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Abstract: Landslide disasters frequently occur along the highway G30 in the Guozigou Valley, the
corridor of energy, material, economic and cultural exchange, etc., between Yili and other cities of
China and Central Asia. However, little attention has been paid to assess the detailed landslide
susceptibility of the strategically important highway, especially with high spatial resolution data
and the generative presence-only MaxEnt model. Landslide susceptibility assessment (LSA) is a first
and vital step for preventing and mitigating landslide hazards. The goal of the current study was to
perform LSA for the landslide-prone highway G30 in Guozigou Valley, China with the aid of GIS tools
and Chinese high resolution Gaofen-1 (GF-1) satellite data, and analyze and compare the performance
of the maximum entropy (MaxEnt) model and logistic regression (LR). Thirty five landslides were
determined in the study region, using GF-1 satellite data, official data, and field surveys. Seven
landslide conditioning factors, including altitude, slope, aspect, gully density, lithology, faults density,
and NDVI, were used to investigate their existing spatial relationships with landslide occurrences.
The LR and MaxEnt model performance were assessed by the receiver operating characteristic
curve, presenting areas under the curve equal to 0.85 and 0.94, respectively. The performance of the
MaxEnt model was slightly better than that of the LR model. A landslide susceptibility map was
created through reclassifying the landslides occurrence probability with the classification method
of natural breaks. According to the MaxEnt model results, 3.29% and 3.82% of the study region is
highly and very highly susceptible to future landslide events, respectively, with the highest landslide
susceptibility along the highway. The generated landslide susceptibility map could help government
agencies and decision-makers to make wise decisions for preventing or mitigating landslide hazards
along the highway and design schemes of highway engineering and maintenance in Guozigou Valley,
the mountainous areas.

Keywords: landslide susceptibility; highway; maximum entropy model (MaxEnt); logistic regression
(LR); GF-1; ENVI 5.3; Guozigou

1. Introduction

The term landslide describes a broad range of physical phenomena involving the
movement of a mass of soil, debris, or rock along outward and downward slopes as a result
of gravitational pull. Globally, landslides are one of the most common, dangerous, and
destructive geological hazards in mountainous areas, leading to significant ecological and
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geological environments disruption, socioeconomic losses, private properties and public
facilities damages, and casualties, especially along mountain highways that run through
hazardous areas [1,2]. The causes of landslide occurrence are commonly various factors
associated with environmental, geological, and geomorphological conditions [3,4], and
they are triggered by earthquakes, rainfall, swift snowmelt, water level change, and stream
undercuts or excavations [5]. Meanwhile, extensive anthropogenic activities such as con-
struction and continuous expansion of the road network, urban development, deforestation,
and agricultural practices lead to landslide occurrence [6].

Generally, roads and other linear structures are laid along the rugged topography
with deep river valleys and high mountain ridges, which makes them generally subject to
landslide. The construction of roads and other such infrastructures in the mountain region
in particular increases the landslide occurrence probability (LOP) due to cutting works [7].
The climate change also intensifies the probability of road networks to landslides [8]. The
landslides along highways in mountainous area causes infrastructure disruption, traffic
jams, and traffic restrictions, etc. [9,10]. Landslide disasters along the highway are a crucial
problem in hilly regions and have become a concern of government departments for the
socio-economic development of a nation. Landslide susceptibility assessment (LSA) along
highways is essential for landslide hazard mitigation and prevention as it could show the
possibility of occurrence of landslide in a particular region and identify the high landslide
susceptibility zones (where there is a very high possibility that landslides would occur)
and quantitatively assess the change of LOP that is related to hypothesized or known
conditioning factors [5].

The LSA depends on understanding the complicated processes of mass movement
and their conditioning factors [11,12]. A reliable and accurate LSA demands detailed and
high-quality data and a suitable methodology for modeling and analysis. The employing of
remote sensing and Geographic Information System (GIS) have made the LSA easier [13,14].
GIS helps in managing the spatial and temporal data effectively because it can integrate
all kinds and scales of data [13]. Remote sensing data provide abundant, hard-to-gather
information, especially for rugged mountainous regions where landslides typically oc-
cur [13]. For example, the high-spatial-resolution satellite data are conducive to derive
more accurate information about landslides and their conditioning factors.

Numerous approaches have been developed for LSA. They can be roughly divided
into four main classes: heuristic, physically-based, conventional statistical, and machine
learning methods [15–17]. Among these models, the heuristic methods, such as the analytic
hierarchy process (AHP) [18], are always influenced by the experts’ subjective opinions [2].
Deterministic methods (physically based methods) can better reveal the mechanism of
landslide occurrence, but require detailed geotechnical physical and mechanical parameters
for describing the physical mechanisms of landslides [19], and are thus appropriate at the
site-specific (single slope) scale [15]. Conventional statistical methods such as the logistic
regression (LR) method are far more appropriate for larger areas and provide more objective
and reproducible quantitative results, but are strongly dependent on the historical land-
slide data, the conditioning factors that cause landslides, and the priori assumptions [15].
Machine learning methods, for example, artificial neural network (ANN) [20,21], support
vector machine (SVM) [21,22], tree-based methods (e.g., random forest, decision tree, extra
trees) [21,23], maximum entropy (MaxEnt) [24–26], and convolutional neural networks
(CNNs) [27] have been applied to LSA to overcome the limitations of statistical methods.
Additionally, several hybrid methods have also been proposed by ensembles [28] or by
integrating algorithms that have different benefits or that focus on various processing
stages, such as pre-processing, feature selection and extraction, optimization, and model-
ing [29], such as the fuzzy logic relation [14], the ensembles of SVM [30], and the adaptive
neuro-fuzzy inference system (ANFIS) [31]. Generally, these models are inherently nonlin-
ear, have higher prediction accuracy, and require less priori historical landslide data [30];
nevertheless, they fail to describe the physical processes of landslide occurrence. Ad-
ditionally, spurious correlations, over-fitting, and difficulties in interpreting the results
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are drawbacks of these “black box” models [16]. At present, relevant studies show that
different models have different performances on different research zones, and there is no
consensus regarding which model is the best model for LSA. Furthermore, it is considerably
meaningful to investigate and compare various methods to obtain accurate and reliable
LSA results [19,32].

In current study, LR and MaxEnt models were selected to perform LSA because they
represent conventional statistical and machine learning models well, respectively. LR is
commonly applied for LSA by many researchers, as it is a simple and robust statistical
model [1]. Numerous studies have used the LR in LSA around the world, providing
accurate and reliable results [6,12,13]. MaxEnt is a well-known, generative presence-only
machine-learning model which obtains information from very limited data to forecast
landslide susceptibility with high precision [24]. The MaxEnt model has been also widely
employed in LSA in many regions by researchers [24–26,33].

The highway G30 in Guozigou Valley plays a very important role in Xinjiang, China
and even in Central Asia, especially under the strategy of the Belt and Road. It was the
strategic pathway of the ancient Silk Road and has become the corridor of energy, material,
economic, and cultural exchange, etc., between the Yili Valley and the east part of China and
Central Asia. However, due to its unique environment geological conditions and climate
change in recent years, landslide disasters frequently occur in the Guozigou Valley Area,
especially along the highway, which brings risks to highway engineering, maintenance,
and transportation and causes great damage to people’s lives and properties. Although
the LSA has been conducted in a regional context in the Guozigou Valley before [34,35],
little focus has been directed toward evaluating the detailed landslide susceptibility of the
strategically important mountain highway G30 in the Guozigou Valley, with high spatial
resolution data and the generative presence-only MaxEnt model. The objective of the
current research was to evaluate the landslide susceptibility along the national highway
G30 in Guozigou Valley with the aid of GIS and Chinese high-resolution GaoFen-1 (GF-1)
satellite data and to analyze and compare the predictive ability of LR and MaxEnt model for
the LSA to determine what portions of the highway are high landslides-prone areas. LSA
along highway G30 corridors in the Guozigou Valley could provide local authorities and
policy-makers important references for disaster prevention and mitigation, risk evaluation,
local infrastructure construction, tourism development, land-use planning, and regional
economic development.

2. Materials and Methods

The following diagram shows the steps involved in the LSA in this research (Figure 1).
There are four major steps. The first one is data preparation, including landslides inventory
and conditioning factors. The second one is data correlation analysis through the frequency
ratio, a bivariate statistical method. The third one is the landslide susceptibility modeling
based on LR and MaxEnt methods. The final one is the models validation using the receiver
operating characteristics (ROC) curve and area under the curves (AUC).
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Highway G30 in the Guozigou Valley, China, a steep, mountainous region where land-
slides occur frequently. It starts from Sayram Lake to the Guozigou toll gate and has a 
total length of 35 km (Figure 2). Guozigou Valley is a meandering valley across the 
Northern Tianshan Mountains in Xinjiang Uygur autonomous region, China. North of 
the valley is the Sayram Lake, and to the south lies the Ili Valley. It is the only way to 
reach the Ili Valley and also an important section of the ancient Silk Road. It has long 
been an essential passage to Central Asia and Europe. The highway G30 in Guozigou 
Valley plays a very important role in Xinjiang, China and even in Central Asia as an 
important highway corridor from the point of view of energy, material, economic, and 
cultural exchange, etc., especially under the strategy of the Belt and Road. It is considered 
as a “lifeline” for this region, but it faces frequent landslide events due to the extreme 
climate change in recent years, its geological stability having been damaged by human 
engineering activities and its own special geomorphological environment conditions 
[34,35]. Especially in May 2016, the heavy rain from 19:00 on 9 May 2016 caused land-
slides, and the collapse of roadbeds and retaining walls, and washed away the roadbed at 
K4161 + 000–K4196 + 720 (From Sayram Lake to Guozigou Toll station) G30 highway on 
10 May 2016, which seriously affected the safety of vehicles and people. Landslides occur 
in a large number of places, blocking and damaging the road, and pose a severe threat to 
highway engineering, maintenance, and operation and even to people’s lives and prop-
erties, warranting our attention to the LSA in this area. 

Figure 1. A diagram of the research steps of this study.

2.1. Study Area

The research area (44◦18′N–44◦31′N, 80◦55′E–81◦14′E) is a 3 km buffer of National
Highway G30 in the Guozigou Valley, China, a steep, mountainous region where landslides
occur frequently. It starts from Sayram Lake to the Guozigou toll gate and has a total length
of 35 km (Figure 2). Guozigou Valley is a meandering valley across the Northern Tianshan
Mountains in Xinjiang Uygur autonomous region, China. North of the valley is the Sayram
Lake, and to the south lies the Ili Valley. It is the only way to reach the Ili Valley and also
an important section of the ancient Silk Road. It has long been an essential passage to
Central Asia and Europe. The highway G30 in Guozigou Valley plays a very important
role in Xinjiang, China and even in Central Asia as an important highway corridor from
the point of view of energy, material, economic, and cultural exchange, etc., especially
under the strategy of the Belt and Road. It is considered as a “lifeline” for this region, but
it faces frequent landslide events due to the extreme climate change in recent years, its
geological stability having been damaged by human engineering activities and its own
special geomorphological environment conditions [34,35]. Especially in May 2016, the
heavy rain from 19:00 on 9 May 2016 caused landslides, and the collapse of roadbeds and
retaining walls, and washed away the roadbed at K4161 + 000–K4196 + 720 (From Sayram
Lake to Guozigou Toll station) G30 highway on 10 May 2016, which seriously affected the
safety of vehicles and people. Landslides occur in a large number of places, blocking and
damaging the road, and pose a severe threat to highway engineering, maintenance, and
operation and even to people’s lives and properties, warranting our attention to the LSA in
this area.
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Figure 2. Location map of the study area where the background is the GF-1 satellite bands 1, 2, and
3 true-color composed image acquired in July 2020.

2.2. Landslide Inventory

Compiling landslide inventory is the crucial procedure of LSA [36]. The landslide
inventory map shows the distribution and boundaries of landslides occurring in the land-
scape and provides important information for analyzing the relation of the landslide
distributions to the conditioning factors, and for predicting the possibility of future land-
slides [37]. The landslide inventory in the current study was produced by the combination
of the literature data, historical records, field surveys, Google Earth images, as well as
data obtained through visual interpretation of GF-1 satellite data. GF is a series of Chinese
civilian remote sensing satellites for the state-sponsored program China High-definition
Earth Observation System (GF series, GF represents GaoFen, meaning “high resolution” in
Chinese). GF-1 is an optical satellite with a 2 m resolution pan-chromatic camera, an 8 m
resolution multi-spectral camera, and a 16 m resolution wide-angle multi-spectral camera.
High spatial and temporal resolution remote sensing data can provide highly accurate
information on ground features and enable the small-scale monitoring of highway geologi-
cal hazards. Landslides can be distinguished from high-resolution satellite data based on
their geomorphological characteristics, such as breaks in the bare soil and vegetated area,
mass movement tracks, and appearance of flow materials in streams and gullies [13]. Field
investigations were used to validate the previous landslide detected from GF-1 images and
to find new landslides in the study region. Thirty-five historical landslides were identified
along the highways in Guozigou Valley from 2002 to 2020 (Figure 3). Figure 4 shows
the images of a few landslides along the highway in the study area. In this area, most
landslides (in numbers) occurred along the highway (42.86%). The smallest and largest
landslides were approximately 981.605 m2 and 294,742 m2, respectively. For landslide
modeling, the centroid of the landslide polygon was extracted using ArcGIS 10.2 software
packages from ESRI (Redlands, CA, USA) to present the landslide position. This can greatly
simplify the landslide data, and it was also verified as practicable by many researchers [28].
Therefore, all landslides are represented in the form of points in this study, which makes
the analysis easier.
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2.3. Landslide Conditioning Factors

Landslides are induced by a combination of numerous inter-related landslide con-
ditioning factors (LCFs) and sometimes one can be more dominating than others [16].
Therefore, the selection and preparation of these LCFs to be considered as independent
variables for the modeling is a vital procedure for the accuracy of the LSA model in de-
termining landslide-susceptible regions [12]. However, there are no universal guidelines
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or set procedures to select LCFs. The selection of LCFs relies on the geological character-
istics of the research region, the category of landslide, the main causes of landslide, the
availability of data, the evaluation method, and the scale of the analysis [37]. The external
and triggering factors such as earthquakes, precipitation, and erosion, etc. accelerate the
frequency and speed of landslide disasters [38]. However, they were not considered in the
current study because their data were not available in this study region.

In this study, seven LCFs (Table 1) were selected for determining the landslide-
susceptible zones in this study region including, elevation, slope, aspect, gully density,
lithology, fault density, and normalized difference vegetation index (NDVI), which were
chosen based on prior studies in the region of Guozigou Valley [34,35], the information col-
lected from the literature [19,21], and field investigation. These variables are often applied
in previous representative LSA. The data of slope, aspect, and gully density was extracted
from the ALOS Palsar 12.5 m resolution Digital Elevation Model (DEM) in 2011. The data
of lithology and faults was obtained through vectoring the 1:200,000 scale geological map,
which was obtained from the reference room of the first regional geological survey brigade
of Xinjiang Bureau of Geology and mineral resources. The NDVI is generated based on
GF-1 satellite images (10 m resolution, acquired in July 2020 from the China Center for
Resources Satellite Data and Application) using ENVI 5.3 software. Due to the different
data types, coordinate systems, and description methods of the original data, all data
were preprocessed using ArcGIS 10.2 in a unified way to achieve the purpose of factor
classifications. Considering the calculation feasibility and accuracy, the vector layers were
changed into raster layers having a 10 m × 10 m pixel size. The interpolation method of
Inverse Distance Weighted (IDW) of the Spatial Analyst extension of ArcGIS 10.2 was used
to resample the raster layer to 10 m resolution. Grid unit was used as a LSA unit. All factor
data were projected to UTM coordinate system zone 44 with a WGS 84 Datum.

Table 1. Data used in the study.

Conditioning Factors Data Type Source

Elevation Continuous Digital Elevation Model (DEM)
Aspect Categorical (9 classes) DEM
Slope Continuous DEM

Gully Density Continuous DEM
Lithology Type Categorical (5 classes) Geology Map
Fault Density Continuous Geology Map

NDVI Continuous GF-1 satellite image

In this research, the LCFs have categorical (nominal) type, in which data has no
natural order or ranking (e.g., aspect and lithology), and continuous (ordinal) type where
the data has ranking and order (e.g., elevation, slope, gully density, fault density, and
NDVI). The categorical factors were reclassified by manual methods based on previous
research experience and literature data. The reclassification of continuous variables mainly
used the Jenks Natural Breaks algorithm, which can determine the thresholds between
categories of ordinal factors for the sake of maximizing the variance between classes and
minimizing the variance inside of each class.

The relation of landslide occurrence to conditioning factors is described as follows.
The landslide influencing factor maps are shown in Figure 5.
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2.3.1. Elevation

Elevation is the height above sea level. It is one of the topographic factors which
greatly influence the landslides occurrence [39]. It was applied in nearly all the LSA. It
can be considered as an important factor in the LSA because it has direct impacts on
the load-carrying capacity of the slope. In mountainous regions, external conditions,
for instance, vegetation-growing conditions, rainfall, soil moisture, as well as human
engineering activities are tightly associated with elevation. Moreover, the weathering
profile also depends on the region elevation. In the current study, the elevation map was
achieved through the classification of DEM. It varied from 941 m to 2940 m from sea level
(Figure 5a).

2.3.2. Aspect

Aspect provides a description of the ground surface orientation that is surveyed clock-
wise in degrees from 0◦ (due north) to 360◦. It is another important topographical factor in
LSA. Aspect can affect many processes that have important impacts on the occurrence of
landslides [40]. It affects rainfall infiltration and runoff, and the exposure to solar radiation
that causes the moisture and vegetation distribution to be uneven. Usually, aspect has
effects on the water content of soil. North-facing slopes usually have higher soil moisture
and denser vegetation cover, which can protect greatly soil from shallow landslides and
erosion [39], and most of the south-facing slopes lack vegetation or are sparsely vegetated,
leading to swift mass erosion on moderate to abrupt slopes. Aspects in the study area were
extracted from the DEM through the Aspect function of the ArcGIS 10.2 3D Analyst Toolbox
and divided into nine classes comprising flat (−1), North (0◦–22.5◦; 337.5◦–360◦), North-
east (22.5◦–67.5◦), East (67.5◦–112.5◦), Southeast (112.5◦–157.5◦), South (157.5◦–202.5◦),
Southwest (202.5◦–247.5◦), West (247.5◦–292.5◦), and Northwest (292.5◦–337.5◦), as in other
studies (Figure 5b) [15,23].

2.3.3. Slope

Slope is generally believed to be an important topographical factor that has direct
effects on landslide occurrence [39]. It was computed for each grid as the maximum
elevation difference between the grid and its eight surroundings and extracted from DEM
with the Slope function of the ArcGIS 10.2 3D Analyst Toolbox. Landslide occurrence
increases along with the increase of slope. Usually, the slope will also impact the rainfall
infiltration, the soil moisture, the shear stress distribution, and the movement processes of
the landslide mass [39,41]. For this study, slope angle was within the ranges of 0 to 80.08◦

and the region lower than 30◦ accounted for over 70% of the study region, and the slope
was divided into five categories with an equal intervals of 10◦ such as 0–10◦, >10◦–20◦,
>20◦–30◦, >30◦–40◦, and >40◦ (Figure 5c).

2.3.4. Gully Density

In the study, gully was represented by stream. Streams in the study area were ex-
tracted from the DEM through the hydrology function of the ArcGIS 10.2 Spatial Analyst
Toolbox. The gully density was calculated to be the total length of stream in each grid
area [34,35], which was also prepared through the ArcGIS Spatial Analyst tools. It was
classified to 0–2.08 km/km2, 2.08–4.32 km/km2, 4.32–5.42 km/km2, 5.42–6.86 km/km2,
and 6.86–9.67 km/km2 using the natural breaks method (Figure 5d).

2.3.5. Lithology

Lithology (rock type) has an important effect on the landslides occurrence, especially in
mountainous regions [21]. Various lithology indicates that the physical and geo-mechanical
features of rocks are clearly different, including type, strength, density, permeability, anti-
deformation ability, weathering degree, and durability [12]. In the current study, the
lithology was obtained from a 1:200,000-scale geological map. To enhance the resolution of
the lithology map, GF-1 satellite data (10 m spatial resolution) were employed to testify
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the lithology types through image enhancement techniques (band ratio combinations and
principle component analysis) [17]. The lithology was classified into six classes including
loose, softer, soft, hard, harder, and other (water) in the study area (Figure 5e) [42]. Granite
and diorite were divided into the harder rock class; dolomite, limestone, and sand slate
were divided into the hard rock class; mudstone, shale, phyllite, ophiolite, and fuelrock, etc.
were divided into the softer rock class; quaternary unconsolidated sediments and extremely
soft rocks with uniaxial compressive strength less than 5 MPa were divided into the loose
rock class.

2.3.6. Fault Density

Faults play a significant role in the weakening of rock materials (reducing the strength
of rock), which results in rock mass fracture and weathering, and causes landslides to
occur [40]. In this study, the 1:200,000-scale geological map was employed to achieve the
faults. Google Earth satellite images (<1 m resolutions) and GF-1 images (10 m resolution)
were employed to testify and obtain other crucial faults that were not shown in the geologic
map through the visual interpretation of satellite data [17]. The effect of faults is considered
in the form of fault density in this study. Fault density is considered as an important indica-
tive factor for landslide occurrence [43]. The fault density (km/km2) was computed from
the fault polyline data through the ArcGIS Spatial Analyst tools. The fault density was ex-
pressed to be the total length of faults in each grid area. It was classified to 0–4.09 km/km2,
4.09–9.55 km/km2, 9.55–13.08 km/km2, 13.08–17.17 km/km2, and 17.17–29.00 km/km2

using the natural breaks method (Figure 5f).

2.3.7. Normalized Difference Vegetation Index (NDVI)

The NDVI is one crucial factor quantifying the vegetation growth state and density,
which affects the rainfall seepage, surface runoff, soil erosion, and rock weathering. Gener-
ally, the vegetation places a central part in immobilizing plenty of water and raising the
shear strength and cohesion of soil [44]. Thus, NDVI was often thought to be an influencing
factor in the LSA and was broadly employed in many studies [23]. The NDVI value varies
from −1 to 1 in which negative one represents barren land and positive one indicates dense
vegetated areas (Figure 5g). The larger the NDVI, the thicker the vegetation. The NDVI
of this study was estimated using the GF-1 satellite data (acquired in July 2020) based on
Equation (1):

NDVI =
(NIR− R)
(NIR + R)

(1)

where R and NIR represent the spectral reflectance measured in the near-infrared and
visible (red) zones, respectively. For GF-1, NIR and R are band 5 (0.77–0.89 um) and band 4
(0.63–0.69 um).

2.4. Bivariate Method: Frequency Ratio

Building a model of landslide susceptibility requires certain knowledge of the relation-
ship between the landslide distributions and the LCFs because it is commonly supposed
that landslides will occur under similar conditions as in the past [9]. A GIS-based bivariate
statistical method, the Frequency Ratio (FR), was applied to analyze the spatial relations
between landslide distributions and LCFs individually and the effects of LCFs on the
landslide occurrence [45]. The FRi for each conditioning factor category is expressed as
below [46]:

FRi = (
Nij

Aij
/

Nr

Ar
) (2)

where Nij is the pixel number of landslides in the study area related to the j-th category of
i-th causative factor. Aij is the number of pixels related to the j-th category of i-th causative
factor. Nr and Ar are the total pixels of landslides and the study region. Therefore, it is
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obvious that
Nij
Aij

shows the landslide density in a factor category (LD) and Nr
Ar

shows the
landslide density in a causative factor.

A FRi larger than 1 shows that the ith class of the factor under consideration is
favorable for the occurrence of landslide. A FRi less than 1 indicates that the ith class is not
good for the occurrence of landslide [45]. If FR values of all classes of a factor were less
than 1, then the factor was deleted from the potential factors. Generally, the greater the FRi
value, the higher the LOP under this factor, and vice versa [3].

2.5. Landslide Susceptibility Models
2.5.1. Logistic Regression

LR is frequently used for LSA because of its reliability [12,47]. LR is a linear multivari-
ate regression analysis model which establishes the relationship between a dichotomous
dependent variable Y, assigned the values 0 or 1 for ‘absence’ and ‘presence’ of landslides,
and k independent variables (the conditioning factors), x1, x2, . . . . . . , xk, including categor-
ical and continuous ones [6]. Compared with conventional linear regression methods, the
LR method restrains the result value within the range of 0 and 1 using a logistic function,
which is also called the sigmoid function. The LR predicts the LOP rather than directly
predicting the landslide presence or absence [48]. Y is a Bernoulli distribution having the
parameter pi = Pr(Yi = 1). So, pi is the probability of landslides occurrence for given
values x1, x2, . . . . . . , xk at location i [6]. In a LR, the expected value of Yi equals:

E(Yi) =
1

1 + exp[−(β0 + ∑k
j=1 β jxij)]

(3)

The LR model applied to LSA for k independent variables was built as:

pi = Pr(Yi = 1) = exp(β0 + ∑k
j=1 β jxij)/[exp(β0 + ∑k

j=1 β jxij) + 1] (4)

In LR, a Logit, namely, the natural logarithm of the odds, which is the ratio of the
probability Pi while Yi is 1 and the probability 1− Pi while Yi is 0, varies from −∞ to +∞
and is a linear regression function of the independent variables [47].

Logit(Pi) = log(odds(Pi)) = log(
Pi

1− Pi
) = β0 + ∑k

j=1 β jxij (5)

where, the βj, j = 0, . . . , k were regression coefficients that determine the importance of
the independent variables to landslide occurrence, and xij denotes the category of the
jth conditioning factor at location i. The regression coefficients, β j, were estimated by a
maximum likelihood estimation (MLE). If the coefficient β j is positive, eβ > 1, the factor is
positively correlated with landslides; if β is negative, eβ is within the range of 0 a 1. When
pi is 1, it is suggested that landslides will certainly occur at this location, and when pi is 0,
it is implicated that there is no landslide.

Both the data of landslide and nonlandslide points for training and verifying the LSA
model were required. Nonlandslide data can greatly prevent statistical methods from
overestimating landslide susceptibility [32]. However, landslide absence data cannot be
directly obtained. In this study, the nonlandslide points were randomly generated in the
landslide free area by ArcGIS 10.2, which is a frequently used method to produce landslide
absence data for LSA [6]. Altogether, 135 points were selected, in which 100 points were
nonlandslide and 35 points were landslide. Seven attributes of each point including all the
selecting factors data were obtained through the Spatial Analyst Tools in ArcGIS 10.2.

In this study, the LR model was been created with the software SPSS 22.0 ® (IBM). All
the factors were taken as ordinal variables. In the model, the forward stepwise mode was
used for considering the independent variables as in the literature [15].
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2.5.2. MaxEnt

MaxEnt, as a generative presence-only machine-learning method, originates from in-
formation theory, and was initially put forward by Shannon [49,50]. MaxEnt was originally
developed to predict the spatial pattern of species distribution [49]. It merely employs the
presence positions of landslides and Gibbs distribution to calculate the landslide probability
distribution function (PDF) by applying Bayes’ rule rather than using a discriminative
strategy [49].

The presence-only characteristic of the model can be considered as an advantageous
over other methods when the data are limited and in remote and inaccessible areas [49].
This characteristic is extremely crucial to landslide research because one cannot eliminate
the probability that an area in the absence of landslide has high landslide occurrence
potential. This method does not demand large amounts or high accuracy of investigation
data; it can use both continuous and categorical variables, and it can also be employed to
determine the importance of the conditioning factors without priori hypotheses [24].

This method was formulated according to the principle of maximum entropy, and
ensures that the best approximation satisfies all the constraints on the unknown probability
defined by the relation of the landslide occurrence data to their conditioning factors [26].
Thus, the best (optimum) landslide PDF selected for the unknown distribution ought to
have maximum entropy (maximum quantity of information). The entropy formula based
on the Boltzmann’s H-theorem can be defined as:

H(π̂) = −∑xεX π̂(x) ln π̂(x) (6)

where π is the unknown landslide PDF on a finite group of pixels x within the research
region X; ln is the natural logarithm; and π̂ is the approximation of π. For each x, π̂ must
have a non-negative probability value P(x) to describe the LOP.

To estimate P(x), a function fx is established to describe the information contained in
the LCFs [49]:

fx = λ1 f1 + λ2 f2 + λ3 f3 + λ4 f4 + · · ·+ λi fi (7)

where fi is the conditioning factor i, and λi is a group of parameters. The probability of
P(x) describes the maximum entropy distribution. The equation for maximum entropy
distribution which belongs to the group of Gibbs’ distributions (exponential distributions)
can be written as [24]:

P(x) =
e fx

Zλ
(8)

where Zλ is a normalized coefficient guaranteeing that the sum of probabilities P(x) is
one, and e is the mean of the function fx in the model of landslide occurrence, and can be
expressed as

e =
1
m ∑m

i=1 fxi (9)

The value of conditioning factor (E) of P must be extremely near to e. The constraint
condition (ln Zλ) of P is |e − E| < β, where β is of any value.

E = ∑x∈X P(x) fx (10)

ln Zλ =
1
m ∑m

i=1 fxi + ∑j β jλj (11)

MaxEnt begins with a uniform PDF as a prior guess with the same probability for
all pixels. Afterwards, a number of constraints enforce the uniform PDF to develop and
produce a spatially optimized PDF of the landslide occurrence, which fulfills the constraints.
This step begins with a random walk in the space of model parameters and obtains more
precise results using an iterative procedure of learning/fitting and reassessing outputs.

MaxEnt software, version 3.4.1 [50], was used to study the relationship between
landslides and its likely conditioning factors and to achieve LSA in our study. The locations
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of previous landslides were input as a dependent variable. The conditioning factors were
input as independent variables. The data were in a 10 m grid format. The predefined
defaults were selected for tuning parameters that were 1000 iterations, 10,000 random
background locations (pseudo-absence locations), 0.5 as the initial prevalence value, 0.00001
as the convergent threshold, and the automatic feature selection strategy [24,26,33,49]. The
model proceeded by fairly distinguishing the spatial distribution of landslides from that
of the non-landslides and completely fitting on the training sites to ultimately provide a
precise estimation of the landslide susceptibility in the calculation domain. The software
was embedded with various data manipulation functions which considerably eased the
modeling process. The primary result of MaxEnt was the LOP in each pixel that ranged
from 0 to 1 [49,50]. These results could easily be imported into the GIS software. More
mathematical details can be found in references [26,49].

2.6. Landslide Susceptibility Maps

Subsequently, the probability of the landslide occurrence was classified into four
susceptibility levels containing low, moderate, high, and very high susceptibility zones,
employing the natural breaks (Jenks) classification method in ArcGIS 10.2 to produce a
landslide susceptibility map (LSM) [30]. The natural breaks (Jenks) classification method is
a well-adapted selection to classify raster layers [12]. It has been successfully applied in
various studies [30].

2.7. Model Performance

The ROC curve based on confusion matrices was applied to assess the prediction
precision of the developed landslide susceptibility models [51]. The ROC curve, also
called the success rate curve, compares the estimated probability with the real landslide
distribution. It is the plot of the sensitivity (true positive rate) versus the 1-specificity (false
positive rate) calculated for different susceptibility threshold values, and it was regarded as
the statistic evaluation of the prediction capability of the model [20,51]. The value of the
area under the curve (AUC) can quantitatively determine the accuracy of landslide model
predictions [48]. It is one of the most useful accuracy statistics for LSA [48]. The value of
AUC under the ROC curve changes from 0.5 (diagonals) to 1, which having a larger value
shows the higher predictive power of the method [48]. The AUC value is divided into
five categories: poor (0.5–0.6), moderate (0.6–0.7), good (0.7–0.8), very good (0.8–0.9) and
excellent (0.9–1) predictive ability of the model [52]. In the current study, 35 landslides
were employed to validate the two models results. Besides, percentage of landslide pixels
on each susceptibility zones was computed to assess the model’s predictive precision.

3. Results
3.1. Bivariate Frequency Ratio

FR values of each category of the seven LCFs are presented in Table 2. Seven factors
had correlations with the occurrence of landslide because a FR value greater than 1 was
shown in their class. When the slope was bigger than 20◦, the FR value was higher than 1,
which means slope greater than 20◦ had a positive correlation with landslides. In the slope
categories of 0◦–10◦, 10◦–20◦, 20◦–30◦, 30◦–40◦, and 40◦–90◦, the FR values were 0.31, 1.18,
1.12, 1.07, and 1.79, respectively, and LD values, the ratio of landslide area in a category
to the category area, were 0.13%, 0.50%, 0.48%, 0.46%, and 0.77%, respectively. The LOP
was the largest in the elevation category of 1255–1592 m (FR = 4.43) with a LD of 1.90%.
From the aspect FR results, it can be noticed that the LOP in the southeast direction was
the largest because its FR value was 2.96, followed by the south direction (FR = 2.55) and
the east direction (FR = 1.64). The FR values showed a positive correlation between the
occurrence of landslide and slopes oriented to the southeast, south, and east, demonstrating
the function of vegetation protection on slopes facing to the north. The LDs of the southeast,
south, and east were 1.27%, 1.09%, and 0.70%, respectively. The gully density presented the
largest FR value of 1.57 in the class of 5.42–6.86 km/km2 with a LD of 0.67%. Concerning
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the lithology type, the loose rock, softer rock, and hard rock had FR values greater than 1
(1.53, 1.42, and 1.14, respectively) with a direct correlation with landslide occurrence and
high LD (0.65%, 0.61%, and 0.49%, respectively). The ‘other’ class of the lithology type, the
lake area, was not affected by the landslide. For fault density, the highest FR value of 1.88
was shown in the category of 13.08–17.17 km/km2 with a LD of 0.80. The NDVI class of
−0.54–0.07 presented the largest FR value of 3.41 and LD of 1.46, because the better the
vegetation condition, the lower the LOP.

Table 2. The area of landslides and frequency ratio (FR) value of each category for seven landslide-
conditioning factors.

Conditioning
Factors Categories Pixels of Land

Area
Percentage of
Domain (%)

Pixels of
Landslide Area

Percentage of
Landslides (%) FR

Elevation (m) 941–1255 298,868 13.90 32 0.35 0.03
1255–1592 418,538 19.47 7932 86.22 4.43
1592–1897 458,777 21.34 1084 11.78 0.55
1897–2211 749,941 34.89 137 1.49 0.04
2211–2940 223,542 10.40 15 0.16 0.02

Aspect Flat 174,720 8.13 0.00 0.00
North 270,356 12.58 200 2.17 0.17

Northeast 194,573 9.05 262 2.85 0.31
East 199,082 9.26 1397 15.18 1.64

Southeast 207,236 9.64 2627 28.55 2.96
South 272,025 12.65 2974 32.33 2.55

Southwest 293,547 13.66 792 8.61 0.63
West 304,150 14.15 681 7.40 0.52

Northwest 233,977 10.88 267 2.90 0.27
Slope 0–10 530,643 24.68 709 7.71 0.31

10–20 481,847 22.41 2424 26.35 1.18
20–30 506,654 23.57 2428 26.39 1.12
30–40 386,096 17.96 1764 19.17 1.07
40–90 244,426 11.37 1875 20.38 1.79

Gully Density 0–2.08 130,320 6.06 0.00 0.00
2.08–4.32 636,067 29.59 2241 24.36 0.82
4.32–5.42 767,112 35.68 3468 37.70 1.06
5.42–6.86 437,781 20.36 2950 32.07 1.57
6.86–9.67 178,517 8.30 541 5.88 0.71

Lithology Type Loose Rock 531,449 24.72 3479 37.82 1.53
Softer Rock 288,595 13.42 1749 19.01 1.42
Soft Rock 227,049 10.56 73 0.79 0.08

Hard Rock 764,054 35.54 3737 40.62 1.14
Harder Rock 176,922 8.23 162 1.76 0.21

Other 161,728 7.52 0.00 0.00
Fault Density 0–4.09 334,277 15.55 65 0.71 0.05

4.09–9.55 279,183 12.99 1344 14.61 1.12
9.55–13.08 843,030 39.21 3439 37.38 0.95
13.08–17.17 530,926 24.70 4273 46.45 1.88
17.17–29.00 162,380 7.55 79 0.86 0.11

NDVI −1.00–0.54 6532 0.30 0.00 0.00
−0.54–0.07 6671 0.31 28 0.30 0.98
−0.07–0.25 433,388 20.16 6324 68.74 3.41
0.25–0.51 1,040,774 48.41 2677 29.10 0.60
0.51–1.00 662,432 30.81 171 1.86 0.06

3.2. Logistic Regression

The Hosmer–Lemeshow test indicated that the goodness of fitting of the equation
was acceptable because the Chi-square significance was greater than 0.05 and the overall
accuracy percentage of the LR model was 82.2 (Table 3). The SPSS Binary Logistic proce-
dures print the pseudo R2 (Cox and Snell, and Nagelkerke) statistics, which had a similar
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meaning as the Regression R2, but their values were less than 1. Nagelkerke (R2) is an
adjusted version of the Cox and Snell (R2) that adjusts the statistic to range from 0 to 1. The
values of Cox and Snell (R2) and Nagelkerke (R2) suggested that the dependent variable
could be explained by the independent variables (Table 3).

Table 3. Summary of the logistic regression model.

−2 Log
Likelihood

Cox and Snell
R Square

Nagelkerke
R Square

Overall
Percentage

109.651 a 0.283 0.415 82.2
a Estimation terminated at the fifth iteration, because the change of the estimated value of parameter was less
than 0.001.

Using the intercepts and coefficients achieved from the LR model, the logit formula
was created as follows:

Y = 3.931− 1.868x1 + 0.109x2 − 0.272x3 − 0.157x4 + 0.444x5 + 0.089x6 + 0.285x7 (12)

The obtained LR equation for calculating landslide probability for each pixel is
as follows:

P =
e3.931−1.868x1+0.109x2−0.272x3−0.157x4+0.444x5+0.089x6+0.285x7

1 + e3.931−1.868x1+0.109x2−0.272x3−0.157x4+0.444x5+0.089x6+0.285x7
(13)

where, x1 is the NDVI class, x2 is the gully density class, x3 is the elevation class, x4 is
the lithology type class, x5 is the slope class, x6 is the aspect class, and x7 is the fault
density class.

The established landslide susceptibility models were applied to estimate the LOP for
every grid cell in entire study region through the Raster Calculator in ArcGIS 10.2. The
LOP obtained from LR showed an average value of 0.167 over the whole study area, 0.503
in the landslide areas, and 0.166 in the non-landslide areas (Table 4). Figure 5 shows the
LSM of the study area generated using the LR model, which shows that the areas with low
landslide susceptibility appeared as a sheet distribution, while the areas with very high
landslide susceptibility showed a zonal distribution along the highway in Guozigou Valley.
Most of the high-risk area could be noticed along highway G30 in the Guozigou Valley
(Figure 6). The LSM achieved from LR indicated that more than 53% of the entire area was
located in the low-susceptibility zones and 18.76% of the areas were located in the high-
and very high- susceptibility areas (Figure 7). While overlaying the landslide inventory
map with the LSM generated from the LR model, landslides were distributed mainly in
the very high-susceptibility area and then in the moderate-, high-, and low-susceptibility
areas (Table 5). Table 5 shows the area percentage of landslides in different landslide
susceptibility areas.

Table 4. The landslide occurrence probability within different regions.

Models Study Region Landslide Areas Landslide-Free Areas

LR 0.167 0.503 0.166
MaxEnt 0.096 0.537 0.094
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Figure 7. Area percentage of different landslide susceptibility zones within the research region using
the models.

Table 5. Percentage of landslide areas in each landslide susceptibility class.

Landslide Susceptibility Class LR (%) MaxEnt (%)

Low 7.85 7.27
Moderate 19.59 26.24

High 15.95 10.37
Very high 56.62 56.12

The ROC curve for the LR model is presented in Figure 8. The AUC value of the
LR model was 0.851, which presented an accuracy of 85.1% for the built LR model. The
standard error of the ROC curve was 0.038 and the asymptotic eigenvalue was smaller
than 0.05, which is within the specified bounds (Table 6). This indicates the model had
high accuracy and the susceptibility map would be reliable along highway G30 in the
Guozigou Valley.
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Table 6. Area under the curve (AUC) values of the models.

Models Area Standard Error
Asymptotic
Significant

Asymptotic 95% Confidence Interval

Lower Limit Upper Limit

LR 0.851 0.038 0.000 0.776 0.926
MaxEnt 0.940 0.031 0.000 0.844 0.956

3.3. MaxEnt

The LOP obtained from the MaxEnt model showed an average value of 0.096 in the
whole study area, 0.537 in the landslide areas, and 0.094 in the landslide-free areas (Table 4).
In the entire study area, the average LOP of the LR model was larger than that of MaxEnt
model, but in the landslide areas, that of the MaxEnt model was larger than that of the
LR model (Table 4). This indicates, to some extent, the overestimation problem of the LR
model and the better predication ability of the MaxEnt model.

The patterns of spatial distribution of the LSM produced by the two models had a
similarity in that the very high landslide susceptibility areas were mostly distributed along
highway G30 in the Guozigou Valley (Figure 6). The low susceptibility-to-landslide class,
using LR and MaxEnt models, had the highest areal percentage, exceeding 53% of the
study region (Figure 7), but the area percentage of landslides in this susceptibility zone was
less than 10% (Table 5). The very high-susceptibility class using the two models basically
occupied the lowest areal distribution, smaller than 10% of the study region, but a noticeably
large percentage (more than 56%) of the landslide areas occurred in this class (Figure 7,
Table 5). It is generally believed that a model has a better landslide prediction performance
if actual landslides are mainly distributed in high- and very high-susceptibility zones
generated by the model [29]. The statistical results indicated that the two susceptibility
maps are reliable and reasonable.

In addition, comparing the LSM produced by the two models with the landslide
inventory map, it can be seen that a very high-susceptibility area generated by LR was in
the south region of the study area (Figures 3 and 6a); however, actually, there have been few
past landslides in that region. LR overestimated landslide occurrence in the south region.
In the results of MaxEnt, this overestimation of landslides in the south region was not
obvious (Figures 3 and 6b). This result also indicated that the ability of landslide prediction
of the MaxEnt model is superior to that of the LR.

The ROC curve (Figure 8) was also applied to assess the prediction performance of
the MaxEnt method. It can be noticed that the AUC values of both methods were above
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0.8, which demonstrates that the two methods had good prediction abilities. The MaxEnt
method was superior to the LR model, as it had the larger AUC value (AUC = 0.940),
which shows the excellent predictive ability of the MaxEnt model. Compared with the
conventional statistical methods, MaxEnt produced more robust and reliable results and
eased the problems of misclassification [17].

4. Discussion
4.1. Causes of Landslide along Highway in Mountainous Area

In this study, the very high-susceptibility class was mainly distributed along the
highway in Guozigou Valley. Landslides occurring along highways in mountainous areas
are a common situation [29]. This result is similar to those of many previous studies.
For instance, the landslide material volume from roadside slopes was 65,470 m3/km2,
which is 30 times that of natural forest regions in the western Cascade Range, Oregon [53].
Extremely high rates of surface erosion and landslides were noticed after the building
of Weixi–Shangri road (23.5 km) in Yunan province, China, which were averaged up to
9600 t ha−1 [54]. The region around the highways was confirmed to be the most prone to
landslides in the Andes of southern Ecuador [55], where landslide occurrence was noticed
to be more than one order of magnitude higher within a close distance of the built intercity
highways compared with long distances [56].

There is an interaction between road construction and landslide disasters in moun-
tainous areas. Road construction (escarpment roads) in mountainous regions involves
engineering activities, for instance, cutting, excavating, or blasting slopes, resulting in
altered geological and topographical conditions of the original slopes, and the subsequent
destruction of the slope’s original stability, leading to slope instability [44]. In addition,
due to road-relevant construction and deforestation activities, the construction of roads
interrupts surface drainage, changes groundwater movement, alters mass distribution, and
accelerates erosion [10,54]. It is well known that mountain roads increase the occurrence
of landslides because of the imperfect drainage systems and the mechanical instability of
hillslopes resulting from undercutting and overloading [44,56].

Therefore, it was an essential step to perform LSA along the mountainous highway, the
landslide-prone area, to improve the safety of transportation, and reduce the maintenance
cost of the highways and the loss of life and properties. Suitable areas for developmental
activities can be identified by determining safe locations with low landslide susceptibil-
ity [57]. High-susceptibility zones should be avoided as much as possible, as these areas
mostly consist of unstable slopes that may be susceptible to failure.

4.2. Comparison of LR and MaxEnt

There are many elements influencing the accuracy of LSA, such as reliability of raw
data (e.g., landslide data), selection of conditioning factors, resolution of DEM, sampling
sizes and strategies, evaluation units, the ratio between presence and absence data, and the
performances of classification models [15,23,58]. Here, the predictive abilities of the model
were focused on.

The model comparison enables us to better evaluate advantages and limitations of
each model as well as the reliability of statistics. The predictive ability of two methods
was compared in our study using AUC. The MaxEnt model, with an excellent AUC
value of 0.940, exhibited excellent predictive ability versus the LR with a very good AUC
value of 0.851, which is similar to the conclusion of other relevant comparative studies.
MaxEnt was a high-performance prediction model for the LSM of the Boeun area in
Korea and the prediction performance of MaxEnt was slightly better than that of the LR
model [25]. The precision of the Shannon entropy method is higher than that of the LR and
the conditional probability theory models at the road section of Mugling-Narayanghat in
the Nepal Himalayas [40]. The precision of the maximum entropy method is higher than
the LR and the tree regression methods in the lower part of the Deba Valley (Guipúzcoa
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province, Spain) [33]. MaxEnt showed the maximum AUC value (0.812) for the LSA of the
Taleghan basin, Iran, compared with FR, LR, and SVM [57].

There are reports that the performance of MaxEnt was better than other models. The
index of entropy model with an AUC of 86.08% was slightly superior to the conditional
probability model with an AUC of 82.75% at Safarood basin, Iran [59]. The results accuracy
of the LSM of the Index of Entropy (IoE) model were higher than those of the Dempster–
Shafer (DS) model for the Sarkhoun catchment, Southwestern Iran [60]. The MaxEnt
produces the best results for LSA of the Honghe Hani Rice Terraces, a World Heritage site
located in Yuanyang County, Southwest China, followed by the mean distance (Domain)
model, the information value model (IVM), and biological climatic (Bioclim) model [61].
The physically based model presented an accuracy of 65.9% in terms of the AUC; however,
the ensemble maximum entropy-based machine learning algorithm showed a higher
accuracy of 79.6% and a predictive rate of 89.7% in Mt. Umyeon, South Korea [62].

The MaxEnt model presented an excellent prediction ability for landslides in Golestan
Province, Northeast Iran, with an AUROC value of 0.889 [63]. The MaxEnt model not only
performed well in the degree of fitting, but also achieved remarkable results in multi-hazard
(including floods, landslides, and gullies erosion) predictive performance in Gorganrood
Watershed, Golestan Province (Iran) [64]. The SVM and MaxEnt models can provide more
stable and robust results and are less sensitive to the input data changes and, therefore, are
more reliable in the Chehel-Chai Watershed, Golestan Province, Northern Iran [65].

In contrast, the LR model showed the best landslide predictive ability in the LSM
in Ganzhou City for the AUC values of the data-driven LR, Maxent, FR, and evidential
belief function (EBF) models were 0.8237, 0.7903, 0.7789, and 0.7367, respectively [43]. The
AUC of FR model was slightly higher than that of index of entropy model for success
and prediction rate in the Al-Hasher area, Jizan, Kingdom of Saudi Arabia [19]. For LSA,
maximum entropy (ME) was inferior to support vector machine with the radial basis
function kernel (SVM-RBF) in predictive performance with the respective values of 0.84
and 0.887 for the most important cities in Gorganrood Basin, Iran [66]. ANN achieved
the maximum AUC with a value of 0.824, followed by SVM with a value of 0.819, and
MaxEnt with a value of 0.75 in the Wanyuan area, China [30]. These opposite conclusions
may be due to various reasons: through examples, the differences of regional geographical
environments, the factors considered in the selection of indicators, and the amount of data
used for the construction of the models, among others. Hence, in the process of model
selection, there is no one model that performs best for every problem.

There are some disadvantages in the two methods. The LR method is not very suitable
for unbalanced data where the non-landslide observations (pixels) are much greater than
the landslide observations [16]. Reclassifying continuous data for conventional statistical
methods is necessary, and it implies a subjective selection of the ranges chosen for each
study zone [23]. LR has some problems concerning the quasi-complete classification of
categorical variables changed into dummy explanatory variables [15]. The presence-only
property of MaxEnt, apart from its advantages, especially avoiding further inspection of
the landslide-free locations, may make the model face more biased data, especially when
the landslide data are often found near the accessible roads and passable locations [30].
In addition, the generated pseudo-absence data should be applied with great caution in
MaxEnt as they directly influence the model results, and trustworthy pseudo-absence data
are not always available [67]. One of the other shortcomings of MaxEnt and LR is that they
use landslide inventory by only including the landslide point features and ignoring the
landslide shape and size information.

In summary, the two models are very fast and extremely easy to use, which is the
biggest advantage in LSA models; the MaxEnt, as a generative presence-only model,
provides better predictive results using very few training data, compared with LR; this may
be due to LSM being considered as a predictive modeling with presence-only data, because
most available information is on previous landslide locations in most cases.



Remote Sens. 2022, 14, 3620 20 of 23

5. Conclusions

Landslides occur frequently along the highway G30 in Guozigou Valley, just as in the
other roads in the mountainous region, which causes road disruption, blocking, etc., and
even severely endangers the lives and properties of people.

Based on FR values, high-susceptibility positions in this study region are caused
by the negative synergy effect of slopes of greater than 20◦, elevations of 1255–1592 m,
southeast-facing slopes, gully densities of 5.42–6.86 km/km2, loose rocks, fault densities of
13.08–17.17 km/km2, and NDVI values of −0.54–0.07.

In the present work, we implemented the multivariate statistical LR and generative
presence-only MaxEnt for LSA along the G30 highway in Guozigou valley by the aid of GF-
1 satellite data and GIS techniques. The spatial distribution patterns of the LSM produced
by the LR and MaxEnt methods had a similarity in that the highly landslide-prone regions
were distributed mostly along the highway in the Guozigou Valley. Landslides were
distributed mainly in the very high-susceptibility areas through comparing the produced
LSM with the actual landslide occurrences, which showed that the two LSMs were reliable
and reasonable. In addition, the AUC value of the LR and the MaxEnt model was 0.851 and
0.940, respectively. It could be noticed that the AUC values of both methods were higher
than 0.8, which demonstrates that the two methods have better prediction performances.
Therefore, it may be concluded that the two methods can be applied in LSA in the research
area. However, LR showed, to some extent, an overestimation problem and overestimated
landslide occurrence in the south region. Both the ROC curve and the AUC values showed
that the MaxEnt model had better performance in LSA in this area. Compared with the
conventional statistical model (LR), MaxEnt produced more reliable and robust results.
Moreover, for most cases, the most available data are past landslide occurrences; therefore,
the generative presence-only MaxEnt model is more suitable to LSA. The MaxEnt model
could be used in data-scarce regions such as rugged mountain areas in future studies.

The results of the LSA of the study area would provide reference for decision-makers,
planners, and engineers to make wise decisions about land-use planning and disaster
prevention and mitigation in the upcoming years. The areas with very high landslide
susceptibility along the highway should be completely surveyed on site, and appropriate
measures should performed. Detailed local surveys are also needed in the future for better
evaluation and analysis of the development characteristics of landslide geological disasters
in the study area. In addition, the external and triggering factors such as earthquakes,
precipitation, and erosion, etc. should be considered in the LSA in future detailed studies.
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