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Abstract: Infrared small-target detection has widespread influences on anti-missile warning, precise 

weapon guidance, infrared stealth and anti-stealth, military reconnaissance, and other national de-

fense fields. However, small targets are easily submerged in background clutter noise and have 

fewer pixels and shape features. Furthermore, random target positions and irregular motion can 

lead to target detection being carried out in the whole space–time domain. This could result in a 

large amount of calculation, and the accuracy and real-time performance are difficult to be guaran-

teed. Therefore, infrared small-target detection is still a challenging and far-reaching research 

hotspot. To solve the above problem, a novel multimodal feature fusion network (MFFN) is pro-

posed, based on morphological characteristics, infrared radiation, and motion characteristics, which 

could compensate for the deficiency in the description of single modal characteristics of small tar-

gets and improve the recognition precision. Our innovations introduced in the paper are addressed 

in the following three aspects: Firstly, in the morphological domain, we propose a network with the 

skip-connected feature pyramid network (SCFPN) and dilated convolutional block attention mod-

ule integrated with Resblock (DAMR) introduced to the backbone, which is designed to improve 

the feature extraction ability for infrared small targets. Secondly, in the radiation characteristic do-

main, we propose a prediction model of atmospheric transmittance based on deep neural networks 

(DNNs), which predicts the atmospheric transmittance effectively without being limited by the 

complex environment to improve the measurement accuracy of radiation characteristics. Finally, 

the dilated convolutional-network-based bidirectional encoder representation from a transformers 

(DC-BERT) structure combined with an attention mechanism is proposed for the feature extraction 

of radiation and motion characteristics. Finally, experiments on our self-established optoelectronic 

equipment detected dataset (OEDD) show that our method is superior to eight state-of-the-art al-

gorithms in terms of the accuracy and robustness of infrared small-target detection. The compara-

tive experimental results of four kinds of target sequences indicate that the average recognition rate 

Pavg is 92.64%, the mean average precision (mAP) is 92.01%, and the F1 score is 90.52%. 

Keywords: infrared small-target detection; radiation characteristics; multimodal feature fusion 

 

1. Introduction 

As key technology in cross-boundary and high-precision conflicts and other national 

defense fields, infrared thermal imaging technology has advantages over passive detec-

tion, such as round-the-clock activity and high reliability. Infrared target detection is still 

one of the most popular research hotspots in military reconnaissance fields. Currently, 

most infrared small-target detection algorithms are based on a single morphological fea-

ture. These low-contrast targets have fewer pixels and lack shape and structure features; 
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however, they are usually interfered with and submerged in the relatively strong back-

ground clutter and noise. It is difficult to meet the performance index of detection accu-

racy. Therefore, breakthroughs in infrared small-target detection are still an arduous and 

important scientific research task. The research findings could be widely applied in anti-

missile warning, precise weapon guidance, missile tracking, and stealth aircraft identifi-

cation systems. 

Target detection algorithms based on deep learning can be divided into two catego-

ries: Detection methods based on region extraction, and detection methods based on re-

gression [1]. The method based on region extraction represented by a region convolutional 

neural network (R-CNN) [2], spatial pyramid pooling network (SPPNet) [3,4], fast R-CNN 

[5], faster R-CNN [6,7], (region-based fully convolutional network) RFCN [8,9], mask R-

CNN [10,11], and cascade R-CNN [12,13] is also called the two-stage detection method. 

The method based on regression represented by you only look once (YOLO) [14,15], the 

single shot multi-box detector (SSD) [16], RetinaNet [17,18], CornerNet [19,20], and Effi-

cientDet [21,22] is also called the one-stage detection method. Firstly, the two-stage detec-

tion method extracts the region proposals, and then classifies and predicts the locations 

of the region proposals by regression. The one-stage detection method regards the whole 

image to be detected as one region proposal and directly inputs it into the convolutional 

neural network to regress the target position and classification of the image [23]. Deep 

convolution neural networks (DCNNs) use more convolution layers and parameters to fit 

large-scale datasets. These networks use many technical methods of modern deep convo-

lution neural networks for the first time, including the Relu nonlinear activation function, 

a dropout mechanism that could prevent overfitting, and a data augmentation mechanism 

to improve model accuracy. R-CNN draws lessons from the sliding window concept. 

Firstly, approximately 2000 region proposals are extracted from a given image. For each 

region, a fixed-length feature vector is extracted by a convolutional neural network. Fi-

nally, each extracted region is classified by support vector machines (SVMs). The regional 

scores are adjusted and filtered by bounding box regression and non-maximum suppres-

sion (NMS), and location regression is carried out in the fully connected network. The 

mAP on the general target detection dataset VOC2007 is 58.5%. The performance of R-

CNNs has been improved compared with the traditional target detection algorithm, but 

the training and testing speed is slow, and the real-time performance is hard to ensure. 

He et al. proposed a SPPNet network in which the problem of the input fixed-size image 

was solved, and the accuracy of the benchmark detection model was improved. SPPNet 

is 24~102 times faster than the R-CNN method, while achieving better or comparable ac-

curacy on Pascal VOC 2007 [3]. Girshick et al. proposed a fast R-CNN network in which 

the region of interest (ROI) pooling layer was used to optimize regional feature selection. 

The fast R-CNN trains the very deep VGG-16 network 9 times faster than R-CNN, is 213 

times faster at test-time, and achieves a higher mAP on PASCAL VOC 2012 [5]. Ren et al. 

proposed a faster R-CNN [6] network in which a regional proposal network (RPN) is in-

troduced to replace the selective search algorithm that hinders the improvement of accu-

racy. In the framework of faster R-CNN, the convolution features of all images are shared 

in the whole detection process. RPN improves the detection speed by simultaneously pre-

dicting the bounding box and category confidence at each location. The faster R-CNN 

consists of four parts: The convolution layer, RPN network, ROI pooling layer, and clas-

sification and regression layer. The faster R-CNN, which takes VGG-16 as the backbone 

network, achieved a mAP of 73.2% on the Pascal VOC 2007 dataset. Nevertheless, there 

are still several problems, such as its unsuitability for small-target detection and limita-

tions of the detection speed and accuracy. Dai et al. proposed an RFCN network in which 

a position-sensitive score graph was used to reduce the translation invariance of objects. 

RFCN achieved a competitive mAP of 83.6% and a test-time speed of 170 ms per image 

on the PASCAL VOC datasets with the 101-layer ResNet [8]. He et al. proposed a mask R-

CNN network in which bilinear interpolation was used to fill in the pixels on non-integer 

positions to improve the accuracy of target detection. Mask R-CNN extends the faster R-
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CNN by adding a branch for predicting an object mask in parallel with the existing branch 

for bounding box recognition. It is simple to train and adds only a small overhead to the 

faster R-CNN, running at 5 fps [10]. Cai. et al. proposed a cascade R-CNN network, which 

consisted of a sequence of detectors trained with increasing IoU thresholds, to be sequen-

tially more selective against close false positives. The average precision performance from 

multiple popular detectors to the cascade R-CNN is improved by 2% to 4% [12]. 

Liu et al. proposed an SSD algorithm to balance the detection accuracy and speed. 

SSD takes VGG-16 as the backbone network for feature extraction. With the hierarchical 

feature extraction idea, SSD divides the single-level network into six levels and extracts 

feature maps of different semantic levels in each stage for target classification and bound-

ing box regression. The combination of a multi-scale feature map and anchor mechanism 

improves the detection ability of the algorithm for targets with different scales. In addi-

tion, according to the bounding boxes obtained by anchors on different scales, SSD adopts 

the prediction mechanism to distinguish the classification and location of the target. Alt-

hough the Map of SSD on the VOC2007 dataset reaches 79.8%, it is not ideal for the iden-

tification of small targets. Redmon et al. proposed a single-stage target detector called 

YOLO. The YOLO architecture consists of 24 convolution layers and 2 fully connected 

(FC) layers. The feature map of the top level is used for the bounding box prediction, 

which directly estimates the probability of each category. In the YOLO framework, each 

image is divided into an S × S grid cell, which is only responsible for predicting the target 

of the grid center. Feature extraction, classification, and regression are imputed into one 

convolutional network for simplification, in which the generation stage of the region pro-

posal is omitted. However, it is easy to miss detections in the overlapping occlusion envi-

ronment in the YOLO algorithm, and it is not fully applicable to small-target detection. 

Redmon et al. then developed the YOLO v3 [24] network, in which a deeper Darknet-53 

residual network combined with a feature pyramid network (FPN) is used for feature ex-

traction, and a feature map with three scales is used to predict the bounding box with the 

number of anchors increasing at the same time. The multi-scale prediction mechanism 

significantly improves the detection performance of small targets. The map of the YOLO 

v3 framework was 57.9% on the COCO dataset. Bochkovskiy et al. proposed the YOLO 

v4 [25] framework, in which a CSPDarkNet-53 backbone network is adopted instead of 

DarkNet-53. Spatial pyramid pooling and path aggregation network (SPP + PAN) are used 

instead of FPN so as to fuse the feature information of feature maps of different sizes. The 

SPP module adds the receptive fields, and the PAN module performs multi-channel fea-

ture fusion. The mosaic data augmentation mechanism and DropBlock regularization are 

adopted. Compared with YOLO v3, the YOLO v4 framework not only ensures the perfor-

mance of speed, but also greatly improves the detection accuracy of targets. However, the 

YOLO series detectors have poor accuracy performance on small targets due to the influ-

ence of space constraints in bounding box prediction. Lin et al. proposed a RetinaNet net-

work in which a novel focal loss was proposed to address the class imbalance. Compared 

to recent two-stage methods, RetinaNet achieves a 2.3-point gap above the top-perform-

ing Faster R-CNN [17]. Law et al. proposed a CornerNet network in which we detected 

an object bounding box as a pair of keypoints, the top-left corner and the bottom-right 

corner, using a single convolution neural network. CornerNet achieves a 42.2% AP on MS 

COCO [19]. Tan et al. proposed EfficientDet in which a weighted bi-directional feature 

pyramid network was proposed to allow easy and fast multi-scale feature fusion. It 

achieves state-of-the-art 52.2 AP on COCO test-dev with 52 M parameters and 325B 

FLOPs, being 4~9 times smaller and using 13~42 times fewer FLOPs than the previous 

detector [21]. 

Although target detection based on convolutional neural networks has made great 

progress compared with traditional target detection, most of the above target detection 

algorithms are suitable for area targets and are not fully applicable to the detection of 

small targets. The research on small-target detection is still challenging in the field of com-

puter vision. The detection is disadvantaged due to the low resolution, blurred image, less 
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information, weak feature expression ability, and fewer extracted features of small targets. 

In the local contrast measure (LCM) method, target signal enhancement and background 

clutter suppression are achieved simultaneously [26]. Infrared small-target detection is 

realized by the gray difference between the small target and the surrounding background. 

We introduce the concept of contrast to quantitatively describe the gray difference. When 

the maximum gray value of the central cell is divided by the mean gray value of the ith 

surrounding cell, the quotient is obtained, which is called the contrast. If the contrast is 

larger than 1, the central cell is more likely to be the target. Additionally, the target signal 

enhancement is achieved by replacing the gray value of the central cell with the product 

of the contrast and the maximum gray value of it. CLP Chen et al. presented the local 

contrast measure method to enhance the targets. The experimental results show that this 

method significantly outperforms the conventional methods of top-hat and the average 

gray absolute difference maximum map (AGADMM), with a detection rate of 86.67%. It 

is not only simple but also suitable for infrared small-target detection. Yimian Dai et al. 

presented attentional local contrast networks (ALCNets) for infrared small-target detec-

tion, which modularizes this method as a depthwise, parameterless, nonlinear feature re-

finement layer in an end-to-end network, in which bottom-up attentional modulation is 

exploited, integrating the subtle smaller-scale details of low-level features into high-level 

features of deeper layers [27]. The ALCNet outperforms the other 10 state-of-the-art meth-

ods, with an IoU of 0.757 and nIoU of 0.728 for the SIRST dataset. In the sparse and low-

rank recovery method, an image is decomposed into a low-rank matrix, representing the 

background, and a sparse matrix, indicating the target region. The augmented Lagrange 

method (ALM) and alternating direction multiplier method (ADMM) are used for solving 

this model. Hu Zhu et al. presented a target detection method based on low-rank tensor 

completion with the top-hat regularization (TCTHR) model [28] for infrared small-target 

detection based on low-rank tensor completion and ring top-hat regularization, which can 

be solved efficiently using ADMM. This model has achieved better infrared small-target 

detection performance than classic methods, with a high mean accuracy level of 93.4% 

and a low false alarm rate of 3.2% in seven experimental real image sequences. Yujie He 

et al. presented a low-rank and sparse representation model, named LRSR, for infrared 

small-target detection, which transforms the detection task into a separation process of 

background, noise, and target components by solving LRSR [29]. This presented method 

has yielded a high detection rate of 91% in 1063 experimental original sequences. 

According to the characteristics of small targets, multi-scale prediction is usually 

adopted in small-target detection. Small targets are detected using low-level features or 

amplified high-level features through up-sampling and deconvolution and fused with 

low-level features. Generative adversarial networks (GANs) [30] are used for data aug-

mentation of the original samples and quality improvements for small targets. However, 

these methods are not independent of each other. One or multiple methods can be used 

in one algorithm to improve the performance of small-target detection. Huaichao Wang 

et al. proposed a detection method based on fully convolutional networks in spatial and 

graph matching in temporal small-target detection [31]. This method can detect small tar-

gets from complex moving backgrounds with high precision and a low false-alarm rate. 

Moran Ju et al. presented an efficient network for real-time small-target detection with a 

scale-matching strategy introduced to select suitable scales and anchor size and an adap-

tive receptive field fusion module added to increase the context information [32]. The 

comparative results indicate that this method achieves 74.5% Map at 50.0 fps on VEDAI 

dataset and 45.7% Map at 51.1 fps on a small-target dataset. Jinming Du et al. proposed 

an interframe energy accumulation enhancement mechanism-based end-to-end spatial–

temporal feature extraction and target detection framework [33]. This method could ef-

fectively detect small targets by enhancing the target’s energy and suppressing the strong 

spatially nonstationary clutter. Qingyu Hou et al. proposed an infrared small-target de-

tection U-net (ISTDU-Net), which not only introduces feature map groups in network 

down-sampling and enhances the weights of small-target feature-map groups but also 
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introduces a fully connected layer in jump connection to suppress backgrounds with sim-

ilar structures [34]. The infrared small targets under a complex background are detected 

with a low false alarm rate, and the area under curve (AUC) value is 0.9977.  

It is extremely difficult to detect infrared small targets that are seriously submerged 

in background clutter and noise due to the low resolution, blurred image, less infor-

mation, weak feature expression ability, and fewer extracted features. Otherwise, the per-

formance of infrared small-target detection would be greatly influential. Research on 

small-target detection is still a challenge. The abovementioned small-target detection 

methods focus on how to obtain more and deeper morphological feature information. 

However, infrared small targets lack shape features, and they are too dim to be detected 

only by morphological features. To solve the above problem, a novel multimodal feature 

fusion network (MFFN) is proposed based on the morphological characteristics, infrared 

radiation, and motion characteristics, which could compensate for the deficiency of the 

description of single modal characteristics of infrared small targets. In our framework, a 

novel backbone network is proposed to enhance the feature extraction ability of infrared 

small targets with weak intensity and low contrast. In addition, we propose a prediction 

model of atmospheric transmittance based on deep neural networks (DNNs) in the radi-

ation characteristic domain. The overall flow chart of the model we proposed for infrared 

small-target detection is shown in Figure 1. 

Infrared radiation 
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 ...

 ...

Image sequences

Motion 
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 ...

 ...

Concat

1. Data 
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environment 
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 ...

0. Radiation 
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Prediction
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radiation  
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Motion  
features
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Figure 1. Overall flow chart of the infrared small-target detection method we proposed. This frame-

work consists of a radiation characteristics prediction network, a data preprocessing network, a fea-

ture extraction network, and a feature fusion and classification network. The detection result con-

tains the classification and localization of the targets. 

The main contributions of our work are summarized as follows: 

 A multimodal feature fusion network (MFFN) is proposed based on morphological 

characteristics, infrared radiation, and motion characteristics. 

 In the morphological domain, we propose a network with the skip-connected feature 

pyramid network (SCFPN), in which, through the fusion of small-target features and 

context multi-scale features, the missed detection rate of small targets is reduced and 

the detection accuracy is improved. 
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 In the radiation characteristic domain, we propose a prediction model of atmospheric 

transmittance based on a DNN. Through radiation characteristic inversion and at-

mospheric transmission correction, the infrared radiation intensity of the target itself 

is obtained. The atmospheric transmittance is predicted effectively without being 

limited by the complex environment and improves the accuracy of radiation charac-

teristic measurements. 

 A dilated convolutional-neural-network-based bidirectional encoder representation 

from transformers (DC-BERT) structure combined with an attention mechanism is 

proposed for the feature extraction of radiation and motion characteristics. 

 We produce a new engineering medium-sized infrared dataset for small targets and 

verify our method on it. The experimental results on our private dataset and other 

general datasets show that our method is superior to the state-of-the-art algorithms 

in obtaining the mean average precision (Map). 

The rest of this article is organized as follows. In Section 2, we elaborate on the pro-

posed framework in detail. The results of the ablation study and performance comparison 

experiments carried out on our private self-established dataset to verify the effectiveness 

of our network are presented in Section 3. In Section 4, the discussions of our proposed 

improvements are provided in a broader context. Finally, we summarize the research con-

tent, and the conclusions are drawn in Section 5. 

2. Data and Methods 

2.1. Dataset 

Based on the target characteristic database accumulated by our research group in air 

defense and antimissile experiments over the past ten years, we have developed an engi-

neering medium-sized dataset, called the optoelectronic-equipment-detected dataset 

(OEDD), for performance evaluation experiments on four categories of small-target de-

tections: Large and medium aircraft, small aircraft, floating balls, and birds. Partial images 

of the four categories of targets are shown in Figure 2, in which the red boxes indicate the 

locations of the targets. Each frame of the images has corresponding measurement data, 

which include the radiation intensity, speed, acceleration, longitude, latitude, elevation, 

distance, azimuth, and pitch angle of the targets. The dataset samples, which totaled 

20,673, are composed of two parts: Image data and measurement data. Among them, the 

number of each category of targets is approximately 5000, and the input image resolution 

is 640 × 512 with an 8-bit depth of each pixel. In order to ensure the balance and diversity 

of the samples, the single variable factor method is used to select the small-target images 

and the corresponding measurement sequences under different sky backgrounds (such as 

cloud or no cloud and target with or without occlusion), different weather, different target 

positions, and different time conditions. The pixels of most targets in the sample images 

are not more than 15 × 15, and there are also some point-target samples whose pixels are 

less than 9 × 9. The OEDD is used for training, validation, and testing. The dataset propor-

tion of the training set, verification set, and testing set is 7:2:1. 
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(a) 

   

(b) 

   

(c) 

   

(d) 

Figure 2. Some infrared images in our infrared small-target OEDD. (a) Large and medium aircraft; 

(b) small aircraft; (c) floating ball; (d) birds. 

2.2. Data Preprocessing 

For the private multi-source infrared small-target dataset, data preprocessing in-

cludes Two parts: (1) Original data augmentation and (2) original image denoise. 
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Due to the imbalance in the number of samples and the large similarity of samples in 

each category in the original characteristic database obtained in years of experiments, it is 

necessary to enhance the original data by means of data augmentation to generate similar 

but different sample data to expand the size of the dataset in order to reduce the depend-

ence on the original samples and improve the generalization capability of the model in 

the training process. The enhancement of multidimensional original data of small targets 

collected by our infrared optical equipment includes image data augmentation and radi-

ation characteristic data augmentation. The original image data augmentation adopts the 

mosaic data augmentation mechanism to enrich the background and small targets of the 

detected object by randomly cutting, flipping, translating, and modifying the brightness 

of the original image. 

Referring to the relatively complete measured radiation data of the targets, the time-

sequential variation curve of radiation intensity is simulated. In order to ensure complete-

ness and consistency with the actual data, the cubic spline interpolation matching method 

is used to add additive Gaussian white noise to the target radiation simulation infor-

mation. The formula is as follows: 

�(�) =  
1

√2��
�

�
��

��� 

��~�(�, �), � = 0 

�� = �� + �� 

(1)

The simulation data are obtained according to the established procedure, but the real 

data are affected by many uncertain factors. The noise is introduced to make the simula-

tion data closer to the truth. The simplest additive Gaussian white noise added to this 

additive and independent noise model is only one of the numerous kinds of noise; thus, 

it would lead to potential weaknesses and problems of undermining the authenticity of 

the original data. Here, we added the Rayleigh noise, Gamma noise, exponential noise, 

and impulse noise to this simulation experiment. The probability density functions of the 

above four kinds of noise are listed sequentially in Equation (2) to Equation (5). 
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The standard deviation values expressed with the mathematical symbol σ are used 

to illustrate the dispersion of the simulation data compared with the true values. The 

standard deviations of the simulation data of the four kinds of targets in our dataset are 

shown in Table 1. We conducted six groups of simulation experiments on each kind of 
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target and obtained σ1s-σ6s for the above five types of noise. Notably, radiation character-

istic data obtained from the actual measurements are regarded as the true values to com-

pute the following standard deviations.  

Table 1. The standard deviations of the simulation data of the four kinds of targets into which the 

five mentioned types of noise are added. 

Target Types of Simulation Data Types of the Noise σ1 (%) σ2 (%) σ3 (%) σ4 (%) σ5 (%) σ6 (%) 
Average 

σ (%) 

Large and medium aircraft 

Gaussian white noise 3.17 3.16 3.19 3.17 3.21 3.20 3.183 

Rayleigh noise 3.23 3.18 3.20 3.22 3.17 3.17 3.195 

Gamma noise 3.21 3.19 3.22 3.21 3.18 3.20 3.202 

Exponential noise 3.17 3.19 3.18 3.20 3.21 3.18 3.188 

Impulse noise  3.22 3.21 3.19 3.20 3.19 3.22 3.205 

Small aircraft 

Gaussian white noise 3.24 3.23 3.222 3.25 3.21 3.26 3.235 

Rayleigh noise 3.25 3.26 3.23 3.24 3.22 3.28 3.247 

Gamma noise 3.22 3.23 3.25 3.22 3.23 3.24 3.232 

Exponential noise 3.24 3.25 3.24 3.28 3.22 3.21 3.240 

Impulse noise  3.26 3.27 3.25 3.24 3.23 3.24 3.248 

Floating ball 

Gaussian white noise 3.44 3.43 3.41 3.42 3.41 3.42 3.422 

Rayleigh noise 3.46 3.48 3.47 3.45 3.5 3.49 3.475 

Gamma noise 3.46 3.44 3.47 3.43 3.45 3.48 3.455 

Exponential noise 3.47 3.46 3.48 3.44 3.43 3.49 3.462 

Impulse noise  3.51 3.49 3.50 3.48 3.47 3.47 3.487 

Birds 

Gaussian white noise 3.20 3.23 3.22 3.19 3.24 3.21 3.215 

Rayleigh noise 3.24 3.25 3.2 3.22 3.23 3.26 3.233 

Gamma noise 3.24 3.21 3.25 3.25 3.23 3.27 3.242 

Exponential noise 3.28 3.25 3.24 3.26 3.24 3.25 3.253 

Impulse noise  3.27 3.28 3.25 3.26 3.24 3.27 3.262 

The optimal standard deviation of each kind of target is marked in bold. 

From Table 1, we can see that the average standard deviations in the Gaussian white 

noise model of the three kinds of targets, i.e., the large and medium aircraft, floating balls, 

and the birds, are superior to the other four noise models, with values of 3.183%, 3.422%, 

and 3.215%, respectively. In addition, the average standard deviation of the Gaussian 

white noise model of the small aircraft is 3.235%, which is only 0.09% lower than that of 

the Gamma noise model. Finally, we can draw the conclusion that the obtained radiation 

characteristic data with added Gaussian white noise are closer to the true data. In this 

way, the robustness of the original data augmentation is improved. 

Here, the Gaussian white noise is added to the procedure-obtained characteristic data; 

a simulation result is shown in Figure 3. 



Remote Sens. 2022, 14, 3570 10 of 34 
 

 

 

Figure 3. Simulation result of augmentation of the radiation characteristic data with the Gaussian 

white noise model. 

Image noises are in various forms, such as Gaussian noise, impulsive noise, Rayleigh 

noise, Gamma noise, exponential noise, and uniform noise. GAN has the capability to 

learn more complex distributions. The GAN model can be trained by back-propagation 

and produce noise samples by forward-propagation without involving another compo-

nent. In this section, a GAN–CNN-based blind denoiser (GCBD) is adopted in the original 

image denoising. Firstly, the approximate noise blocks extracted from the noisy images 

are exploited to train GAN for noise modeling and sampling. The majority of noisy blocks 

are sampled from the trained GAN model. Then, both extracted and generated noise 

blocks are combined with clean images to obtain paired training data, which are used to 

train the DCNN for denoising the noisy input images [35,36]. 

2.3. Network Structure 

The limited target detection ability of single-mode opto-electronic equipment could 

lead to failure in the detection of small targets with inadequate shape information. There-

fore, the complementarity between multimodal information might improve the detection 

ability of small targets and enhance the robustness of the detection system by combining 

the radiation, motion, and morphological features of infrared small targets. 

The infrared radiation and motion characteristics of the target are deduced and cal-

culated based on the measured data of the infrared system. Among them, the infrared 

radiation characteristics of the target mainly include the radiation intensity of the target 

and its mean value, variance, relevance, and other statistics. The motion characteristics 

include the speed, acceleration, elevation, azimuth, pitch angle, center moment, and origin 

moment of the target. 

2.3.1. Morphological Feature Extraction Network 

According to the imaging characteristics of infrared small targets, we propose a mor-

phological feature extraction network model based on the multi-level video streaming 

(MSFE) detection structure. 

The key frame and non-key frame in the streaming are automatically selected in the 

algorithm for global search and local search, respectively. Global feature extraction on key 

frames could help predict the position of the target. Non-key frames only perform shallow 

feature extraction in the backbone network. These features are sent to the bidirectional 

encoder representation from transformers (BERT) [37] model, based on the multi-head 

attention mechanism, which could realize fast parallel feature extraction and then com-

bine with global features extracted from key frames. The deep features of non-key frames 

are predicted by the deep features of key frames; then, the non-key frame features are 
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fused. One out of every five frames is selected from the video streaming as the key frame, 

and the remaining frames will be used as the non-key frames in this framework. The struc-

ture of MSFE is shown in Figure 4. 
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Figure 4. The overall framework of MSFE. 

The feature extraction of the key frame introduces the dual-channel dilated convolu-

tional block attention [38] module integrated with Resblock (DAMR) into the backbone 

feature extraction network and adopts the structure of SCFPN. The feature extraction net-

work structure of the key frame is shown in Figure 5. 
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Figure 5. The feature extraction network architecture of the key frame. 

Through the fusion of multi-scale features in the context of the small target, the 

method of combining bottom-up and top-down helps to obtain stronger semantic fea-

tures, strengthen feature fusion, improve the feature extraction ability of small targets and 

the detection accuracy, and reduce the missed alarm rate [39,40]. The attention mechanism 

is used in the shallow feature layer to ensure that the backbone network obtains the areas 
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that need attention, captures the effective image areas, and enhances the feature extraction 

ability of small targets [41]. Dilated convolution is used instead of the pooling layer to 

increase the receptive field; it is guaranteed that the size of dilated convolution is con-

sistent with that of ordinary convolution at the same time [42]. The receptive field of the 

shallow feature map is smaller, and the resolution is higher. However, its semantic infor-

mation is insufficient. The receptive field of the deep feature map is larger, but the reso-

lution is lower. The proportion of small targets in the receptive field is too small to accu-

rately detect small targets on the deep feature map, but the deep feature has sufficient 

location information and semantic information [43]. The features with high-level semantic 

information in the top layer are achieved in the FPN and fused with shallow features in 

the horizontal connection after continuously up-sampling [44]. The fused features not 

only have higher semantic information but also have higher resolution. This pyramid net-

work could effectively improve the detection performance of small targets.  

The neck part of the key frame feature extraction is based on bi-directional feature 

pyramid networks (Bi-FPNs), where dilated spatial pyramid pooling (DSPP) is added to 

the deep feature layer [45]. The DAMR is added at the end of each feature layer to increase 

the accuracy of small-target position information and the fine granularity of semantic in-

formation, and to improve the capability of the neck network to capture the effective im-

aging area of small targets. Each feature map passes through three dilation convolution 

modules with dilation rates of 1, 3, and 5, respectively, and the fused results are succes-

sively sent to the channel attention mechanism and spatial attention mechanism modules. 

The output results of the attention mechanism layer are fused with the input feature layer 

to obtain the output of the DAMR module through a short-cut route by a residual block. 

The schematic diagram of the structure is shown in Figure 6. 
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+
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Figure 6. The schematic diagram of the DAMR architecture. 

The DSPP module adds dilated convolution modules with different divided rates (1, 

2, and 5, respectively) before the three maximum pooling layers of SPP network. The re-

sidual structure of ResNet is added; thus, the feature enhancement module based on the 

dilated convolution DSPP is obtained [46]. The structure is shown in the figure below. 

The feature map generated by the neck network is sent to the RPN to generate the 

rough position of the region proposal. Then, the region proposal, together with the feature 

map, is sent to ROI pooling for location refinement. Finally, the location refinement results 

are sent to the full connection layer for bounding box regression and classification predic-

tion to obtain the location information, classification, and confidence of the target, respec-

tively [47].  

Each frame of the image sequence has a time-series correlation; therefore, at the front 

end of the network, the non-key frame feature extraction network extracts the shallow 
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features, which are sent to the BERT module based on the multi-head attention mecha-

nism after position coding to extract local features of the target. These features are inte-

grated with the global high-level features of the key frame. Subsequently, they are linear-

ized through the full connection layer, Softmax normalization is performed, and the de-

tection results are outputted [48,49]. The algorithm structure of the non-key frame feature 

extraction network is shown in Figure 7. 
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Figure 7. The architecture of the non-key frame feature extraction network. 

2.3.2. Radiation Characteristic Measurement Model Based on a DNN 

The infrared radiation characteristics are important intrinsic physical attributes for 

target category judgment. We constructed an atmospheric transmittance prediction model 

based on the DNN through in-depth analysis and research on oblique atmospheric trans-

mittance and obtained the target-apparent infrared radiation characteristics through the 

inversion of the radiation response of infrared radiation characteristic measurement sys-

tems. The apparent radiation characteristics are corrected by atmospheric transmittance 

and path radiation. Finally, infrared characteristics such as the radiance, radiation inten-

sity, and radiation temperature of the target itself are obtained through the inversion of 

radiation characteristics. 

When considering the infrared radiation characteristic measurement system, the out-

put signal of the system has a linear relationship with the target radiance within the linear 

response range of the system. The formula of the target radiation measurement model is 

as follows: 

a 0[ ]t pathDN L L DN      (6)

In the above formula, DN  is the digital output value of the detector of the infrared 

measurement system.   is the radiance response of the infrared measurement system. 

tL  is the radiance of the measured target. a  is the average atmospheric transmittance 

between the target and the infrared measurement system in the measurement band. 
pathL  

is the atmospheric path radiation between the target and the infrared measurement sys-

tem. 
0DN  is the offset value caused by thermal radiation of the opto-mechanical structure 
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of the infrared measurement system itself, the scattered background radiation, and the 

dark current of the detector [50,51]. The target radiance can be retrieved from the above 

formula. 

0
path

t

a

DN DN
L

L 





  (7)

Among them, the radiance response   and digital offset 
0DN  of the system are the 

values obtained by laboratory radiation calibration of the infrared measurement system 

in advance. In traditional measurement methods of target radiation characteristics, atmos-

pheric observation equipment is used to measure atmospheric parameters such as aerosol 

extinction height distribution profile, ground visibility, and the temperature, humidity, 

and pressure height distribution profile. Then, these parameters are imputed into atmos-

pheric radiation transmission calculation software, such as moderate spectral resolution 

atmospheric transmittance (MODTRAN), to calculate the atmospheric transmittance a  

and path radiation 
pathL  between the target and the measurement system. Atmospheric 

transmission correction is a necessary part of target radiation measurement. In traditional 

radiation measurement methods, the atmospheric transmittance and path radiation, 

whose accuracy is approximately 18%~20%, are measured and calculated using atmos-

pheric observation equipment and atmospheric radiation transmission calculation soft-

ware. The measurement accuracy of the infrared radiation characteristics is approximately 

20%~25%. Therefore, the measurement accuracy of atmospheric transmittance is an im-

portant factor restricting the accuracy of target radiation measurement. 

According to the Beer–Lambert law and Langley plot calibration principle [52], we 

can derive the following formula: 

����=∫ ���(�)∗��� (�)��
��

��
 (8)

where �(�) is the atmospheric extinction coefficient, � is the zenith angle, and �� and 

�� are the critical values of wavelength in a certain band. For example, in the medium-

wave infrared band, �� and �� are 3.7 × 10�� and 4.8 × 10��, respectively. 

If no spectral measurement is carried out, the above formula is simplified as below: 

����=���∗��� (�) (9)

� = ���� + ����
+ �� + ��  

(10)

where �� is the atmospheric extinction coefficient of atmospheric molecules and aerosols, 

��  is the atmospheric extinction coefficient of atmospheric meteorological conditions 

(such as cloud, fog, rain, and snow), ���� is the atmospheric extinction coefficient caused 

by water vapor absorption, and ����
 is the atmospheric extinction coefficient caused by 

carbon dioxide absorption. 

From the above formulas, it can be seen that atmospheric transmittance is a complex 

parameter related to many factors. We cannot obtain the specific value of atmospheric 

transmittance by formula deduction. 

We constructed an atmospheric transmittance prediction model based on the DNN 

through the in-depth analysis and research of oblique atmospheric transmittance. The 

DNN-based model was constructed to predict the atmospheric transmittance, which 

could overcome the complex environmental limitations and effectively improve the meas-

urement accuracy of the atmosphere transmittance and even the infrared radiation inten-

sity. Additionally, the infrared radiation intensity is an intrinsic physical property of the 

target, which could be used as the basis of target detection. Accurate radiation intensity 

would contribute to feature extraction of the measurement sequence (Section 2.3.2). There-

fore, the atmospheric transmittance prediction model based on DNN could indirectly im-

prove the accuracy of target detection. The input layer of this network model is composed 



Remote Sens. 2022, 14, 3570 15 of 34 
 

 

of nine-dimensional data, which are the temperature, humidity, pressure, visibility, dis-

tance, zenith angle, longitude, latitude, and elevation information of the target. Namely, 

there could be nine neurons in the input layer of the model, 10, 1000, 1000, and 1000 neu-

rons in the four hidden layers, respectively, and one neuron in the output layer. The struc-

ture of the radiation characteristic measurement model based on DNN is shown in Figure 

8. 
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Figure 8. The architecture of the radiation characteristic measurement model based on the DNN. 

We can overcome the environmental limitations, estimate the atmospheric transmit-

tance in a complex atmospheric environment, and effectively improve the measurement 

accuracy of infrared radiation intensity by taking the above parameters as the inputs of 

the model and continuously adjusting the model parameters through iterative training for 

hundreds of generations. We conducted the model training on our self-established da-

taset, which utilizes the temperature, humidity, pressure, visibility, distance, zenith angle, 

longitude, latitude, and elevation as inputs, and the corresponding atmospheric transmit-

tance values as outputs. The simulation results show that through the comparison be-

tween the atmospheric transmittance extracted by our model and the atmospheric trans-

mittance measured by the blackbody real-time calibration, the fitting accuracy of our pro-

posed method is better than 15%. The three-dimensional fitting results are shown in Fig-

ure 9. 

  

(a) (b) 

Figure 9. The three-dimensional fitting results of the atmospheric transmittance. (a) Training 200 

epochs; (b) training 300 epochs. 
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In the figure above, purple and red scatter points represent the prediction results of 

atmospheric transmittance of training 200 epochs and 300 epochs, respectively. The green 

scatter points represent the calibrated atmospheric transmittance values. 

2.3.3. Feature Extraction Network of the Measurement Sequence 

The DC-BERT model is adopted in the feature extraction of the measurement se-

quence vector. The measurement sequence vector is composed of the infrared radiation 

characteristic sequence, motion characteristic sequence, and statistical sequence com-

posed of the origin moment and k-order central moment of each characteristic. The infra-

red radiation characteristic sequence is the radiation intensity sequence of the target. The 

motion characteristic sequence is mainly composed of the velocity, acceleration, elevation, 

azimuth, and pitch of the target. 

The input measurement sequences have properties of a high degree of disorder in 

the short term and a certain change trend in the long term. In order to increase the non-

linearity of the model to extract the complex and scattered measurement sequence fea-

tures in the multi-dimensional space and improve the robust classification capability of 

the measurement sequence feature extraction model, we apply dilated convolution to ex-

tract the multi-scale features of the sequence to ensure that the model obtains the feature 

capture capability of the multi-scale receptive field. Moreover, we could obtain the se-

quence characteristics, which reflect the local spatial structure of the sequence. Then, we 

could capture the interdependence relationship between the input sequence features and 

extract the global deep features of the sequence by learning the complex relationship be-

tween different spatial positions of sequence features based on the BERT model. Finally, 

the extracted features are sent to the attention mechanism layer, and we could achieve the 

output result after Softmax regression. 

The local feature extraction of measurement sequence is realized by the dilated con-

volution combined with multi-scale context information fusion. It would not only increase 

the receptive field of the input sequence and enhance the robustness of the feature extrac-

tion network, but also be called a kind of data augmentation, which could reduce the de-

pendence of the model on the original samples and improve the generalization capability 

for the model. The measurement sequence is composed of eight-dimensional features, 

which are the infrared radiation intensity, elevation, velocity, acceleration, azimuth, pitch 

angle, the statistics of the origin moment, and the k-order central moment of each charac-

teristic. We define the measurement sequence with the K × Q × Q dimension as follows: 

� = �

���, ���, … … , ���

���, ���, … … , ���

⋱
���, ���, … … , ���

� (11)

where K is the feature number of measurement sequences, which is set to 8 in Equation 

(11). Firstly, after 2D reconstruction and stitching preprocessing, the feature of each di-

mension of the measurement sequence is transformed into the Q × Q dimension; then, it 

would be carried out with three dilated convolutions whose dilated rates are 1, 2, and 3, 

respectively, including three processes: Convolution, batch normalization, and the Relu 

activation function. Finally, the local features of the measurement sequence are obtained. 

The advantage of this local feature extraction network is to expand the receptive field, 

capture the multi-scale context information, and improve the feature extraction capability 

for the sequence without losing information, introducing additional parameters, and in-

creasing the amount of calculation. 

The local features of the measurement sequence are sent to the BERT model, com-

posed of multiple, multi-channel, self-attention mechanism modules, normalization mod-

ules, and forward networks, to extract the global features, which are sent to the attention 

mechanism module, and Softmax regression is conducted to output the prediction results 

of the measurement sequence. We consider the measurement sequence matrix composed 
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of 49-frame measurement sequence vectors within 0.5 s to be the input of the measurement 

sequence feature extraction model. The network structure of the measurement sequence 

feature extraction is shown in Figure 10. 
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Figure 10. The schematic diagram of the measurement sequence feature extraction block DC-

BERT. 

2.3.4. Multimodal Feature Fusion Network 

The multimodal feature fusion network (MFFN), which combines the morphological 

characteristics, radiation characteristics, and motion characteristics of infrared small tar-

gets, adjusts the input feature dimension in the convolutional layer and carries out the 

weighted fusion of the above three features. Finally, the weight of each channel in the end-

to-end model could be learnt continuously by introducing an α feature vector [53] through 

the attention mechanism layer. The target classification and detection ability could be im-

proved through the complementarity between multimodal information. The schematic 

diagram of the structure of MFFN is shown in Figure 11. 

...
...

...

+
 

+
 

+
 

Attention Mechanism Layer

 

Figure 11. Schematic diagram of the architecture of the MFFN. 

As is shown in the above figure, the feature output from the target morphological 

feature extraction model is called Feature1 and the infrared radiation features and motion 

features extracted by the DC-BERT model are called Feature2 and Feature3, respectively. 

Firstly, the three features of Feature1, Feature2, and Feature3, with a dimension of N × 1, 
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are sent to the convolution module with a kernel size of 1 × 1 and channel number of 64. 

According to the formula below, we could obtain three feature outputs with a dimension 

of N × 1 × 64. 

�(�) = � ∗ ������(�) (12)

Then, the three features with the dimensions of N × 1 × 64 are weighted and fused to 

obtain the fusion feature ���� . The calculation formula is as follows: 

���� = ∑ �� ∗ �� +�
��� �� ∗ ��+�� ∗ �� (13)

Among them, the dimensions of ��, �� , and ��  are all N × 1 × 64. ��, ��, and �� are 

the weights of each feature obtained by end-to-end model training [54]. 

In the attention mechanism layer, the low-level features ���� of the 3N × 1 × 64 di-

mension are projected through a 1 × 1 convolution feature map to the same channel num-

ber of the high-level feature of the N × 1 × 64 dimension, which allows them to be con-

tacted. Thus, we can obtain the fusion feature map ���������  of the N × 1 × 64 dimensions; 

then, we reshape it to obtain �����������×��
 and transpose ��������  to obtain 

����������������������×� . Subsequently, we obtain ��  by the matrix multiplication of 

��������  and ������������������ ; then, the feature fusion map ����������×�  is obtained 

through a softmax layer. ������� is calculated as follows: 

��� =
exp (��

� ∙ ��
�
)

∑ exp (��
� ∙ ��

�
)�

���

 (14)

where ��
�  and ��

�
 are the ��� and ��� feature vectors of ��, respectively, and ��� indi-

cates the impact of the ��� feature vector of �������� on the ��� feature vector. Finally, 

the transpositions of ������� and ��������  are subjected to matrix multiplication and then 

multiplied by a factor � to obtain the output feature �������. Specifically,  

�������
�

= � �(��� ∙ ��������
� )

�

���

 (15)

where � is initialized to 0 and gradually leans to a larger weight, reshaping ������� to 

������� ∈  ��×�×��. It can be seen from Equation (15) that each feature of �������  is the 

weighted sum of all the features of the original feature maps ��������� . Thus, the MFFN 

module further highlights the global semantic information and local spatial information 

from high-level and low-level features. Therefore, the feature fusion model we adopted 

has the learning ability to scale the importance of each feature automatically. 

2.4. Calculation of the Loss Function 

The loss function of the multimodal feature fusion network we proposed for infrared 

small-target detection consists of two parts, namely, the loss function of data prepro-

cessing, �����������, and the loss function of the target classification and detection net-

work, ����������. 

���������=����������� + ���������� (16)

1. Data preprocessing loss function. 

In the pretraining process of the denoising module, we used the L1 loss to represent 

the deviation between the output image of the network and the noiseless image [55]. The 

expression of this loss function is as follows: 

����������� = �� ∗ ����������� + �� ∗  ������� (17)

����������� =
1

�
�‖�(��) − ��

∗‖�

���

 (18)
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������� = ��~�����(�)[log �(�)] + ��~��(�) �log �1 − ���(�)��� (19)

In Equation (17), λ� + λ� = 1 and λ� is set to 0.1 in our method. Loss������� repre-

sents the network loss function of data processing and Loss��� represents the loss func-

tion of the GAN-based model. In Equation (18), � is the input noisy image, � is the out-

put of the blind denoising network, and �∗ is the true value corresponding to input x, 

namely, the noiseless image. � is the number of the batch in the training process. Equa-

tion (19) is the loss function of GAN, in which �(�) represents the value returned by 

feeding data � into discriminator D and �(�) represents the value returned by feeding 

noise into generator G. 

2. The loss function of the target classification and detection network. 

The loss function of the target classification and detection network is composed of 

the classification loss function, �������, and the regression loss function, ��������������.  

���������� = ������� + �������������� 

The cross-entropy loss is used to calculate �������. The categorical cross-entropy is 

applied to the multi-classification network. The calculation formula is as follows: 

�����������_�����_������� = − � �� ∗ log ��

�

���

 (20)

Here, p represents the real value and q represents the predicted value. On this basis, 

the cross-entropy could be improved. We use focal loss, which could reduce the imbalance 

between positive and negative samples and pay more attention to the mining of difficult 

samples to replace the cross-entropy loss. The classification loss of small targets could be 

regressed by focal loss [56,57]. The formula is as follows: 

������� = �
−�(1 − ��)� × ��� �� ,     ��� = 1

−(1 − ��)� × ���(1 − ��) ,     ��� = 0
 (21)

where ���  represents the confidence of the ground truth box and ��  presents the confi-

dence of the prediction box. � is usually taken as 2 and α is 0.25. 

Generalized intersection over union loss (GIOU loss) is used by ��������������  to re-

gress the position of the target. �������������� is the GIOU loss [48–60]. The calculation 

formula of GIOU is as follows. 

�������,��
=

|��� ⋂ ��|

|��� ⋃ ��|
−

|�\(��� ⋃ ��|

|�|
 (22)

Here, ��� represents the ground truth box, ��  represents the predicted box, and B 

represents the smallest enclosing convex box between ���  and �� . Then, ��������������  

can be calculated through �������,��
. The formula is as follows. 

3. Experiments and Results 

This section is introduced in the following four parts: (1) Evaluation indexes; (2) im-

plementation details; (3) ablation study; and (4) performance comparisons with competed 

methods. 

3.1. Evaluation Indexes 

The performance evaluation indexes of target detection mainly include the real-time 

evaluation indexes and accuracy evaluation indexes. 

The real-time evaluation indexes of target detection mainly include forward-pass 

time-consuming, detection speed (frames per second, FPS), and floating-point operations 

per second (FLOPs). 
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 Forward-pass time-consuming: The time spent from inputting a frame of image to 

outputting the classification and detection result. 

 Detection speed (frames per second, FPS): The number of frames that can be pro-

cessed per second. 

 Floating-point operations per second (FLOPs): This index could be understood as the 

amount of computation and is usually used to measure the complexity of the algo-

rithm and the model [61]. 

The accuracy evaluation indexes of the target detection include the precision indica-

tor (precision), the recall indicator (recall), average precision (AP), mean average precision 

(mAP, namely, the mean value of the average precision of each classification), precision–

recall (P–R) curve, average recognition rate (ARR), and F1 score [62–64]. The effect of target 

detection and classification is usually evaluated with the following three accuracy evalu-

ation indexes: 

 Average recognition rate (ARR). 

The average recognition rate ����  could be calculated as follows: 

���� =
������

������

 (23)

where ������  represents the total number of all targets to be detected and ������  repre-

sents the number of targets that are detected correctly. 

 Mean average precision (mAP). 

AP refers to the average precision of a certain category of targets, which represents 

the accuracy evaluation effect of the model on a certain category. However, mAP is the 

mean value of the APs of all categories, which represents the overall classification effect 

of the model on all categories. The calculation method of mAP is as follows. 

Firstly, the P–R curve should be made with recall as the abscissa and precision as the 

ordinate. The P–R curve represents the change in precision and recall values when the 

target changes. Precision could be regarded as a function with recall as a variable. AP 

could be regarded as the area under the P–R curve [65,66].  

�� = � �(�)��
�

�

 (24)

In fact, the multiplication of the value of the maximum precision and the change in 

recall value is usually adopted to calculate AP. The calculation formulas of AP and mAP 

are as follows. 

�� = �  

�

���

���
�� ��

 �����Δ�(�) (25)

��� =
∑  �

��� ∑  �
��� ���

�� ��
 �����Δ�(�)

�
 (26)

where � represents the number of samples in a certain category. Δ�(�) represents the 

change value of recall, ���
�� ��

����� represents the maximum value of the corresponding 

precision, and C represents the number of samples in all categories [67,68]. 

mAP can interpret the perfect balance between the two mutually exclusive evalua-

tion indexes of precision and recall in the target classification and detection network. 

 F1 score. 

F1 score is the harmonic average of precision and recall, whose maximum value is 1 

and minimum value is 0. The calculation formula is as follows. 

�� = 2 ⋅
��������� ⋅ ������

��������� + ������
 (27)
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where precision is used to evaluate the accuracy of the prediction and recall is used to 

evaluate the completeness of the prediction. The calculation formulas are presented sep-

arately, as follows [69]. 

��������� =
��

�� + ��
 (28)

������ =
��

�� + ��
 (29)

where true positive (TP) is the number of samples that are correctively predicted, false 

positive (FP) is the number of samples predicted as this certain class that actually belong 

to other classes, and false negative (FN) is the number of samples predicted as other clas-

ses that are actually in this certain class [70]. 

3.2. Implementation Details 

Our experiment was conducted on a high-performance computer equipped with 

NVIDIA GeForce RTX 2070 Ti discrete graphics for progressive offline training and testing. 

The initial weight of the model pretrained on the CSPDarknet53 network was adopted in 

Pytorch1 8.1. The target detection model was trained on the self-made OEDD, in which 

14,471 samples are contained in the training set with 350 epochs trained, the batch size of 

each epoch is set to eight, the Adam optimizer is adopted, the initialization learning rate is 

set to 1 × ���, momentum is set to 0.999, and weight decay is set to 5 × 10��. Through 

training and testing, the parameters and hyper-parameters in the model are continuously 

adjusted to ensure that the target classification and detection network meet the require-

ments of real-time performance and accuracy indicators so as to achieve the best detection 

effect. 

The choices of the parameters in neutral networks are irregular, and there would be no 

unified parameters for different models and data. The adjustment of parameters needs to be 

attempted repeatedly in the model training process. We can select a small batch of data to 

set the learning rate and other parameters at the start of the training process. If the total loss 

does not decrease after a certain number of epochs, it indicates that the choice of this group 

of parameters is not suitable for the model and data. We thus need to enact some changes 

and then implement the training process repeatedly. Through continuous attempts, the pa-

rameters, the network, and data are intended to be the best match as far as possible, to make 

the total loss optimal.  

The choice of parameters is not completely independent of the data used for training. 

For instance, when the amount of sample data is small, the higher the learning rate, and the 

faster the loss will be reduced. However, this will lead to overfitting. This kind of training 

is rough, i.e., not fine; therefore, the accuracy of the training set may be close to 100%. How-

ever, for the testing set, its accuracy will not rise because some features of the targets have 

not been fully extracted. 

3.3. Ablation Study 

We performed an ablation study on the streaming sequences of large and medium air-

craft, small aircraft, floating balls, and birds to demonstrate the performance of various al-

gorithms and networks we have proposed above for infrared small-target detection. The 

effectiveness of several structures in the infrared small detection network we proposed is 

shown in the table below. 

Table 2 illustrates the effectiveness of various models in our infrared small-target de-

tection network. The models use the same training, validation, and testing set in the OEDD. 
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Table 2. The effectiveness of various designs in our infrared small-detection network. 

Baseline 
With 

SCFPN 

With 

DAMR 

With DC-

BERT 

With 

MFFN 

Large and Medium Aircraft Small Aircraft Floating Ball Birds 

FPS AP (%) F1 Score FPS AP (%) F1 Score FPS AP (%) F1 Score FPS AP (%) F1 Score 

√     15.42 82.17 0.8063 15.49 81.49 0.7986 15.41 81.08 0.7953 15.48 81.23 0.7976 

√ √    13.80 83.32 0.8185 13.86 82.78 0.8120 13.87 82.94 0.8131 13.82 82.72 0.8137 

√ √ √   12.94 84.51 0.8273 12.87 83.57 0.8234 12.85 84.03 0.8267 12.92 83.79 0.8244 

√ √ √ √  11.76 88.36 0.8625 11.83 87.70 0.8612 11.78 87.35 0.8562 11.86 87.46 0.8573 

√ √ √ √ √ 10.93 92.64 0.9102 10.73 92.13 0.9059 10.97 91.83 0.9012 10.71 91.43 0.9003 
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The baseline represents the network model of the infrared small-target detection 

without the structures and algorithms we proposed. The baseline in Table 2 represents 

the modified YOLO v3 structure in which the anchor sizes are modified to adapt to small-

target detection.  

As can be seen in Table 2, the AP and F1 scores of large and medium aircraft se-

quences at 15.42 fps are 0.8217 and 0.8063, respectively. The AP and F1 scores of small 

aircraft sequences at 15.49 fps are 0.8149 and 0.7986, respectively. The AP and F1 scores of 

floating ball sequences at 15.41 fps are 0.8108 and 0.7953, respectively. The AP and F1 

scores of birds at 15.48 fps are 0.8123 and 0.7986, respectively. 

3.3.1. Analysis with the SCFPN Module 

The SCFPN is conducive to fusing more multi-scale context features of small targets, 

to reduce the missed alarm rate and improve the detection accuracy. In order to investi-

gate the effectiveness of the SCFPN module we proposed, we conducted experiments on 

our private infrared small-target dataset: The OEDD. Compared with baseline, the AP and 

F1 scores of large and medium aircraft sequences were improved by 1.15% and 1.22%, 

respectively. The AP and F1 scores of small aircraft sequences were increased by 1.29% 

and 1.34%, respectively. The AP and F1 scores of floating ball sequences were increased 

by 1.86% and 1.78%, respectively. The AP and F1 scores of birds were increased by 1.49% 

and 1.51%, respectively. 

3.3.2. Analysis with the DAMR Module 

The residual dual-channel attention mechanism module based on dilated convolu-

tion effectively improves the accuracy of location information and the fine granularity of 

semantic information of the small targets to be captured. In order to investigate the effec-

tiveness of the DAMR module we proposed, we conducted experiments on our private 

infrared small-target dataset: The OEDD. Compared with baseline, the AP and F1 scores 

of large and medium aircraft sequences were improved by 2.34% and 2.1%, respectively. 

The AP and F1 scores of small aircraft sequences were increased by 2.08% and 2.48%, re-

spectively. The AP and F1 scores of floating ball sequences were improved by 2.95% and 

3.14%, respectively. The AP and F1 scores of birds were increased by 2.56% and 2.58%, 

respectively. 

3.3.3. Analysis with the DC-BERT Module 

The BERT model based on a dilated convolution neural network has the feature cap-

ture ability of a multi-scale receptive field. In addition, the BERT model could learn the 

complex relationship between multi-dimensional spatial features of the sequence and has 

advantages over the extraction of global deep features. Finally, the attention mechanism 

module is introduced to increase the global contextual view of the feature extraction struc-

ture. In order to investigate the effectiveness of the DC-BERT module we proposed, we 

conducted experiments on our private infrared small-target dataset: The OEDD. Com-

pared with baseline, the AP and F1 scores of large and medium aircraft sequences were 

improved by 6.19% and 5.62%, respectively. The AP and F1 scores of small aircraft se-

quences were increased by 6.21% and 6.26%, respectively. The AP and F1 scores of floating 

ball sequences were increased by 6.27% and 6.09%, respectively. The AP and F1 scores of 

birds were increased by 6.23% and 5.97%, respectively. 

3.3.4. Analysis with the MFFN Module 

The end-to-end multimodal feature fusion network we proposed is realized on fea-

ture-level fusion. The weight of each channel is automatically learned through the atten-

tion mechanism. The complementarity between the modal information is used to improve 

the classification and detection ability of the infrared small targets. In order to investigate 

the effectiveness of the MFFN module we proposed, we conducted experiments on our 
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private infrared small-target dataset: The OEDD. Compared with baseline, the AP and F1 

scores of large and medium aircraft sequences were improved by 10.47% and 10.39%, re-

spectively. The AP and F1 scores of small aircraft sequences were increased by 10.64% and 

10.73%, respectively. The AP and F1 scores of floating ball sequences were improved by 

10.75% and 10.59%, respectively. The AP and F1 scores of birds were increased by 10.20% 

and 10.27%, respectively. 

3.3.5. Analysis with the DNN-Based Radiation Characteristic Extraction Module 

The infrared radiation characteristics measurement is inevitably affected by the en-

vironment. We have proposed a prediction model of atmospheric transmittance, which is 

the primary factor restricting the accuracy of characteristic measurements based on DNN, 

which could effectively improve the accuracy of atmospheric transmittance measurement 

and the measurement accuracy of radiation characteristics. This model could effectively 

predict atmospheric transmittance in a complex atmospheric environment through model 

training. It can be seen from Table 3 that the error accuracy of the atmospheric transmit-

tance measurement of the method we described (Err1 in Table3) is better than 15% on the 

basis of the atmospheric transmittance measured by the blackbody real-time calibration 

method, whereas the error accuracy of the DNN-based characteristic extraction method 

with MODTRAN software (Err2 in Table 3) is more than 18%. The atmosphere transmit-

tance results of the two methods are listed in the 12nd and 13rd columns of Table 3.  

We chose Modtran software and the blackbody real-time calibration method to com-

pare with our method. In the blackbody real-time calibration method, a reference black-

body is placed near the measured target, and the distance and direction relative to the 

measurement system are nearly the same. When the infrared radiation of the target is 

measured by the infrared measurement system, the output DN values of the blackbody at 

high and low temperatures are recorded. Then, we will obtain three equations. From these 

equations, the atmospheric transmittance and the radiance of the target can be obtained. 

The accuracy of the atmospheric transmittance calculated by the blackbody real-time cal-

ibration method is better than 3.5%, which is a qualitative leap compared with the tradi-

tional target radiation inversion accuracy. Therefore, it is used as the reference value of 

atmospheric transmittance [71]. However, engineering experiences show that this method 

is only effective in laboratory environments. Modtran software is a general atmospheric 

radiation transmission calculation software used worldwide. We have to say that Mod-

tran has its own limitations. The measurement accuracy of Modtran is greatly affected 

because the atmospheric parameter models used in the United States are quite different 

from those in China. 
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Table 3. Comparison of the DNN-based prediction method and software prediction with Modtran for atmospheric transmittance. 

Temperature 

(°C) 

Humidity 

(%) 

Pressure 

(kPa) 
Visibility (m) Longitude (°) Latitude (°) Altitude (km) Azimuth (°) Elevation (°) 

Distance 

(km) 

Blackbody 

Calibration 
Modtran We Proposed Err1 1 (%) Err2 2 (%) 

2.3 26.1 890 20 86.17 41.73 158.00 102.936 57.852 186.617 0.7081 0.8381 0.8117 18.36 14.63 

2.4 26.1 890 20 86.17 41.73 157.06 103.954 58.476 184.252 0.7050 0.8385 0.8053 18.94 14.23 

2.4 26.1 890 20 86.17 41.73 156.77 104.452 58.735 183.403 0.7063 0.8388 0.8047 18.76 13.93 

2.4 25.8 890 20 86.17 41.73 154.67 106.883 59.953 178.683 0.7047 0.8402 0.7983 19.23 13.28 

2.4 26.0 890 20 86.17 41.73 152.88 109.314 61.047 174.720 0.7081 0.8414 0.8099 18.83 14.38 

2.5 25.9 890 20 86.17 41.73 151.03 111.702 61.987 171.077 0.7046 0.8424 0.7994 19.56 13.45 

2.5 26.0 890 20 86.17 41.73 144.13 121.893 64.921 159.133 0.7060 0.8452 0.8033 19.72 13.78 

2.4 26.1 890 20 86.17 41.73 17.12 228.905 6.598 148.983 0.4069 0.4863 0.4661 19.51 14.55 

2.5 26.1 890 20 86.17 41.73 15.96 229.132 5.952 153.943 0.3891 0.4638 0.4471 19.20 14.91 
1 Err1 represents the error accuracy of the atmospheric transmittance measurement of the method we described. 2 Err2 represents the error accuracy of the DNN-

based characteristics extraction method with MODTRAN software. 
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3.4. Performance Comparisons with Competed Methods 

3.4.1. Qualitative Evaluation 

The detection results of the nine state-of-the-art detection algorithms, including 

YOLO V3, YOLO V4-Tiny, faster R-CNN, region fields block network (RFBnet), TCTHR, 

infrared small-target detection network (ISTDet) [72], infrared small-target detection with 

a generative adversarial network (IRSTD-GAN) [30], ALCNet, and the algorithms we pro-

posed, are shown in Figure 12. According to the first column in Figure 11, the flare in the 

sky near the birds led to a false alarm in the detection results of the faster R-CNN and 

ISTDet algorithm. In the second column in Figure 11, other types of objects occupied a 

large proportion of the whole image; thus, it was difficult to detect small aircraft in the air 

with YOLO V3, faster R-CNN, and RFBnet. TCTHR, ISTDet, and IRSTD-GAN failed to 

detect targets, and YOLO V4-Tiny and ALCNet produced a false alarm. In the third col-

umn, the large and medium aircraft are covered by clouds, which seriously disturbs the 

detection results of the YOLO series, TCTHR, and IRSTD-GAN, and the target is not de-

tected. From the fourth column, in which the large and medium aircraft are on a simple 

background, we could find that the detection and localization effects of each algorithm 

were all good. In summary, the algorithm we proposed has a lower false alarm rate, higher 

precision, and better network robustness. This is because the network we proposed above 

could overcome the deficiency of single modal feature description for small targets, which 

utilizes the complementary between multi-modal features with a morphological domain 

fused with multi-scale context information and the measurement domain applied with 

two-level feature extraction, namely, local and global extraction, to achieve better detec-

tion performance. 

    

(a) 

    
(b) 

    

(c) 

    

(d) 
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Figure 12. Detection results of infrared small targets with nine different algorithms on the OEDD. 

(a) Original images; (b) 3D visualization of the images; (c) YOLO V3; (d) YOLO V4-TinI; (e) faster 

R-CNN; (f) RFBnet; (g) TCTHR; (h) ISTDet; (i) IRSTD-GAN; (j) ALCNet; (k) the model we proposed. 
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3.4.2. Quantitative Evaluation 

We conducted quantitative comparison experiments on nine state-of-the-art target 

detection methods, including YOLO V3, YOLO V4-tiny, faster R-CNN, RFBnet, TCTHR, 

ISTDet, IRSTD-GAN, ALCNet, and the methods we described above on our private da-

taset established in this paper, the OEDD.  

The results of the real-time performance and accuracy indexes counted and evaluated 

of the above five algorithms are shown in Table 4. To ensure fairness of the comparison, 

the following operations were performed. The anchors were tuned in the alternative meth-

ods using the K-means clustering algorithm [73] for infrared small-target detection. The 

same data preprocessing procedure, which is addressed in Section 2.2, was carried out for 

all the methods. The input data for all the structures mentioned in Table 4 could be inte-

grated into the same size of 208 × 208 by means of letterbox operation in which the ratio 

of the original image for equal scaling is kept and the rest of the short edges are filled with 

gray pixels.  

From the table, it can be seen that the accuracy evaluation indexes of the algorithm 

we proposed, which are PavG And mAP, are better than those of the eight abovementioned 

target detection methods. Moreover, the F1 score was also the best of all. This indicates 

that our method has a good balance between precision and recall in infrared small-target 

detection. However, it must be mentioned that the evaluation of the real-time perfor-

mance of the method decreases slightly. The FPS is 10.8 fps, whereas GFLOPs was only 

179.51 at present. 
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Table 4. Comparison of the state-of-the-art target detection approaches. 

Comparison Input XTP XFP XFN Precision (%) Recall (%) PavG (%) mAP (%) F1 Score FPS GFLOPs 

Yolo V3 608 × 608 17,123 5000 3115 77.40 84.61 82.83 82.35 0.8084 8.3 107.24 

Yolo V4-Tiny 416 × 416 17,370 4865 2814 78.12 86.06 84.02 83.41 0.8190 20.7 91.13 

Faster R-CNN 600 × 800 18,033 3634 2638 83.23 87.24 87.23 86.71 0.8519 7.5 284.54 

RFBnet 512 × 512 18,273 3468 2307 84.05 88.79 88.39 87.87 0.8636 12.1 164.76 

TCTHR 640 × 512 18,678 4053 3051 82.17 85.96 90.35 89.79 0.8402 10.2 136.12 

ISTDet 640 × 512 18,442 3234 3442 85.08 84.27 89.21 88.77 0.8467 9.2 153.82 

IRSTD-GAN 640 × 512 17,066 3176 2751 84.31 86.12 82.55 82.01 0.8521 8.6 169.23 

ALCNet 640 × 512 18,109 3628 2185 83.31 89.23 87.60 87.03 0.8617 11.4 129.43 

Our proposed 640 × 512 19,152 2535 1740 89.40 91.67 92.64 92.01 0.9052 10.8 179.51 
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It is known that the P–R curve could show the balance between the precision and 

recall of a classifier. The performance of an excellent classifier is as follows. Precision 

would remain at a high level while recall increases. However, the classifier with poor per-

formance may lose a large amount of precision in exchange for the increase in recall. It 

can be seen from the P–R curve below that our method has a perfect balance between 

precision and recall, which means that it could focus on maintaining a higher accuracy of 

target detection in complex scenes with target size, classification, and position changes. 

The comparison results for the P–R curves of the nine state-of-the-art methods over the 

OEDD are shown in Figure 13. 

 
Figure 13. Comparison results of P–R curves of the nine state-of-the-art methods over the OEDD. 

4. Discussion 

MFFN is an end-to-end DNN-based detector, which combines the morphological 

characteristics, radiation, and motion characteristics of infrared small targets. The experi-

mental results on the four real-time sequences demonstrate that the network we proposed 

has a better accuracy performance on infrared small targets. As can be seen in Table 4, the 

pAVg, mAP, and F1 scores on the OEDD dataset are 92.64%, 92.01%, and 0.9052, respec-

tively, which could meet the index requirements for the detection ability of our opto-elec-

tronic equipment. Moreover, this would have far-reaching significance on the perfor-

mance improvements of the passive, long-distance, and high-precision detection of mili-

tary small targets under diverse national defense fields such as anti-missile warning and 

ballistic missile penetration [74].  

We conducted comparison experiments on several datasets to demonstrate the ex-

tensive effectiveness of our algorithm; the results are shown in Table 5. From the accuracy 

and real-time performance index comparison on the different datasets, which are 

CIFAR10, COCO, VOC, FLIR, and OEDD, it could be seen that the mAP and F1 score of 

our algorithm on our own self-established dataset, the OEDD, is the best of all the other 

open-access datasets. However, the FPS on CIFAR10 outperforms ours because the reso-

lution of the images is 32*32, which is lower than that of the other four datasets. Compared 

with CIFAR10, COCO, VOC, and FLIR, the mAPs on OEDD increased by 7.66%, 5.30%, 

6.59%, and 3.77%, respectively, and the F1 scores on OEDD increased by 8.11%, 5.37%, 

6.65%, and 3.84%, respectively. This could be attributed to the OEDD containing the mul-

timodal features of infrared targets, which would help promote the accuracy performance 
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and enhance the robustness of the detection system. The radiation and motion character-

istics could complement the deficiency of the single morphological features. Furthermore, 

it is indicated that the algorithm we proposed is not only effective in the detection of in-

frared targets, but is also available for visible targets from the accuracy performance indi-

cators gained from training on CIFAR10, COCO, and VOC. 

Table 5. Comparison of the detection performance on different datasets with the algorithm we pro-

posed. 

Indexes CIFAR10 COCO VOC FLIR OEDD 

mAP (%) 84.35 86.71 85.42 88.24 92.01 

F1 score 0.8241 0.8515 0.8387 0.8668 0.9052 

FPS 21.8 18.6 16.7 11.2 10.8 

It can be seen from Table 4 that the FPS and GFLOPs of our method gained from the 

training on the OEDD still need to be improved. We could have carried out some essential 

work, such as model distillation, to decrease the number of the parameters of our target 

detection network [75]. The idea of model distillation is to use a trained, large, but effective 

teacher model to train a lightweight student model with fewer parameters with the accu-

racy of the student model ensured near the teacher model and reduced model size and 

fewer computing resources. The first step of model distillation is to train the big model, 

called the teacher model. The hard label is used to improve the accuracy of the model 

while training large amounts of epochs. Secondly, the student model and teacher model 

are combined to perform distillation training. The weight of the large model is frozen after 

loading to obtain the output of the soft target. The loss function of the soft target and hard 

target is calculated in the student model. The loss is weighted and summed; then, the 

gradient and the parameters of the student model are updated. Furthermore, it is pro-

posed to adopt slice-aided hyper inference (SAHI) [76] and fine-tuning architecture in or-

der to further improve the accuracy of small-target detection. It is a general and open-

source architecture and could be applied to any detector. This general solution could be 

used to detect small targets in high-resolution images with low complexity and memory 

required. We divide the input image into overlapping slices, perform interference on the 

smaller slices of the original image, and then combine the slice prediction on the original 

image in SAHI. In this way, we could achieve a network with both perfect real-time and 

precision performance, with a better speed–accuracy trade-off [77].  

5. Conclusions 

A novel and effective infrared small-target classification and detection network was 

designed in this study. An MFFN with an attention mechanism combines the morpholog-

ical characteristics, radiation, and motion characteristics of the infrared small targets. This 

network, with the ability to automatically learn the importance of the features of each 

channel, could make full use of the complementarity between multimodal information to 

make up for deficiencies in the description of single modal characteristics of the target and 

improve the ability of target classification and detection. The feature extraction of meas-

urement sequences, including the radiation characteristic and motion sequence, is real-

ized by the DC-BERT model combined with the channel attention mechanism. Among 

them, we have built an atmospheric transmittance prediction model based on a DNN and 

obtained the infrared radiation intensity of the target itself through radiation characteris-

tic inversion and atmospheric transmission correction, which could overcome the limita-

tions of complex environments to effectively predict atmospheric transmittance and im-

prove the measurement accuracy of radiation characteristics. The morphological feature 

extraction was realized based on MSFE with a global search and local search carried out 

for the key frames and non-key frames, respectively. Among them, the key frame intro-

duces the DAMR and the SCFPN structures to reduce the missed alarm rate of small tar-

gets and improve the detection accuracy through the fusion of small target features and 
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multi-scale context features. The feature extraction of non-key frames obtains local fea-

tures based on the BERT model and fuses them with the global high-level features of the 

key frames. 

In addition, we have designed an engineering medium-sized private dataset, OEDD, 

with diverse categories and balanced numbers of samples based on the target character-

istic database accumulated by our project team in air defense and antimissile experiments 

over the past ten years. 

Finally, we conducted performance comparison experiments on infrared small tar-

gets on the sequences of large and medium aircraft, small aircraft, floating balls, and birds 

to demonstrate the detection performances of the network we have described above. The 

experimental results indicate that the detection algorithm we proposed outperformed 

other detection algorithms in terms of the accuracy of infrared small-target detection and 

has a better speed–accuracy trade-off in comparison. 
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