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Abstract: The long-term accumulated remote sensing data and the emerging cloud-based geospatial
processing platform Google Earth Engine (GEE) enable the mining of the spatiotemporal pattern of
land-use (LU) functional changes in the contiguous area of large coastal cities. This study proposes
a spatiotemporal pattern mining technique for land use function in a large area, which consists of
two parts: (1) long-term time series land cover mapping based on the random forest (RF) classi-
fication algorithm in the GEE platform and a pixel-by-pixel temporal consistency correction, and
(2) spatiotemporal pattern mining based on the constructed spatial temporal cubes (STCs). Specif-
ically, for each LU functional series, we constructed the STC and applied change point detection,
time series clustering, and emerging hot spot analysis to mine the spatiotemporal change patterns of
LU functions. The study shows that (1) the construction land in the Bohai Sea region from 1990 to
2020 expanded significantly, with the development intensity increasing from 2.08% to 9.77%, having
formed a contiguous area of large cities; at the same time, the arable land area decreased significantly,
from 57.94% to 47.83%; (2) the emerged construction land experienced three periods: fluctuation, rise,
and decline, with 2004 and 2014 being the change points during the period; and (3), the spatial and
temporal pattern of the expansion of construction land shows a spatial gradient change in the scale
and rate of expansion along the central cities and major axes. This study demonstrates the potential
of using long-term time series remote sensing data towards cognizing the generation mechanisms of
contiguous coastal big cities.

Keywords: time series; land use; spatial and temporal change patterns; data mining techniques;
spatial and temporal cubes; GEE; contiguous areas of large cities

1. Introduction

The rapid development of externally-oriented economies in coastal countries and
regions has led to the high concentration of population and economy in coastal areas
and the gradual development of contiguous coastal megacities [1,2]. Monitoring the
long-time series changes of land use functions in contiguous areas of large coastal cities
serves as an important basis for understanding the mechanisms of change and making
policy recommendations to promote sustainable development [3–6]. Remote sensing has
great potential in the fields of coastal zone resource surveying, land use classification, and
landscape function monitoring [7,8] because of its wide observation range, abundant spatial
and temporal information, and efficient data acquisition method.

The spatiotemporal pattern of land use functional changes mainly relies on the quan-
tity, proportion, and spatial structure of land use [9–11]. The typical steps based on the
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remote sensing technique include classification based on single-time phase images and
comparing the classification results of different time phases to obtain change detection
information using anniversary dates or anniversary windows (annual cycles or their multi-
ples) [12–14]. Due to the large volume of data and the challenges in classification, many
studies using term time series of land use have employed time nodes with an interval of
three or five years for analysis [15–17]. This simplifies the process of data acquisition and
analysis, but the possible abrupt change points within the study period may be missed.
The newly developed geospatial data analysis cloud platform Google Earth Engine (GEE,
https://earthengine.google.com, accessed on 1 May 2022) could help to avoid this over-
simplification. With its huge remote sensing image-dataset storage and high-performance
computing capability, the GEE provides an efficient way to analyze the land use functional
changes in the contiguous areas of coastal megacities [18,19].

Large-scale and long-term time series mapping and change detection for special
phenomena using the GEE platform has been applied in construction land expansion [20,21],
arable land [22], wetland [23,24], mangroves [25,26], etc. These studies are generally
based on time series feature indexes to identify and detect changes in specific phenomena
in the coastal zone by reconstructing feature production processes or using time series
characteristics such as seasonality and stability. Besides the significant progress in the
identification and change detection of time series features, progress has also been made
in the detection of long-term time series LU changes in entire elements, including studies
at global and regional scales [27–29]. Similar studies targeting contiguous areas of large
coastal cities have not been intensively explored. Furthermore, the spatiotemporal evolution
characteristics of long-term time series images in terms of spatial structure or pattern have
not been sufficiently explored, especially not with the help of the spatiotemporal mining
methods of long time series.

This study proposes an LU-functional spatiotemporal evolution pattern mining method
based on multi-source long-term time series remote sensing data and applies it to the
Bohai Sea region of China. It includes (1) a GEE-based method for land use functional
classification, whose novelty lies in the pixel-level logical consistency between time and
space, and (2) an STC-based spatiotemporal pattern mining method, including change
point detection, time-series clustering and emerging hot spot analysis, whose novelty
lies in the multi-angle interpretation of the spatial and temporal information behind the
data products.

2. Study Area and Datasets
2.1. Study Area

The Bohai Sea region of China includes the vast region surrounding the Bohai Sea
and part of the Yellow Sea coast area (34.3◦~43.5◦N, 113.4◦~125.8◦E), with an area of
518,000 square kilometers. It encompasses the economic region around the Bohai Sea, with
Beijing, Tianjin, and Hebei as its core and Liaodong Peninsula and Shandong Peninsula as
its two wings, including Shandong province and Liaoning province (Figure 1). According
to the seventh national population census of China, the resident population in the Bohai Sea
region has reached 254,488,200, accommodating nearly 18% of the entire population with
5.49% of the country’s land area; the regional GDP reached 3.8 trillion yuan, accounting
for 28.2% of the country. Most of the Bohai Rim is a low-lying plain, including the North
China Plain, the Huang-Huai-Hai Plain, and the Liao River Plain. It is one of the most
agriculturally developed regions in China, as it is an important national production base
for wheat, mixed grains, cotton, oilseeds, and fruits. It is also the largest industrial intensive
area in the country, with several heavy and chemical industrial bases. The coast of the Bohai
Sea contains three major bays, Liaodong Bay, Bohai Bay, and Laizhou Bay, constituting
the densest port complex in China with more than 40 ports [30,31]. The Bohai Sea region
has formed a spatial framework with two municipalities, Beijing and Tianjin, as its center;
open coastal cities such as Dalian, Qingdao, Yantai, and Weihai as the fan; and provincial
capitals such as Shenyang, Jinan, Shijiazhuang, Taiyuan, and Hohhot as the regional

https://earthengine.google.com
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pivot points, constituting the most important city cluster in northern China that integrates
politics, economy, culture, and international communication. It plays a pivotal role in
agglomerating, radiating, and driving the regional and national economy. With the trend
of international economic centers shifting to the Asia-Pacific region, the Bohai Sea region
holds great developmental potential. As an important outlet to the sea in Northeast China,
North China, and parts of East China, the Bohai Rim takes the lead in foreign trade, and its
total foreign trade volume reached 8.14 trillion yuan in 2020, accounting for about 21% of
the country. With the Belt and Road initiative’s construction, the revitalization of Northeast
China, and the proposition of the Beijing–Tianjin–Hebei integration strategy, the strategic
position of the Bohai Sea region is becoming increasingly prominent.

Remote Sens. 2022, 14, x FOR PEER REVIEW 3 of 16 
 

 

The coast of the Bohai Sea contains three major bays, Liaodong Bay, Bohai Bay, and 
Laizhou Bay, constituting the densest port complex in China with more than 40 ports 
[30,31]. The Bohai Sea region has formed a spatial framework with two municipalities, 
Beijing and Tianjin, as its center; open coastal cities such as Dalian, Qingdao, Yantai, and 
Weihai as the fan; and provincial capitals such as Shenyang, Jinan, Shijiazhuang, Taiyuan, 
and Hohhot as the regional pivot points, constituting the most important city cluster in 
northern China that integrates politics, economy, culture, and international 
communication. It plays a pivotal role in agglomerating, radiating, and driving the 
regional and national economy. With the trend of international economic centers shifting 
to the Asia-Pacific region, the Bohai Sea region holds great developmental potential. As 
an important outlet to the sea in Northeast China, North China, and parts of East China, 
the Bohai Rim takes the lead in foreign trade, and its total foreign trade volume reached 
8.14 trillion yuan in 2020, accounting for about 21% of the country. With the Belt and Road 
initiative’s construction, the revitalization of Northeast China, and the proposition of the 
Beijing–Tianjin–Hebei integration strategy, the strategic position of the Bohai Sea region 
is becoming increasingly prominent. 

 
Figure 1. Overview map of the study area. 

2.2. Multi-Source Datasets 
The data used in this study includes the historical image data of the Landsat series 

on the GEE platform, including the Landsat Thematic Mapper (TM), Enhanced Thematic 
Mapper Plus (ETM+), and Operational Land Imager (OLI). We used the GEE platform to 
screen the extant Landsat data in the Bohai Sea region during 1990–2020. The screening 
conditions include (1) obtaining data for two periods, June to October (lush vegetation 
period) and November to March (vegetation withering period), and (2) less than 15% 

Figure 1. Overview map of the study area.

2.2. Multi-Source Datasets

The data used in this study includes the historical image data of the Landsat series
on the GEE platform, including the Landsat Thematic Mapper (TM), Enhanced Thematic
Mapper Plus (ETM+), and Operational Land Imager (OLI). We used the GEE platform to
screen the extant Landsat data in the Bohai Sea region during 1990–2020. The screening
conditions include (1) obtaining data for two periods, June to October (lush vegetation
period) and November to March (vegetation withering period), and (2) less than 15%
cloudiness. Through screening, we obtained a total of 9242 images. At the same time, to
obtain as many annual observations as possible with less than 10% cloud cover during the
period from 1990–2020, we used pixel-based mosaic image acquisition means to obtain a
total of 31 years of low-cloudiness data for the whole area, which is 6 years more than the
traditional whole-view mosaic method. Using the Landsat series historical image data, we
calculated spectral indices such as the normalized vegetation index (NDVI), normalized
building index (NDBI), normalized difference water index (NDWI), etc., which will be
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involved as feature variables in the subsequent RF classification process. In addition, the
data to assist in the classification include Visible Infrared Imaging Radiometer Suite (VIIRS)
nighttime light data, Shuttle Radar Topography Mission (SRTM) digital elevation data, and
climate data such as precipitation, air temperature, and cumulus temperature. Among
them, the VIIRS Nighttime Day/Night Band Composites Version 1 is a monthly average
radiometric composite image of nighttime data from the VIIRS Day/Night Band (DNB) to
distinguish urban and non-urban areas. The SRTM data were obtained from the U.S. Land
Distributed Activity Archive Center and have been populated using other open-source
data (ASTER GDEM2, GMTED2010, and NED). The climate data were collected from the
FLDAS data, which is known as the Famine Early Warning Systems Network (FEWS NET)
Land Data Assimilation System.

3. Methods

This study proposes a spatiotemporal pattern mining technique for land use functions
based on the GEE platform and the STCs, which consists of two parts (Figure 2): (1) long-
term time series land cover mapping based on the RF algorithm in the GEE platform [32],
and then a pixel-by-pixel temporal consistency correction of land use functional changes,
and (2) a spatiotemporal pattern mining method based on the STC. For construction land,
arable land, and ecological land, the produced long-term time series land use function
products are divided and aggregated to construct a suitable STC, and the spatiotemporal
change patterns of land use functions are mined using time-series clustering, change point
detection, and emerging hot spot analysis.
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3.1. Long Term Time Series Land Use Function Classification and Change Detection

In this study, we utilized the GEE platform to classify and detect changes in land
use functions in long-term time series images of the Bohai Sea region, which consists of
two steps: (1) using the RF algorithm to obtain the initial LU functional classification
products and correcting them based on the logical rules of spatiotemporal consistency,
and (2) selecting suitable-sized grid cells and tabulating the imaging products to construct
the STCs. Based on the generated STCs, we used the SegNeigh algorithm [33] to identify
change points and divide the whole study period into different stages.
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3.1.1. GEE-Based Long-Term Time Series Land Use Function Classification in
Large Regions

First, we developed an LU functional classification system with reference to previous
studies [34–36], including 6 types of land for cropland, forest, grassland, water, impervious,
and bare land. We selected samples manually and conducted four field trips in 2019
and 2020 to understand the characteristics of each type and to select high-quality sample
data. With the help of high-resolution images from Google Earth’s historical archives, we
obtained 31 years of sample data by backward modification point by point, i.e., we obtained
the training sample in 2018, then switched to the historical images in 2017, checked whether
the features changed, and provided category replacement and adjustment to the samples.
Such a sample selection strategy ensures the continuity and stability of the sample selection
process as much as possible. Based on this strategy, we obtained 249 high-quality sample
points annually. Among the selected samples, 80% of them were used as training samples
and 20% as validation samples. Second, we selected the NDVI, NDBI, and NDWI as feature
variables, and formed different combinations with VIIRS night-lighting data and SRTM
digital elevation data. By comparing the accuracies of different combinations, we were
able to filter out the feature vectors with higher importance. Afterwards, we randomly
divided the sample points into a training set and a validation set by proportion to train the
RF classifier. Finally, the images were initially classified using the trained RF classifier. In
this process, the initial classification results were optimized by continuously adjusting the
sample point distribution, feature vector selection scheme, texture, and window size.

Since the initial classification process ignored the intrinsic logic of the land use and
land cover (LULC) development and transition, there were still temporal and spatial
logical inconsistencies, and we used a bi-directional spatiotemporal consistency detection
method to correct them [37]. The method assumes smooth transitions between different
LU types and improves the classification accuracy by modifying the intrusive LU type,
which destroys the dominant LU type within two sliding time windows of sequential
and inverted orders. We detected and corrected the change sequence of LU types pixel
by pixel by combining the initial classification results in temporal order. Considering the
numerously repeated LU type changes in the study area, we introduced a hash table to map
each change sequence to a corresponding key to improve the computational efficiency. The
combined raster is composed of the keys corresponding to the LU type change sequence at
their locations. Based on the classification accuracy and the characteristics of the study area,
the window size for detection was set as 6 years, and the distribution probability threshold
was determined as 0.6. The distribution probability threshold denotes the proportion
of dominant LU type in the detection window that is greater than or equal to 0.6. We
performed parallel operations on six CPU cores and corrected 389,846 unique LU change
sequences in the hash table using a two-way sliding detection window, which took about
20 s to complete. Then, we segmented the image into 12 equal-sized blocks, sliced the
corrected sequences behind each pixel in chronological order, and exported the images in
chunks year by year from the combined raster. Finally, we mosaiced the exported images
by year to produce the ultimate land use functional classification product. It took about 5 h
to export and mosaic all the images in chunks.

We selected a 10 × 10 km2 grid cell as the analysis unit to perform area segmentation
and statistics on the land use functional products and created the STCs. Before that, we
categorized the land use functions into three types: construction land, arable land, and
ecological land. The ecological land includes forest, grassland, water bodies, and bare land.

3.1.2. Change Detection Analysis Based on Mutation Points and Rules

The time series of different LU types mostly obey a certain trend and are non-stationary
series. The following method was adopted to remove the tendency of the time series.
Denote the set of all LU types as j1:v = {j1, . . . , jv}, and the set of changepoints as
T0:n = {T0, . . . , Tn}. The area of the jth class of features in the mth grid cell in year t
can be written as Sm,j

t . The trend of the series can be removed by subtracting the area Sm,j
t
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at each year t(t ∈ (T0, Tn)) from the previous year Sm,j
t−1, and then taking the logarithm of

the difference. The land area change intensity (LACI) between year t and t− 1 with LU
type j in the mth grid can be described as ym,j

t in the following equation.

ym,j
t = log

(
Sm,j

t − Sm,j
t−1 + 1

)
(1)

The reason for adding 1 to the logarithm is to avoid missing values from taking the
logarithm when the difference value of the areas is 0.

For the mth grid cell, the time series of its jth LU type can be written as
ym,j

1:n =
(

ym,j
1 , . . . , ym,j

n

)
. Assume that there are k ordered change points in this sequence,

and their position set is τ0:k = (τ0, . . . , τk+1), where k ∈ [1, n− 1], τ0 = 0, and τk+1 = n.
The k change points will divide the sequence into k + 1 segments, where the ith segment
is ym,j

(τi−1+1):τi
. Consider the minimum cost of partitioning the sequence ym,j

1:n containing k

change points as Cm,j
k,n ; then, Cm,j

k,n can be given as

Cm,j
k,n = min

τ

[
k
∑

i=0
C
(

ym,j
(τi+1):τi+1

)]
(2)

where C is a cost function for a segment, which is commonly expressed as twice the
negative log-likelihood.

A key issue in change point detection is to determine the number of change points.
When the number of change points is unknown, a penalty is usually introduced to avoid
overfitting. However, setting the same penalty for time series in different locations may
result in identifying excessive change points in some cases, and it is difficult to set the thresh-
old value independently for each sequence. Therefore, we set a fixed number of change
points and applied the SegNeigh algorithm to obtain the change points. The SegNeigh
algorithm can find the segmentation with the lowest cost among all potential segments
with the specified number of change points, and thus determine their positions [38,39].
The algorithm uses dynamic programming to search the entire segmentation space to
solve Equation (2).

In the case of construction land, we set two change points for each of its ym,j
1:n sequences.

This would divide each sequence into three segments, where the values within each
segment have similar standard deviations. To remove the cases of pseudo-change points
and to extract more typical change points, we additionally set the following rules:

(i) If both moments t and t + 1are identified as change points, only the higher absolute
value of ym

t and ym
t+1is retained as the only change point in the sequence;

(ii) If the values of the sequence do not change in all time points, all change points in the
sequence are removed.

We applied change point detection to the study area, quantitatively counted the years
in which change points occurred, and spatially determined the locations of the grid cells
identified as change points in a given year.

3.2. Spatiotemporal Pattern Mining Method Based on Spatiotemporal Cubes
3.2.1. Spatial Pattern Analysis Based on Time Series Clustering

We applied a K-medoids clustering method to mine the spatial patterns of the STCs.
K-medoids clustering is a modification of K-means and is widely used for time series
clustering. Instead of using the mean point as the center of the cluster, it uses the medoid
point present in the cluster to represent it, whose sum of distances to all other points in the
cluster is minimal. K-medoids clustering is more robust towards noise and outliers. The
Partitioning Around Medoids (PAM) algorithm uses a greedy search method for K-medoids
clustering, which is one of its most representative implementations [38]. Since the grid
cell area at the boundary of the study region may be smaller than the internal ones, direct
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calculation using the land area will cause the incomplete grid cell to present the wrong
features. Therefore, we used the land area share for the calculation. For a grid cell m with
a total area of Sm, the area of the jth type of land in its year t is noted as Sj

t; then, the
proportion of land area of this function pm,j

t is

pm,j
t =

Sj
t

Sm
t

(3)

In the measure of similarity of time series, we chose the Euclidean distance to quantify
the similarity in time, which is one of the most common distance measures for cluster-
ing time series of equal length and one-to-one mapping [39,40]. Let Fi

1:n =
(

Fi
1, . . . , Fi

n
)

denote a time series of length n; the distance dist(i, j) between it and another series
Fj

1:n =
(

Fj
1, . . . , Fj

n

)
can be described as the sum of the distances between all corresponding

data points in the two series.

dist(i, j) =
n

∑
t=1

√(
Fi

t − Fj
t

)2
(4)

Thus, multiple land use sequences in the same cluster will be as similar as possible at
each time step, which helps to efficiently identify locations with similar land use intensities.
We applied this method to three different 10 × 10 km2 grid cells that record the proportions
of areas of different land types.

3.2.2. Analysis of the Evolutionary Pattern Based on Emerging Hot Spot Analysis

Getis and Ord proposed the G∗i statistic to measure the existence of local spatial
associations between observations and their surrounding neighbors [41]. Hotspot analysis
using Getis–Ord analysis G∗i can identify regions with statistically significant clustering,
reflecting the aggregation degree of high-value areas (hot spot) or low-value areas (cold
spot) of the spatial variable over the local space [42]. We conducted Getis–Ord G∗i analysis
for each cube in two-dimensional space over a year, and then performed the Mann–Kendall
(MK) trend test on each calculated Z-score value series in the time dimension to analyze
whether there was a spatial pattern of clustering and whether it had a trend over time [43].

The formula for the calculation of G∗i is

G∗i =
∑n

j=1 wi,jxv
j −Xv ∑n

j=1 wi,j

Sv

√[
n ∑n

j=1 w2
i,j−

(
∑n

j=1 wi,j

)2
] (5)

where: i represents the central grid cell, j is the grid cell in the neighborhood of i, xv
j

represents the area of LU type v in j, wi,j is the spatial weight (i.e., spatial distance) between
feature i and j, n is the number of grid cells in the neighborhood, Xv is the mean of the
area values of type v land in the grid cell in the neighborhood, and Sv is the standard
deviation of the area values of type v land in the grid cell in the neighborhood. Xv and Sv

are calculated by the following equations.

Xv =
∑n

j=1 xv
j

n
(6)

Sv =

√
∑n

j=1

(
xv

j

)2

n −
(
Xv
)2 (7)

The MK trend test uses the data sequence order to acquire the variation trend of the
long-term data series [44]. The time series of the Z-score of the vth class of features in the
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cube m is denoted as Zm,v
1:n =

(
Zm,v

1 , . . . , Zm,v
n
)
. Then, the statistical variable Qm,v

n of the MK
test can be expressed as

Qm,v
n =

n−1
∑

k=1

n
∑

j=k+1
sgn
(

Zm,v
j − Zm,v

k

)
(8)

where:

sgn(x) =


1 if x > 0
0 if x = 0
−1 if x < 0

(9)

The variance of Qm,v
n can be written as:

VAR(Qm,v
n ) = 1

18

(
n(n− 1)(2n + 5)−

g
∑

p=1
tp
(
tp − 1

)(
2tp + 5

))
(10)

where g is the number of sets with the same variable value, and tp refers to the number of
data points within the pth set.

Based on the hotspot Z scores Zm,v
1:n and the MK trend test statistic Qm,v

n at different loca-
tions, the hot/cold spots in the study area can be further classified into up to 17 categories
according to [43]. Some LU categories may only contain part of the hot/cold spot types
based on the change rules of their land functions. We applied this method to three different
10 × 10 km2 grid cells that recorded areas of different land types.

4. Results and Discussion
4.1. Results
4.1.1. Long Term Time Series Land Use Classification and Change Detection Results in the
Bohai Sea Region

After the initial classification and spatiotemporal consistency correction of the long-
term time series images, we obtained the ultimate LU functional classification products
of the Bohai Sea region (Figure 3). The ultimate classification products achieved high
classification accuracy with an average overall accuracy of 95.81% and an average kappa
coefficient of 0.94 after evaluation. It is evident that cropland, forest land, and impervious
land are the main functional types in the region, and the percentages of these functional
lands in 2020 were 47.83%, 23.18%, and 9.77%, which are consistent with the main char-
acteristics of the vast coastal plain area. As is shown by Figure 4, the land types with the
most significant changes in the Bohai Rim are cropland, bare land, and forest land. Among
them, the conversion of cropland to impervious land is the main type of land use change,
with an amount of 39,500 km2 (14.08% of the total change area), reflecting the significant
impact of urbanization and industrialization. The impervious land transformed from
cropland is mainly distributed in central cities such as Beijing, Tianjin, Shenyang, Jinan,
and Shijiazhuang; regional central cities such as Zibo, Weifang, and Linyi; and around
coastal port cities such as Dalian, Qingdao, and Yantai. This is followed in turn by the
transformation of bare land to grassland and cropland to forest land, the figures of which
are 18,800 km2 (6.70%) and 16,800 km2 (6.00%), respectively.

Figure 5 shows the change point detection result for construction land under the
10 × 10 km2 grid cell. We calculated the LACI series of construction land for each STC and
adopted the SegNeigh algorithm to divide the time series into segments. It is evident from
the line graphs that the values in each segment share a similar standard deviation, and the
change points are defined as the time step between two segments. The segment bounds
indicate two segment standard deviations above and below the global mean with shading,
and the global bounds are referred to as two global standard deviations above and below
the global mean. It was found that in some ecological areas (Figure 5(1,11)), the LACI of
construction land remained at a low value in the early years, and the change points were
identified around 2014, reflecting the impact of human activities on the environment. For
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some inland areas (Figure 5(2–6)), the standard deviation is higher than other stages, which
represents the huge impact of urban expansion in this period. In addition, the starting times
of urban expansion in different regions are different. This pattern is also well reflected in
coastal regions (Figure 5(8,9)). Only part of the situation is listed here. In the vast research
area, human activities present diverse patterns of change; therefore, the urban expansion
process may be different from the typical pattern mentioned above (Figure 5(7,10)).
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By calculating the year-by-year increase or decrease in the total number of change
points, we found that the increases in 2004 and 2014 reached 4.67 times and 11 times
higher than that of last year, respectively, which are more significant than other years.
These two years are important mutation nodes and split the change of construction land
into three stages during the 31 years: 1990–2003, 2004–2013, and 2014–2020 (Figure 5(12)).
During 1990–2003, the number of change points of construction land in the Bohai Sea
region was fluctuating, and the overall trend of change was first to increase and then to
decrease. However, the average annual number of change grid cells and the average annual
increment of construction land were at low levels, 25.3 and 666.61 km2, respectively, and
the average annual new construction land per change grid cell was 26.34 km2, which was
much lower than the last two stages. The number of change grid cells of construction land
increased in the second stage and showed a fluctuating upward trend. In addition, the
average annual new construction land per change grid cell also reached 34.47 km2, an
increase of 30.84% compared with the previous stage, which reflects a significant increase in
the rate of urban expansion in the second stage. In the third stage, except for a surge in the
number of change grid cells in 2018, the overall number of change grid cells of construction
land showed a decreasing trend, while the average annual increment of construction land
per change grid cell was 39.47 km2, a slight increase relative to the second stage.

4.1.2. Results of Spatiotemporal Pattern Evolution in the Bohai Rim

To identify the spatiotemporal divergence patterns of construction land, arable land,
and ecological land in the Bohai Rim, we conducted time-series clustering and emerg-
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ing hot spot analyses on construction land, arable land, and ecological land under two
10 × 10 km2 grid cells (Figure 6). In the results of the time-series clustering, red (Class I)
represents the highest proportion of the corresponding land in the grid cell, followed by
orange (Class II) and yellow (Class III), while blue (Class V) indicates the smallest propor-
tion of the land. The percentage of construction land can precisely reflect the development
intensity, which can be divided into five categories from high to low: strong (Class I),
moderately strong (Class II), medium (Class III), moderately weak (Class IV), and weak
(Class V) (Figure 6a). Combined with the line graph of the changes of each type, it is evident
that the proportion of construction land shows an increasing trend, among which the more
drastic expansion is in the two categories of strong and stronger development grade, and
the development intensity of the two categories increased from 37.03% and 14.26% in 1990
to 75.33% and 52.81%, respectively, with an average annual growth rate of more than 1%.
These two categories correspond to the main urban areas of each city in terms of spatial
distribution, while the yellow (Class III) grid cell with a medium development intensity
represents the expansion areas around the prefecture-level cities, and its growth rate is
only next to the first two categories, with an average annual growth rate of 0.81%. Arable
land, on the other hand, shows an almost opposite spatial and temporal evolution pattern,
with an overall decreasing trend, the largest decrease being in Class I and Class II, from
95.04% and 79.09% to 82.68% and 57.31%, respectively. Compared with arable land and
construction land, the changes in each classification of ecological land were relatively small
and showed an overall upward trend.
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c) are the results of time-series clustering of construction land, arable land, and ecological land 
Figure 6. Spatial and temporal evolution patterns of land use functions in the Bohai Sea region:
(a–c) are the results of time-series clustering of construction land, arable land, and ecological land
under the 10 × 10 km2 grid cell, respectively; (d–f) are the results of emerging hot spot analysis of
construction land, arable land, and ecological land under the 10 × 10 km2 grid cell, respectively.

Based on the clustering results, we can distinguish the spatial pattern of urban areas
in the Bohai Rim as a whole. Overall, it can be divided into three zones: the Beijing-Tianjin-
Hebei region, Shandong Peninsula, and Liaodong Peninsula. The Beijing-Tianjin-Hebei
region has formed an urban cluster pattern with Beijing and Tianjin as the growth poles
and Tangshan as the sub-center, which is echoed by Shijiazhuang in the south of Hebei
Province, forming an urban contiguous area. The Shandong Peninsula has formed two
city clusters: a coastal belt city cluster with Qingdao as the core, and a provincial capital
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city cluster with Jinan at its center. The Liaodong Peninsula, on the other hand, forms
the Shenyang–Dalian town development axis with Shenyang and Dalian as the core, but
in terms of the grid cells with strong and moderately strong development levels, the
urban development intensity of the Liaodong Peninsula is slightly lower than that of the
Shandong Peninsula and the Beijing-Tianjin-Hebei region. In addition, it is evident from
Figure 6a that the distribution of urban clusters in the Beijing-Tianjin-Hebei region and
Shandong Peninsula has been transformed from scattered and isolated islands to more
closely connected urban contiguous areas, while Liaodong Peninsula is still in a relatively
independent state, and its construction land distribution in space is not connected with the
Beijing-Tianjin-Hebei region.

The emerging hotspot analysis further demonstrates the pattern revealed by time-
series clustering. The dominant hot spot of arable land (Figure 6b) is the Diminishing
Hot Spot, which reflects the decreasing clustering intensity of the land categories in the
grid cell; the dominant hot spot of ecological land (Figure 6c), which is distributed in the
northern part of Beijing-Tianjin-Hebei and the eastern part of Liaodong Peninsula, is the
Intensifying Hot Spot. It demonstrates that the clustering intensity and area of ecological
land in this region are increasing. The hot spots of construction land are mainly located in
the southeastern part of Beijing-Tianjin-Hebei and the northern part of Shandong Peninsula,
which appear as an Intensifying Hot Spot in the main urban area and a Continuous Hot
Spot in the periphery. These two types of hotspots also form a good match with the
clustering results in categories I and II, which indicates that the development intensity level
of urban contiguous areas in the Beijing-Tianjin-Hebei region and Shandong Peninsula is
not only high but was also in an increasing state during the period from 1990 to 2020. The
dense hot spots distributed in the central Liaodong Peninsula and southwestern Shandong
Province reflect that the clustering intensity of construction land in this region has been
fluctuating and the regional urban development is uneven. These are in agreement with
the characteristics of the time-series clustering results. However, some hot/cold spots
could reveal a more detailed evolutionary pattern in spatial terms in some cases. The
clusters from the time-series clustering results may show more diverse high and low value
aggregation characteristics in the corresponding hot/cold spot analysis results, such as
the continuous ecological land low value (Class V) area in the middle of the Bohai Sea
region, and this low value class is further subdivided into three different types of cold
spots, especially in the western part near Shijiazhuang, which shows an aggregation of
Persistent Cold Spots and indicates that the ecological land area has a sustained and stable
low value level. In conclusion, the emerging hot spot analysis can further complement the
fine features of the spatiotemporal pattern.

4.2. Discussion

The STC-based spatiotemporal pattern mining method proposed in this study relies
on high classification accuracy and suitably sized grid cells. Previously, the classification of
long time-series images tended to ignore the logical consistency of LU evolution among
different years. This logical consistency includes not only the similarity in spatial neighbor-
hoods, but also the stability of functional land in time, such as the difficulty of transforming
construction land into other types of land. In this study, a bi-directional spatiotemporal
consistency detection method was adopted according to the characteristics of a contiguous
area with large cities, and the years with a higher overall accuracy were used as the starting
and ending points of correction to improve the classification accuracy. The average overall
accuracy of the initial classification product is 93.58%, and the counterpart reaches 95.81%
after correction, indicating a significant increase of 2.23%. This method was better validated
in years with a lower classification accuracy. In five of these years, the overall accuracy
improved by over 4%, and this figure further improved by over 3% in more than 1/3 of
the period.

We compared the classification quality of our data product with an existing China
Land Cover Dataset (CLCD) [45]. We reclassified the shrub land and wetland in the CLCD
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into forest land and bare land, respectively, to unify the classification system. Then, we
used the same sample set for an accuracy evaluation, which found that the average overall
accuracy of our corrected data product is about 24.11% higher than that of CLCD, which
is a significant increase. Among them, the classification quality of grassland and bare
land is significantly better than that of the CLCD, and the accuracy of impervious land
and water is also higher in all years. On the one hand, we selected a large amount of
high-quality sample points, which were extremely important in the classification process.
On the other hand, our classifier pays more attention to the local features of the Bohai Sea
region, gaining higher accuracy at the cost of universality. What is noteworthy is that the
impacts caused by classification errors in long-term time series change detection are often
exponentially cumulative. Therefore, this degree of accuracy improvement is necessary for
the subsequent spatiotemporal pattern mining process.

The existence of classification errors at different time nodes with the non-smooth char-
acteristics of different feature time series changes seriously affects the accurate extraction
of change points and the recognition of spatial pattern changes. The larger the amount of
data, the harder it is to extract the spatiotemporal change features of large regional changes,
especially when abstracting the overall pattern of spatial structures. In this process, it
is necessary to select appropriate spatial analysis units. This can reduce the influence of
classification errors on the one hand and can help to identify the global pattern of spatial
structure evolution on the other. After the experiments, we found that a 10 × 10 km2

grid cell is a moderate and typical research scale that can capture both the local details of
changes and the trends of changes from a global perspective. In addition, we adopted the
approach of merging LU classes, such as merging forest, grassland, water, and bare land
into ecological land, which weakened the influence of the lower classification accuracy of
some LU types to a certain extent.

This study explores the advantages and disadvantages of both the time-series cluster-
ing and emerging hotspot analysis methods for identifying spatiotemporal patterns. The
time-series clustering method takes a global perspective to match similar patterns in the
time series of a certain attribute among all STCs in the region. This method is spatially
independent in the process of clustering, without spatial information such as proximity or
distance. Therefore, the similarity computed among different regions depends solely on
the time series behind them. Compared with time-series clustering, the emerging hot spot
analysis additionally considers spatial information. It can capture the similarity degree
between an STC and its neighbors in two dimensions, revealing the spatial dependence in
an area. It focuses on the question of whether there is a significant agglomeration of land
use patterns at a local scale. The calculated temporal trends in emerging hot spot analysis
are also different from those of time-series clustering. The temporal trend reflected by
the emerging hot spot analysis entails the statistical significance of spatial agglomeration,
rather than land use intensity. In contrast, time-series clustering can directly provide the
refined change curve behind each cluster and quantitatively show the detailed figures
over time.

We conducted multiple sets of experiments based on data characteristics from previous
studies and tried different numbers of clusters to test the robustness of the algorithm. We
found that the results of clustering for each type of land showed similar trends in overall
variation, differing only by orders of magnitude. In the process of land use occupancy in
the range of 0–1, setting the number of clusters to five has been sufficient to clearly and
comprehensively show the spatial and temporal evolution pattern of the study area, and
can effectively identify functional areas such as ecologically fragile areas (cluster 1 and
cluster 4 in Figure 6c), rapidly expanding urban areas (cluster 4 and cluster 5 in Figure 6a),
and key loss areas of arable land (cluster 3 in Figure 6b). In terms of time-series similarity
measurement, besides using Euclidean distance to identify similarity in time, there is
another commonly used metric to identify similarity in shape using the DTW (Dynamic
Time Warping) distance or statistical correlation. These methods enable us to cluster time
series with similar patterns of change and to identify regions with anomalous change
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locally. In the grid cells selected for this study, the trends of the three LU functions did not
differ significantly; therefore, we did not consider identifying the similarity in shape with
this metric.

5. Conclusions

Long-term time series remote sensing data facilitate the understanding and monitoring
of large-scale surface LU patterns over time. This study not only obtains a long-term time
series LU classification product in the contiguous area of large coastal cities with the help
of the GEE platform but also explores the spatiotemporal evolution pattern behind it. We
found that the LU functions in the Bohai Sea region have changed dramatically in the past
30 years. We delineated three different developmental stages by extracting the change
points, and the divergence of each stage is significant. With the help of the time series
clustering method and the emerging hot spot analysis method, we uncovered the spatial
pattern evolution characteristics implied in the LU classification product, including the
global evolution characteristics and local spatial correlation characteristics. The accurate
identification of a spatiotemporal pattern depends not only on the classification accuracy
but also on the size of the segmented grid cells. Overall, the methods adopted in this
study offer great potential towards understanding the processes and mechanisms of the
generation and evolution of the contiguous area of large coastal cities, which can provide a
fresh perspective for regional macroscopic decision analysis.
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