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Abstract: A significant amount of the produced solid waste reaching the oceans is made of plastics.
The amount of plastic debris in the ocean and coastal areas is steadily increasing and is now a major
global environmental issue. The monitoring of marine plastic litter, ground-based monitoring systems
and/or field campaigns are time-consuming, expensive, require great organisational efforts, and
provide very limited information in terms of the spatial and temporal dynamics of marine debris.
Earth Observation (EO) by satellite can contribute significantly to marine plastic litter detection. In
2019, a new hyperspectral satellite, called PRISMA, was launched by the Italian Space Agency. The
high spectral resolution of PRISMA may allow for better detection of floating plastic materials. At
the same time, Machine Learning (ML) algorithms have the potential to find hidden patterns and
identify complex relations among data and are increasingly employed in EO. This paper presents the
development of a new method of identifying floating plastic objects in coastal areas by exploiting pan-
sharpened hyperspectral PRISMA data, based on the combination of unsupervised and supervised
ML algorithms. The study consisted of a configuration phase, during which the algorithms were
trained in a fully controlled test, and a validation phase, in which the pre-trained algorithms were
applied to satellite data collected at different sites and in different periods of the year. Despite the
limited input data, results suggest that the tested ML approach, applied to pan-sharpened PRISMA
data, can effectively recognise floating objects and plastic targets. The study indicates that increasing
input datasets can help achieve higher-quality results.

Keywords: satellite; remote sensing; supervised; unsupervised; K-Means; Light Gradient Boosting Model;
pan sharpening; marine pollution; polyethylene terephthalate; polystyrene; high-density polyethylene

1. Introduction

The year 1950 has been commonly considered to mark the beginning of plastic mass
production [1]. Since then, 8.3 billion tons of virgin plastic materials have been manufac-
tured [2]. Between 1950 and 2015, it is estimated that 6.3 billion tons of plastic waste have
been produced globally [2], constituting almost 76% of all virgin plastics produced since
the 1950s. Eight million tons of plastic items spill into the ocean every year [3]. Plastic
items end up in the ocean from various sources in many ways and never fully biodegrade,
thus threatening aquatic species, marine and coastal ecosystems, and also human beings
as plastic debris enters our food chain [4–7]. The abundance of biodiversity and precious
resources for humans and other species calls for efficient technologies to monitor marine
pollution caused by plastic litter. Ground-based monitoring systems and field campaigns
provide precise information on the quantity and quality of marine litter, but present several

Remote Sens. 2022, 14, 3606. https://doi.org/10.3390/rs14153606 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14153606
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0003-4446-0191
https://orcid.org/0000-0002-1579-3520
https://orcid.org/0000-0001-5112-4079
https://orcid.org/0000-0002-5420-0900
https://orcid.org/0000-0002-8834-4734
https://doi.org/10.3390/rs14153606
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14153606?type=check_update&version=1


Remote Sens. 2022, 14, 3606 2 of 16

disadvantages—they are time-consuming, expensive, require great organisational effort,
and provide little information about the spatial and temporal dynamics of debris. Thus,
such an approach would not suit continuous monitoring over large surface areas. Earth
Observation (EO) using satellites can support the ground-based monitoring of marine
plastic litter thanks to their global synoptic perspective. In 2019, the Italian Space Agency
launched a new hyperspectral satellite called PRISMA (PRecursore IperSpettrale della Mis-
sione Applicativa). The high spectral resolution of PRISMA allows for enhanced detection
of floating plastic materials given its increased spectral resolution.

However, taking into account the vastity of oceans, the extension of coastal areas
around the world, and the effort in terms of time and human resources for processing huge
numbers of remotely sensed data using traditional techniques, it is clear that promising
Machine Learning (ML) algorithms coupled with newly available hyperspectral satellite
data need to be explored. Applying ML methodologies to overcome the open challenges
of applied remote sensing is not an entirely new task. Land cover classification with
Sentinel-2 time-series data [8], object detection with very high resolution images [9], and
detection of anomalous movements possibly affecting underground pipelines [10] are all
possible applications for ML. Ref. [11] describes ML applications extending from bias
correction and cross-calibration to oil spill detection. Ref. [12] explains how Deep Learning
(DL) can perform complex tasks such as super-resolution and pan sharpening. However,
due to the complex nature of EO data, the application of ML is still an open challenge.
From the perspective of applied satellite remote sensing for marine plastic litter detection
and quantification, the adoption of ML is still in its infancy, and there is relatively little
literature on the topic (e.g., [13–16]). Ref. [13] explored the application of the Support Vector
Machine and Random Forest for detecting marine floating plastics through Sentinel-2
data, exploiting both spectral bands and spectral indices. Ref. [14] attempted to float
plastic debris in coastal areas with Sentinel-2 images and developed four classification
algorithms: two unsupervised (K-Means and Fuzzy C-Means) and two supervised (Support
Vector Regression and Semi-Supervised Fuzzy C-Means). Moreover, Ref. [14] identified a
combination of six bands from Sentinel-2 and two spectral indices to develop their models.
Ref. [15] compared the application of the Random Forest classifier and the Convolutional
Neural Network on Unmanned-Aerial-Systems-derived orthophotos of a sandy beach to
detect and map marine litter objects.

This paper presents a new ML approach applied to pan-sharpened hyperspectral
PRISMA data to detect floating plastic materials. Two ML methodologies were exploited
and combined: one unsupervised, the K-Means, and the other supervised, the Light
Gradient Boosting Model (LGBM). Each methodology yielded an accuracy related to the
ground truth (for the LGBM) and based on the distance from clusters (for the K-Means).
The final probability map is a linear combination of unsupervised and supervised output
accuracy, representing the probability that a pixel contains plastic or not.

The study’s objective was to develop a new method to effectively identify plastic
targets offshore through a combination of supervised and unsupervised ML algorithms
applied to pan-sharpened hyperspectral data remotely sensed by the new PRISMA satellite.
The study demonstrates that ML algorithms provide promising results in detecting floating
objects offshore even with a small dataset of satellite data. It was possible to significantly
reduce the false positives and detect floating objects more accurately by increasing the
training dataset.

2. Materials and Methods
2.1. Data Description
2.1.1. Study Area

For this investigation, satellite data were collected for two study areas: Tsamakia
Beach in Mytilene (Lat: 39.108406◦ ; Long: 26.565948◦) and Geras Gulf (Lat: 39.046606◦ ;
Long: 26.526732◦), which are located on the Greek island of Lesvos (Figure 1).
Six controlled experiments were set up to simulate real-world situations at both sites.
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The study sites offered an unobstructed space in which to run the controlled experiments,
with no interference from any touristic or commercial activities. Moreover, the seabed was
sufficiently deep and dark to simulate deep waters effectively, as the spectral response of
clear deep water has a unique characteristic in the blue part of the electromagnetic spectrum
and becomes insignificant and practically null in the Near-Infrared (NIR) and Short-Wave
Infrared (SWIR) portions of the spectrum.
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materials were chosen to cover all of the most diffused materials dispersed in the marine 
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Figure 1. Map of the south-eastern part of Lesvos Island (Greece), showing the study sites where
controlled experiments were performed: Tsamakia Beach in Mytilene (red) and Geras Gulf (yellow).
The configuration phase of this study was conducted on Tsamakia Beach, whilst the validation phase
was performed in Geras Gulf.

2.1.2. Field Data

Twelve floating plastic targets were built for the controlled experiments (Figure 2). The
targets were square in shape and made in three different sizes. For each size, four targets
were built with four different plastic materials: three targets were made of high-density
polyethylene (HDPE) (tarps in white, yellow, and green); three targets were made using
polyethylene terephthalate (PET) (transparent water bottles, green oil bottles), three targets
were made using polystyrene (PS) (sheets for building insulation, in cyan), and three targets
were composed of all the above materials over an equal surface area. The specifications
of the 12 plastic targets are reported in Table 1, and fully described in [17]. The different
sizes were defined based on the spatial resolution that was expected to be achieved with
the pan sharpening on PRISMA images, and the lowest possible threshold of accumulation
size detectable with these input data was identified. The various plastic materials were
chosen to cover all of the most diffused materials dispersed in the marine environment. The
12 targets were placed offshore and onshore during four PRISMA passages over the study
sites (Figure 1). The Global Positioning System (GPS) coordinates of the plastic targets were
collected during controlled experiments.
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Figure 2. Unmanned Aerial Vehicle (UAV) image of large-sized (T-1x, red circles), medium-sized
(T-2x, green circles), and small-sized (T-3x, yellow circles) floating plastic targets at Tsamakia Beach
(Mytilene) on 22 October 2020 (sensing date) as well as details of the plastic targets during the
construction stage. Due to their small sizes, the four small floating plastic targets (T-3x) were not
clearly visible.

Table 1. Specifications of the 12 plastic targets: three targets were made using high-density polyethy-
lene (HDPE); three targets were made using polyethylene terephthalate (PET); three other targets
were made using polystyrene (PS), and the last three targets were realised with all the above materials
over an equal surface area [17].

Type Size Type Size Type Size Composition

T-1A 5.1 m × 5.1 m T-2A 2.4 m × 2.4 m T-3A 0.6 m × 0.6 m HDPE

T-1B 5.1 m × 5.1 m T-2B 2.4 m × 2.4 m T-3B 0.6 m × 0.6 m PET

T-1C 5.1 m × 5.1 m T-2C 2.4 m × 2.4 m T-3C 0.6 m × 0.6 m PS

T-1D 5.1 m × 5.1 m T-2D 2.4 m × 2.4 m T-3D 0.6 m × 0.6 m HDPE + PET + PS

2.1.3. Satellite Data and Pre-Processing

In this study, data acquired by the new hyperspectral satellite PRISMA were used.
PRISMA was developed and operated by the Italian Space Agency in 2019. It records data
in the 400–2500 nm spectral window with 239 bands (66 bands in the VNIR and 173 in the
SWIR range), with a spectral resolution of less than 12 nm and a spatial resolution of 30 m.
The satellite also records a single panchromatic (PAN) band in the 400–700 nm spectral
window at a spatial resolution of 5 m. PRISMA’s relook time is approximately 29 days. The
technical characteristics of PRISMA are reported in Table 2.
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Table 2. PRISMA’s technical features.

Orbit Altitude Reference 615 km

Swath/Field of View (FOV) 30 km/2.77◦

GSD HS: 30 m
PAN: 5 m

Spatial Pixels HS: 1000
PAN: 6000

Pixel Size HS: 30 × 30 µm
PAN: 6.5 × 6.5 µm

Spectral Range
VNIR: 400–1010 nm (66 bands)
SWIR: 920–2500 nm (173 bands)
PAN: 400–700 nm

Spectral Sampling Interval (SSI) ≤12 nm

Spectral Width ≤12 nm

Cross-Track Variation in Centre
Wavelength (Smile) <+/−0.1 SSI

Spatial registration of spectral sampling
(incl. Keystone) ≤0.1 pixel

Spectral Calibration Accuracy +/−0.1 nm

Radiometric Quantisation 12 bit

VNIR SNR >200:1

SWIR SNR >100:1

PAN SNR >240:1

Absolute Radiometric Accuracy Better than 5%

Lifetime 5 years
VNIR: Visible and Near-Infrared; SWIR: Short-Wave Infrared; PAN: panchromatic; SNR: signal-to-noise ratio.

L1 products were exploited, as the atmospheric correction of L2D products affects
image radiometry over water bodies. All collected PRISMA data were pre-processed with
image fusion techniques to obtain pan-sharpened images with higher spatial resolution
than the initial high-spectral-resolution images, fully exploiting PRISMA’s panchromatic
band at a 5 m spatial resolution. Image fusion techniques were applied to increase the
sensor detectability of marine plastic litter (Figures 3 and 4). The pan sharpening was
performed using the Principal Component Analysis (PCA) substitution method, reaching
a spatial resolution of 5 m [18]. Bands with a low signal-to-noise ratio were removed.
The removed bands were affected by high atmospheric absorption between 1350 and
1470 nm and between 1800 and 1970 nm. Thus, the final pre-processed data consisted of
175 bands (from 239) and a spatial resolution of 5 m. More details on data acquisition
and pre-processing of the data utilised are reported in [17]. A summary of all PRISMA
acquisitions is reported in Table 3.

The study consisted of two phases: the configuration and validation phases. The
configuration phase was performed on Tsamakia Beach (Figure 1). During this phase,
plastic targets were placed offshore and onshore. Four PRISMA images were collected:
two images with targets offshore and two images with targets onshore. The offshore target
images were used as input data to train ML algorithms to detect and recognise plastic pixel
spectral behaviours. No information from onshore targets was used as input data; however,
these two images were used as a preliminary crosscheck to ensure that no plastic pixels
were detected offshore by ML algorithms.
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Figure 3. (a) Example of a subset of the entire Red–Green–Blue (RGB) pan-sharpened PRISMA
acquisition with a 1001 × 1001 pixel and 5 m/pixel spatial resolution. (b) A zoomed-in image of the
area of interest where plastic targets were placed.
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Table 3. Summary of collected satellite data.

Satellite Product Sensing Date Target Position Location Phase

PRISMA L1 18 September 2020 Offshore Mytilene Configuration

PRISMA L1 23 September 2020 Onshore Mytilene Configuration

PRISMA L1 11 October 2020 Onshore Mytilene Configuration

PRISMA L1 22 October 2020 Offshore Mytilene Configuration

PRISMA L1 23 June 2021 Offshore Geras Gulf Validation

PRISMA L1 29 June 2021 Offshore Geras Gulf Validation

The validation phase was conducted in Geras Gulf (Figure 1). New PRISMA data
were collected with plastic targets placed offshore. The ML algorithms trained during the
configuration phase were run with the new images during the validation phase.

For both applied ML methodologies, all parameters were calibrated on a subset of
input data, covering the plastic targets and nearby pixels, for both satellite data collected
with targets offshore.

Moreover, the two subsets were concatenated and normalised using a master image
(i.e., the PRISMA image acquired on 18 September 2020) (Figure 5). As the main goal of this
study was to verify the possibility of distinguishing the spectral signals of plastic targets
from other signals, the first step was the normalisation of the two PRISMA subsets using
a histogram normalisation algorithm [19]. By applying this technique, it was possible to
modify the histogram of each band of the second image (slave) using the histogram shape
of each band of the first image (master). Thus, the digital numbers of the two types of data
were more comparable and less affected by local or temporal features.

Remote Sens. 2022, 14, x FOR PEER REVIEW 7 of 16 
 

 

Figure 4. (a) Subset of the pan-sharpened PRISMA data acquired on 18 September 2020; (b) subset 
of the pan-sharpened PRISMA data acquired on 22 October; (c,d) indicate the positions of the large- 
and medium-size targets (T-1x in red and T-2x in blue as in Table 1). 

Table 3. Summary of collected satellite data. 

Satellite Product Sensing Date Target Position Location Phase 

PRISMA L1 18 September 
2020 

Offshore Mytilene Configuration 

PRISMA L1 23 September 
2020 

Onshore Mytilene Configuration 

PRISMA L1 11 October 2020 Onshore Mytilene Configuration 
PRISMA L1 22 October 2020 Offshore Mytilene Configuration 
PRISMA L1 23 June 2021 Offshore Geras Gulf Validation 
PRISMA L1 29 June 2021 Offshore Geras Gulf Validation 

The study consisted of two phases: the configuration and validation phases. The con-
figuration phase was performed on Tsamakia Beach (Figure 1). During this phase, plastic 
targets were placed offshore and onshore. Four PRISMA images were collected: two im-
ages with targets offshore and two images with targets onshore. The offshore target im-
ages were used as input data to train ML algorithms to detect and recognise plastic pixel 
spectral behaviours. No information from onshore targets was used as input data; how-
ever, these two images were used as a preliminary crosscheck to ensure that no plastic 
pixels were detected offshore by ML algorithms. 

The validation phase was conducted in Geras Gulf (Figure 1). New PRISMA data 
were collected with plastic targets placed offshore. The ML algorithms trained during the 
configuration phase were run with the new images during the validation phase. 

For both applied ML methodologies, all parameters were calibrated on a subset of 
input data, covering the plastic targets and nearby pixels, for both satellite data collected 
with targets offshore. 

Moreover, the two subsets were concatenated and normalised using a master image 
(i.e., the PRISMA image acquired on 18 September 2020) (Figure 5). As the main goal of 
this study was to verify the possibility of distinguishing the spectral signals of plastic tar-
gets from other signals, the first step was the normalisation of the two PRISMA subsets 
using a histogram normalisation algorithm [19]. By applying this technique, it was possi-
ble to modify the histogram of each band of the second image (slave) using the histogram 
shape of each band of the first image (master). Thus, the digital numbers of the two types 
of data were more comparable and less affected by local or temporal features. 

 

Figure 5. (a,b) are the Red–Green–Blue (RGB) representation of satellite data before histogram
normalisation: a pixel of the plastic target is highlighted in red, a pixel of shallow water is highlighted
in yellow. (c,d) are the RGB representation of satellite data after histogram normalisation. (e,f) show
how the spectral behaviour changed after the normalisation phase.

Because of the high number of correlated bands of the input PRISMA images and
to help the unsupervised algorithm to efficiently distinguish between different spectral
behaviours, the K-Means was applied after the dimensionality reduction for each pixel.
Conversely, the LGBM was applied to the entire spectral information given the availability
of ground truth data (i.e., pixels containing plastic materials), as the GPS coordinates of off-
shore targets were known. Before running the K-Means algorithm, different combinations
of pre-processing steps to reduce correlated bands were applied.
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Two different combinations of pre-processing were tested for K-Means: a feature
extraction algorithm using PCA, and a feature selection method that exploited a subset
of the spectral bands. Using PCA, the data can be described using the first four Principal
Components that represent 99% of the explained variance, while for the feature selection,
one of every four bands is taken into account to remove highly correlated bands and
preserve the shape of spectral signatures.

2.2. Machine Learning Methodologies

Two different ML algorithms were used to detect artificial plastic targets offshore. The
first is an unsupervised ML algorithm among the clustering methods called K-Means [20].
K-Means is an incremental approach to performing clustering. It can identify similar
behaviours and group them in a cluster using the nearness to the principal point (centroid)
based on specified metrics. The K-Means guarantees the method’s applicability even with a
new and different plastic target than the ones made for this study. The major issue in using
K-Means is finding the correct value of the K parameter and the optimal number of clusters
(or groups) accurately describing the variability of data. The silhouette analysis [21] was
used to identify the correct number of clusters. The second ML algorithm is a supervised
algorithm among the Decision Tree methods, termed the Light Gradient Boosting Model
(LGBM) [22]. Due to the small number of pixels representing plastic materials in the
collected PRISMA data, an unsupervised method was preferred. Unsupervised methods
can extract hidden patterns directly from raw input data without the need for ground truth.

Nevertheless, the accuracy obtained with unsupervised algorithms is lower than
the accuracy reached using supervised methodologies, which adopt labelling. On the
other hand, supervised methods can automatically identify complex relationships between
input data and ground truth. Thus, both methodologies were applied to output the final
probability mask of plastic presence to increase the accuracy of results. For the supervised
approach, four labelling classes were considered: land, shallow waters, deep waters, and
plastic targets. The four classes were manually detected through photo interpretation, and
the plastic pixels were extracted using only medium and large targets (Table 4). For the
latter, GPS coordinates collected during controlled experiments were exploited.

Table 4. Training set distribution per class.

Class Samples (No. of Pixels)

Deep Water 224

Land 406

Plastic Targets 42

Shallow Water 668

In the first step of the workflow, the K-Means was applied, and the optimal number of
clusters was set to eight through the silhouette analysis. The K-Means was applied twice:
in the first case, following the dimensionality reduction in input images through the PCA;
in the second case, reducing input images through band sub-sampling (retaining one of
every four bands) and after feature selection. In the first instance, the K-Means detected 8 of
12 targets (medium-size T-2x to large T-1x size), while in the second the K-Means extracted
9 of 16 targets (7 large T-1x and 2 medium T-2x from the concatenated images). In both cases,
the K-Means was not capable of detecting small targets, and issues arose in distinguishing
between plastic targets in shallow waters. Thus, preliminary masking of land and shallow
waters was required. In the second step of the workflow, the LGBM was applied. The
algorithm was trained on a dataset subset (80%), whilst validation was performed on
the remaining dataset subset (20%) to compute accuracy and avoid overfitting. The final
probability map was outputted by combining results from the K-Means with band sampling
and from the LGBM, based on their accuracy as follows:
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wKM = coKM/(coKM + oaLGBM) (1)

wLGBM = oaLGBM/(coKM + oaLGBM) (2)

where coKM is the internal consistency of the K-Means; oaLGBM is the overall accuracy
of the LGBM; wKM is the weight assigned to the K-Means; and wLGBM is the weight
assigned to the LGBM. The entire workflow is illustrated in Figure 6.
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Each algorithm was independently applied to the images, and the final map was
generated using the sum of the weights (Figure 7).

In a later stage, the pre-trained K-Means and LGBM algorithms were applied to the
other two satellite data collected during the configuration phase with the plastic onshore
targets (Table 3). This test served as preliminary testing of the trained algorithms, which
successfully did not detect any false-positive plastic pixels offshore. It is important to
highlight that the normalisation of input data was essential to obtain meaningful and
comparable results. The PRISMA images with the onshore targets were normalised using
the same master image employed in the training phase.
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3. Results

During the configuration phase of the study, the output probability map was able to
highlight plastic targets offshore. The computed LGBM overall accuracy referred to the
ground truth samples only and not to the whole map. To perform a quantitative analysis, a
threshold was set to binarise the map, and the overall accuracy was performed on the entire
map. Based on the test results, the threshold was set to 0.6. Thus, if a pixel value of the
output map was greater than or equal to 0.6, the pixel was assigned to “Class 1”—“Plastic”;
otherwise, it was assigned to “Class 0”—“No Plastic”. To compare the results, the ground
truth was built as follows: five pixels of Class 1 were selected around the GPS coordinates
of big targets, and one pixel of Class 1 was selected around the GPS coordinates of medium
targets, by taking advantage of photo interpretation. The other pixels of the ground truth
map were assigned to Class 0. The true-positive results are shown in Table 5, where overall
accuracy was 72.92%.

Table 5. True-positive results in the configuration phase.

Targets Image 1 Image 2 Ground Truth for Each Image

4 medium 2 pix 4 pix 4 pix

4 large 14 pix 15 pix 20 pix

Total 16 pix 19 pix 24 pix

Total% 66.67% 79.17% 100%
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The true-positive results show that the proposed method can effectively detect floating
objects offshore. In fact, considering only the central points of the targets as ground truth,
13 of 16 objects were highlighted. On the other hand, there were some commission errors.
Different points on the map were classified as “Class 1”, but were mostly isolated points
with low probability. It is clear that the score coming from the unsupervised method
was not significant with respect to the supervised method. Nevertheless, to perform the
proposed method in different zones, the contribution of the K-Means can enable achieving
high accuracy in the presence of a previously unidentified and different object. To confirm
these sound and promising results, the workflow presented was applied to another location
(validation phase) where the exact position of the target was unknown (Figures 1 and 8),
and two new PRISMA images were collected with the offshore targets (Table 3). During
the validation phase two, more large circular targets were placed in the Geras Gulf, one
made of wood and the second of plastics [23]. The new data were acquired in a different
season, under different light conditions, showing different histograms and different spectral
characteristics than the images collected and exploited in the configuration phase.
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The plastic targets were placed within the green rectangle. Two other large circular targets were
placed in the Geras Gulf, one made of wood and the other of plastics (red) [23].

Two tests were conducted within the validation phase. Supervised and unsupervised
ML algorithms trained during the configuration phase were applied to the new PRISMA
images for the first test. Figure 9 shows the output of the first test run on the satellite data
collected on 23 June 2021. In this case, pre-trained K-Means and LGBM detected three
floating objects (probably boats) on the surface of Figure 9 and two targets (one plastic and
one wooden) on the bottom. It is worth noting that it was possible to remove several false
positives using probability values. Domain experts can move the probability threshold to
highlight the desired output. Preliminary masking of land and shallow waters was required
to overcome a few open issues near the coastline. Figure 10 shows the output of the first
test, run on the satellite data collected on 29 June 2021. In this case, no relevant results were
obtained. The probability map (Figure 10a) did not highlight significant floating objects.
This could be related to ML architecture: the new data might have values far different
from data values collected during the configuration phase. Moreover, the new data values
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might not show enough variability compared to the data values of the configuration phase.
Furthermore, atmospheric conditions might have played a significant role.
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Figure 10. Results of the application of the supervised and unsupervised ML algorithms trained
during the configuration phase and applied on the PRISMA image collected on 29 June 2021 over
the Geras Gulf. (a) The probability map ranges between 0 and 1. (b) The probability mask with only
values greater than 0.80: no significant results were obtained with this test.

A second test was performed to solve issues that arose with the first test and to better
investigate the effect of training data augmentation on the final results. The K-Means and
LGBM were re-trained with three images for the second test: two images collected during
the configuration phase plus a third from the validation phase, collected on 23 June 2021.
The third image was used to increase the number of plastic pixels in training the LGBM
algorithm. LGBM was trained on a dataset subset (80%), whilst the validation was per-
formed on the remaining dataset subset (20%) to compute accuracy and avoid overfitting.
Figure 11 shows notable improvement compared to Figure 10.
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Figure 11. The output of the re-trained LGBM+K-Means with values (red pixels) representing the
probability of a floating object (from 0 to 1). With re-trained algorithms, it was possible to obtain
more accurate results. (a) A zoom of floating objects. (b) shows the two targets that were detected
with high probability.

4. Discussion

Two different phases were composed in this work, the configuration phase and the
validation phase. In the configuration phase, the methodology was set to build as general
a method as possible using a combination of two ML methods. The configuration phase
shows the capability of the proposed method to detect floating objects and distinguish the
spectral behaviour of shallow water. Furthermore, despite the small size of the medium
targets (~2.4 m × 2.4 m) compared to the sensor resolution (5 m × 5 m), the proposed
method was able to detect six of eight targets.

Hence, it is clear that during the configuration phase, the unsupervised method alone
was not enough to reach high accuracy. The results suggest that the supervised method
(LGBM) is sufficient in the presence of more ground truth data; in fact, LGBM’s overall
accuracy was about 96%, and all plastic targets (from medium to large) were efficiently
detected. Nevertheless, with the two methods combined, system operability was always
guaranteed and independent of ground truth availability. If only the K-Means was used,
several false positives would have been generated. The combination of the K-Means and
LGBM helped us to reach accurate results.

The validation phase was used to understand if the proposed method had the nec-
essary generality in terms of applications. In fact, to ensure that overfitting was avoided,
the method was applied in an independent area. The result shows that floating objects
were correctly detected (in the second test). Applying K-Means, the third acquisition was
used to increase the available information on plastic behaviour. Eventually, the re-trained
algorithms were applied to the satellite image of the validation phase collected on 29 June
2021, and the final probability map was output as previously described in the configuration
phase. Some false positives remained, but floating objects (Figure 11a) and bigger targets
(Figure 11b) were detected with higher accuracy than in the first test. It appears that using
more data in training ML algorithms allows for the detection of generic floating objects and
plastic targets to be improved.

5. Conclusions

The remotely sensed detection of accumulated plastic litter in the marine environment
remains a challenge due to the paucity of data availability and spatial and spectral resolu-
tions. Remote sensing applied to marine plastic litter detection is still in its early stages,
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but is an active hot research topic. Nevertheless, the detection of plastic accumulation and
spatial distribution can be essential for effective environmental monitoring in the hands
of regional and national agencies within the framework of domestic and international
regulations. It can represent the starting point for identifying areas prone to plastic litter
accumulation and evaluating the status of plastic pollution in marine areas.

The in situ detection of plastic accumulation for monitoring large surfaces raises certain
difficult issues given the narrow perspective applied to solve a global environmental
problem, the extreme spatial dynamicity of marine plastic pollution, and the financial
resources invested. Satellite data can be of help in this context. However, the availability of
satellite imagery to detect actual plastic accumulation with the proper spatial and spectral
resolutions, which are cloud-free and collected under good sea weather conditions, are the
main drawbacks of remotely sensed optical data. Moreover, these drawbacks slacken the
pace of research and development activities regarding this research topic.

The availability of new hyperspectral satellites, such as PRISMA, designed by the
Italian Space Agency, that collect data at high spectral resolution (i.e., 239 hyperspectral
bands plus a panchromatic band) and medium spatial resolution (i.e., 30 m for the hyper-
spectral cube and 5 m for the panchromatic band) together with ML algorithms creates
room for improvement.

This work aimed to develop a new method, based on a combination of two ML
techniques, one unsupervised (K-Means) and the other supervised (LGBM), to detect
12 plastic targets offshore by exploiting pan-sharpened PRISMA hyperspectral data. K-Means
alone detected eight of twelve targets, from 2.4 m to 5.1 m in size, while LGBM detected all
plastic targets (from 0.6 m to 5.1 m), reaching an overall accuracy of 96%. Finally, the two
methods were combined to guarantee operability and extend the capability of detecting
different spectral behaviours of the same object under different probable conditions during
satellite sensing. Furthermore, the combination of K-Means and LGBM helped to enhance
the distinction between floating objects and shallow water.

The results show the capability of the proposed method to detect floating objects
offshore. Furthermore, the combination of unsupervised and supervised algorithms was
able to reduce false positives, which allows this method to become a supportive tool for
domain experts.

Despite the small number of satellite input data, the study showed that the new
approach applied to PRISMA hyperspectral data can effectively identify plastic floating ma-
rine objects larger than 2.4 m. Furthermore, the study suggests that training ML algorithms
with a more robust satellite dataset using plastic materials can improve the performance
of this novel method, reducing false positives such as boats or those caused by sunglint.
Increasing the satellite dataset with floating plastic material would also allow the explo-
ration of Deep Learning methodologies, such as Generative Adversarial Networks, and the
implementation of different ML algorithms.
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