of the proposed algorithm, an ablation experiment was
conducted on the multielement road traffic datasets, and the experimental results after
fusion of K-means++, SPPF, and ASFF were compared. The AP, precision, recall, and mAP
values were calculated and compared. The ablation test results are shown in Table 5.

Table 5. Results of ablation tests.

Network Model Transport Elements AP/% Precision/% Recall/% mAP/% Rise Points

YOLOv5

zebra crossings 85.3 75.2 82.0

73.9 19.2bus stations 65.2 50.9 58.1

roadside parking spaces 78.9 74.2 77.5

YOLOv5 + SPPF

zebra crossings 94.9 90.3 94.2

90.7 2.4bus stations 100.0 83 88.8

roadside parking spaces 85.6 86.2 89.1

YOLOv5 + K-means++

zebra crossings 94.6 84.8 93.8

92.2 0.9bus stations 95.5 78.2 93.9

roadside parking spaces 86.0 86.9 88.9

YOLOv5 + ASFF

zebra crossings 91.3 92.1 94.1

92.8 0.3bus stations 100.0 91.6 95.1

roadside parking spaces 77.1 91.4 89.0

ASFF-YOLOv5
(YOLOv5 + ASFF + RFB)

zebra crossings 94.0 85.9 94.4

93.1bus stations 96.2 93.1 96.3

roadside parking spaces 83.7 86.9 88.6

Note: the best results are in bold font and the second best results are underlined.
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To verify the practicality and effectiveness of the proposed method, prediction exper-
iments were conducted in different scenes separately. Small scene image maps taken by
an UAV and large scene image maps generated by commercial software processing were
selected for detection. The small scene images were normal road scenes and small object
element scenes. Among them, the normal road scenes were intersection sections imaged
by the UAV, including 1 bus station and 10 zebra crossings. The small object element
scenes were roadside parking spaces captured by the UAV, divided into scene 1 and scene 2.
Scene 1 was an unobstructed roadside parking space, including nine juxtaposed and dense
roadside parking spaces. Scene 2 was an obscured object to be detected, including 45 road-
side parking spaces and 2 zebra crossings. The parking spaces were juxtaposed, dense, and
partially obscured by trees. The prediction effect under the normal road scene is shown in
Figure 9. Figure 10 shows scene 1 under small target elements. Figure 11 shows scene 2
under small target elements. Table 6 shows the detection results under small scenes.

The prediction effect can be seen from the results shown in Figure 9 and Table 6.
In the normal road scenario, the ablation experiments were able to correctly detect the
multielement road traffic with no detection error or missed detections. The ablation
experiments all had good ability to detect multiple elements of road traffic. However, the
detection accuracy obtained by the proposed method was the highest.

Figure 10 shows the unobstructed detection in the small target element scenario, where
the object detection was nine side-by-side and dense roadside parking spaces. Figure 10
and Table 6 show that the ablation experiments detected all roadside parking spaces in
the small object scenario without obstruction and there were no detection errors or missed
detections. Ablation experiments have a good ability to detect multiple elements of road
traffic in unobstructed environments. However, the detection accuracy of the method in
this paper reached 91.2% when detecting small objects without occlusion, which is the
highest compared with other methods.

Figure 11 shows the detection with occlusion in the small object element scene, and
the detection objects were 45 parallel and dense roadside parking spaces and 2 zebra
crossings. Figure 11 and Table 6 show that the ablation experiments achieved 99.5%
and 100% detection of zebra crossings, respectively. It is proven that the above ablation
experiments could achieve good results for zebra crossing detection and that there were
no detection errors or missed detections. However, the above ablation experiments were
missed in the detection of street parking spaces, and the number of missed street parking
spaces ranged from 3 to 11. From the overall results, although the YOLOv5 + SPPF method
resulted in the highest average detection accuracy, the number of missed spots was the most
serious at 11. Compared with the serious missed detections in the ablation experiment, the
proposed method only missed three detections, which was the minimum number of missed
detections in the ablation experiment. The detection accuracy of the proposed method
was 93.5% for obscured roadside parking spaces, which is only different by 0.28 from the
optimal detection accuracy, but the missed detections were greatly reduced. This proves
that the proposed method ensured the correctness of detection while maintaining the
detection accuracy, especially in the detection of obscured small objects and juxtaposed
dense small objects with high improvement.

Figure 12 shows the prediction result map under an orthophoto image. The image
is an orthophoto map generated by a remote sensing image map taken by UAV and
processed using commercial software, and the total area of this image area is 302,813 m2.
The image size is 37,548 × 21,438 pixels. The small and medium objects in this image are
140 × 82 pixels and 514 × 254 pixels, respectively. The image contains 18 zebra crossings,
5 bus stations, and 58 roadside parking spaces. The specific prediction results are shown
in Table 7.
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Table 6. Predicted results of ablation experiments in a small scenario.

Network Model Transport Elements
Normal Road Scene Small Target Scenes

Scene 1 (Unobstructed)
Small Target Scenes
Scene 2 (Obstructed)

Number AP/% Number AP/% Number AP/%

YOLOv5

zebra crossings 10 87.0 - - 2 87

bus stations 1 81.7 - - - -

roadside parking spaces - - 9 72.9 42 81.6

YOLOv5 + SPPF

zebra crossings 10 85.3 - - 2 99.5

bus stations 1 87.8 - - - -

roadside parking spaces - - 9 76.6 34 96.3

YOLOv5 + K-means++

zebra crossings 10 87.1 - - 2 100

bus stations 1 84.8 - - - -

roadside parking spaces - - 9 82.9 38 93.3

YOLOv5 + ASFF

zebra crossings 10 86.7 - - 2 100

bus stations 1 85.7 - - - -

roadside parking spaces - - 9 89.7 40 93.3

ASFF-YOLOv5
(YOLOv5 + ASFF + RFB)

zebra crossings 10 88.4 - - 2 99.5

bus stations 1 89.1 - - - -

roadside parking spaces - - 9 91.2 42 93.5

Note: “-” in the table indicates that the images measured do not contain this category, and the bolded font is the
best result for each. Number is the number of road traffic elements that were correctly detected.
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(e) YOLOv5 with ASFF; and (f) ASFF-YOLOv5.

Figure 12 and Table 7 show that several of the above algorithms showed different
degrees of missed detections when applied to complex large scenes. However, the proposed
method had the lowest number of missed detections. When detecting bus stations and
zebra crossings, the missed detections in the ablation experiment were not obvious, and all
methods could correctly detect the objects. However, in the detection of roadside parking
spaces, the missed detections were serious, and the number of missed detections ranged
from 8 to 29. The reason for this is that for large images, roadside parking is a small
target detection and most of the parking spaces are covered by greenery, so the feature
information is not obvious, thus causing missed detections. The proposed method is
optimized for multiscale feature extraction, which improved the detection accuracy of
small objects to a certain extent. The proposed method achieved an average detection
accuracy of 80.3% for roadside parking spaces in complex and large scenes. Compared
with the ablation experiments, the number of missed detections was the lowest, and only
eight roadside parking spaces obscured by greenery were missed. The average detection
accuracy for zebra crossings and bus stations in complex large scenes reached 89.5% and
89.7%, respectively, which were the best results of the ablation experiment.
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Table 7. Predicted results of ablation experiments for a large and complex scenario.

Network Model Transport Elements Number 1 Number 2 AP/%

YOLOv5

zebra crossings 18 0 87.2

bus stations 4 1 75.5

roadside parking spaces 40 18 62.3

YOLOv5 + SPPF

zebra crossings 17 1 89.1

bus stations 5 0 80.3

roadside parking spaces 29 29 68.7

YOLOv5 + K-means++

zebra crossings 18 0 88.4

bus stations 4 1 81.7

roadside parking spaces 37 21 73.3

YOLOv5 + ASFF

zebra crossings 18 0 88.6

bus stations 4 1 84.0

roadside parking spaces 44 14 71.8

ASFF-YOLOv5
(YOLOv5 + ASFF + RFB)

zebra crossings 18 0 89.5

bus stations 5 0 89.7

roadside parking spaces 50 8 80.3
Note: The bolded font is the best result for each. Number 1 is the number of road traffic elements that were
correctly detected. Number 2 is the number of road traffic elements that were missed.

5. Discussion

Compared with other methods, the mAP of the proposed method had a great im-
provement, with an increase ranging from 0.3% to 39.2%, which verified that the proposed
ASFF-YOLOV5 algorithm can effectively improve the detection accuracy of multielement
road traffic. Different from other scholars’ research [40–45], this paper considered multi-
scale object detection, especially in small object detection whose detection accuracy was
substantially improved. Compared with the results of different network models, the detec-
tion accuracy of the proposed method was improved both in terms of the overall accuracy
and individual objects for detection, which proves the superiority of the proposed method
for multiscale object detection.

To verify the practicability and correctness of the proposed method, ablation exper-
iments were conducted for different scenarios. The prediction results showed that the
proposed method achieved the optimal detection accuracy compared with other methods.
At the same time, the proposed method had the lowest number of missed detections, the
highest detection accuracy, and the best detection effect compared with other methods for
large complex scenes. This proves the practicality and superiority of the proposed method.
It can be directly applied to image maps of large scenes and provides a more intelligent and
convenient method for updating geographic information databases. However, in complex
large scenes, there is inevitably the case of missed roadside parking space detections with
occlusion since the semantic information of these parking spaces is more inconspicuous
and the features are difficult to extract, which is also one of the challenges to be further
addressed in subsequent work.

6. Conclusions

To address the problems of little data extraction of traffic element information, low
automation but high demand, small element scale, and detection susceptibility to envi-
ronmental interference, an ASFF-YOLOv5 algorithm for UAV remote sensing images was
proposed in this paper. In this algorithm, an adaptive spatial feature fusion method based
on a receptive field module is adopted to make full use of different scale information, im-
prove the invariance of the feature scale, and improve the detection effect of small objects.
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When detecting multiple road traffic elements, the mAP of the proposed method reached
93.1%, which is 19.2% higher than that of the original YOLOv5 network. A comparison
experiment and ablation experiment proved that the proposed method could solve the
problem of detection errors and missed detections for multielement road traffic, improve
the detection accuracy of small and medium objects and intensive objects of multifactor
road elements, and provide a new solution for the construction of basic geographic traffic
information databases.

However, there are shortcomings of the proposed method. The experiments only
focused on three types of elements, zebra crossings, bus stations, and roadside parking
spaces. Subsequent work will expand the dataset to complete the automatic recognition
and detection of more elements. At the same time, there are also missed detections of ob-
scured small objects, and subsequent work will further improve and enhance the detection
accuracy of small objects.
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