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Abstract: In order to study and forecast extreme weather, a comprehensive and systematic analysis 

of the spatial and temporal relationship between Precipitable Water Vapor (PWV), predicted by 

Numerical Weather Predication (NWP) data, and precipitation, is necessary. The goal of this paper 

was to study the temporal and spatial relationship between PWV and precipitation during the so-

called ‘July 20’ (18–21 July 2021) heavy rainstorm in Zhengzhou. Firstly, the PWV data provided by 

120 radiosonde stations uniformly distributed throughout the world, and two IGS stations in China, 

in 2020, was used to evaluate the accuracy of PWV estimation by ERA5 and MERRA-2 data, and the 

factors affecting the accuracy of NWP PWV were explored. Secondly, ERA5 PWV and the precipi-

tation data of six meteorological stations were used to qualitatively analyze the relationship between 

PWV and precipitation during the ‘July 20’ heavy rainstorm in Zhengzhou. Finally, a quantitative 

study was conducted by an eigenvalue matching method. The main experimental results were as 

follows. Compared with MERRA-2 PWV, the accuracy of ERA5 PWV was slightly higher. Latitude, 

altitude and season were the influencing factors of the NWP PWV estimation accuracy. The change 

trend of ERA5 PWV was consistent with both 24 h cumulative precipitation and surface precipita-

tion during the ‘July 20’ heavy rainstorm in Zhengzhou. The average optimal matching degree and 

optimal matching time between NWP PWV and surface precipitation during the ‘July 20’ heavy 

rainstorm in Zhengzhou was 56.6% and 3.68 h, respectively. The maximum optimal matching de-

gree was 80.3%. The spatial–temporal relationship between NWP PWV and surface precipitation 

was strong. 

Keywords: PWV; MERRA-2; ERA5; ‘July 20’ heavy rainstorm in Zhengzhou; eigenvalue matching 

method 

 

1. Introduction 

The troposphere, as the atmosphere layer most closely related to human activities, 

contains almost all water vapor and 75% of the air quality of the whole atmosphere, which 

is an important part of global space. Although the water vapor content in the atmosphere 

is only 0–4%, its change has a direct impact on surface temperature, humidity and surface 

precipitation [1–3]. In addition, water vapor is an important greenhouse gas, and about 

60% of greenhouse gases that cause climate change are affected by water vapor [4]. At 

present, global climate change is irregular: drought, flood disasters and extreme weather 

occur frequently, which is having a serious impact on human production and life. Accu-

rately and systematically monitoring the distribution of atmospheric water vapor, and 

exploring its change rule, play an important role in studying the evolutionary processes 

of varieties of complex weather, and providing early warning of natural disasters [5]. 
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Precipitable Water Vapor (PWV) is the most commonly used indicator to express the 

water vapor content in the atmosphere, which refers to the total water vapor content con-

tained in the air column of a unit cross-sectional area from the surface to the top of the 

troposphere [6]. Traditional PWV observation methods include radiosonde (RS), micro-

wave radiometer and satellite remote sensing [7,8]. Of the traditional methods, RS is one 

of the most accurate PWV detection methods at present, but its time resolution is low, the 

site distribution is sparse, and the detection cost is high, which cannot meet the needs of 

small-scale and medium-scale meteorological research [9]. Microwave radiometer and 

satellite remote sensing are mainly based on thermal infrared and near-infrared bands, to 

detect meteorological parameters in the atmosphere, which have high accuracy and large 

detection range. However, correction is required before use. The detection accuracy is eas-

ily affected by weather conditions, and the vertical profile of the water vapor cannot be 

obtained, which restricts its application in weather forecasting and meteorological re-

search [10,11]. With the development of the Global Navigation Satellite System (GNSS), 

the concept of GNSS meteorology was first proposed in the 1990s [12]; the PWV monitor-

ing method based on GNSS technology has been widely used since then. This method has 

the merits of high resolution, low cost, continuous operation and high precision. How-

ever, due to the uneven distribution of GNSS stations, it is difficult to obtain sufficient 

GNSS PWV data for areas with few GNSS stations, which limits the application of GNSS 

technology to invert PWV in climate research. With the increasing accuracy of reanalysis 

data, the estimation of PWV using Numerical Weather Prediction (NWP) forecasts or re-

analysis data, and the study of the relationship between PWV and extreme weather, have 

become current hot topics [13]. 

At present, organizations including the European Centre for Medium-Range 

Weather Forecasts (ECMWF), the National Centers for Environmental Prediction (NCEP), 

the National Aeronautics and Space Administration (NASA), and the China Meteorolog-

ical Administration (CMA), provide their users with the latest global atmospheric numer-

ical prediction reanalysis information and forecast information. The provision, by these 

organizations, of accurate assessment of PWV predicted by the NWP data, is necessary. 

Bock, et al. [14], compared PWV calculations from 120 IGS stations worldwide with PWV 

calculated from ERA-Interim reanalysis data provided by ECMWF: the results showed 

that the daily standard deviation of PWV was usually less than 2 mm. Zhang, et al. [15], 

used GNSS PWV to evaluate the accuracy of PWV estimations retrieved from ERA5 and 

ERA-interim reanalysis data provided by ECMWF in China: the RMS values of PWV re-

trieved from ERA5 and ERA-interim were 1.8 mm and 2.1 mm, respectively. Vey, et al. 

[16], showed good consistency between GNSS PWV and PWV estimations retrieved from 

NCEP reanalysis data; however, in the Antarctic and tropical regions, PWV retrieved from 

NCEP reanalysis data were smaller than those retrieved from GNSS PWV. Chen, et al. 

[17], used the GNSS PWV to evaluate PWV retrieved from the Climate Forecast System 

Reanalysis (CFSR) dataset provided by NCEP, with an RMS value of 4.13 mm. Huang, et 

al. [18], used GNSS PWV to evaluate the accuracy of ERA5 PWV provided by ECMWF, 

and MERRA-2 PWV provided by NASA, on the Tibetan Plateau, with RMS values of 1.77 

mm and 2.12 mm, respectively. The CRA40 reanalysis data, released by the CMA, showed 

a temporal resolution of 3 h, a spatial resolution of 43 km, and data starting time of 1979 

[19]. There is scant literature evaluating the accuracy of the estimation of PWV from 

CRA40 reanalysis data. 

Many scholars have studied the relationship between PWV and extreme weather. 

The occurrence of rainfall requires sufficient water vapor content in the atmosphere, and 

there is constant condensation of water vapor in the atmosphere a few hours, or some-

times even more, before rainfall occurs, resulting in a sustained growth trend in PWV 

values [20]. Duc, et al. [21], used the extended fractions skill score method to evaluate the 

performance of MF10 km and MF2 km ensemble forecast data for predicting rainfall. Ex-

periments showed that MF2 km was more reliable than MF10 km in predicting moderate 

rainfall and rainstorms. In contrast, the MF10 km data was superior to the MF2 km data 
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in predicting small rainfall. Champollion, et al. [22], studied the variation and distribution 

of PWV during a rainstorm in southwest France on 9 September 2002: the results showed 

that small-scale variation of PWV can also cause deep convection phenomena. The neces-

sary condition for rainfall is the increase of PWV, but the increase of PWV does not nec-

essarily lead to rainfall events. Yao, et al. [23], pointed out that PWV surged 2–6 h before 

the rainstorm. Heavy precipitation events occur after a steep rise in PWV [24]. Zhu, et al. 

[25], studied the variation of PWV during three typhoons in Hong Kong from 2013 to 2014, 

and the experiment showed that PWV near the surface (0~1.6 km) varied less during the 

typhoon, while PWV between 1.6~8.5 km in height varied more during the typhoon. 

Valjarevi, et al. [26], used cloud data from moderate resolution imaging spectroradiometer 

satellite for 30 years (1989–2019), to analyze the relationship between cloud cover and to-

pography in Serbia. The results showed that the lower the cloud cover, the lower the pre-

cipitation in the eastern mountainous areas of Serbia. 

Henan Province is located in central China, and its capital is Zhengzhou city. The 

terrain is high in the west and low in the east. The north, west, south are surrounded by 

Taihang Mountain, Funiu Mountain, Tongbai Mountain and Dabie Mountain, respec-

tively. The central and eastern part is the Huang-Huai-Hai Plain. Affected by typhoon, 

topography and atmospheric circulation, a rare continuous heavy rainfall occurred in 

Zhengzhou from 18 to 21 July 2021. The whole city generally suffered heavy and extraor-

dinarily heavy rains, and the cumulative average precipitation was 449 mm. This was the 

so-called ‘July 20’ heavy rainstorm in Zhengzhou. However, no research on PWV in the 

Zhengzhou rainstorm has been published in English. 

To sum up, MERRA-2 and ERA5 are the latest generation of NWP datasets, and a 

comprehensive evaluation of the accuracy of the PWV estimation of both datasets is nec-

essary for studying the PWV variation pattern [27,28]. On the other hand, the existing 

research on the ‘July 20’ heavy rainstorm in Zhengzhou mainly focuses on the temporal 

relationship between PWV and precipitation, and there are few studies on the temporal–

spatial relationship between PWV and precipitation, and the change process of precipita-

tion trajectories. A comprehensive and detailed study on the relationship between PWV 

and precipitation during the rainstorm will be of great significance for improving the 

early-warning ability of rainstorm prediction. Therefore, in this paper, the accuracy of 

PWV estimation from MERRA-2 and ERA5 reanalysis data was evaluated by using PWV 

data from 120 radiosonde stations uniformly distributed throughout the world, GNSS 

PWV data calculated by 2 IGS stations in China, and analysis of the influencing factors of 

PWV estimation accuracy from reanalysis data. Taking the ‘July 20’ heavy rainstorm in 

Zhengzhou in 2021 as an example, the change process of the precipitation trajectory dur-

ing a rainstorm was qualitatively studied, based on the precipitation data of meteorolog-

ical stations and ERA5 PWV, and the eigenvalue matching method was proposed, to 

quantitatively explore the spatial–temporal relationship between NWP PWV and surface 

precipitation. 

The experimental data, the PWV calculation method and the accuracy index are de-

scribed in the second section of this paper. The third section is the experimental results 

and analysis, which mainly includes the evaluation of the accuracy of NWP-estimated 

PWV, and the analysis of the spatial and temporal distribution relationship between PWV 

and precipitation during the ‘July 20’ heavy rainstorm in Zhengzhou. The fourth section 

summarizes the work of this paper. 

2. Data and Methodology 

2.1. Data Description 

In order to analyze the accuracy and error distribution characteristics of PWV re-

trieved from MERRA-2 reanalysis data and ERA5 reanalysis data in the global area, and 

to study the spatial–temporal relationship between PWV and precipitation in Henan 

Province during the ‘July 20’ heavy rainstorm in Zhengzhou in 2021, this paper collected 
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the PWV data from the RS, MERRA-2 reanalysis dataset, the ERA5 reanalysis dataset, the 

tropospheric delay products of the International GNSS Service (IGS) and the precipitation 

data of six meteorological stations around Zhengzhou city. 

2.1.1. MERRA-2 Data 

MERRA-2 data is published by NASA, and started in 1980 [27,29]. This paper col-

lected the MERRA-2 M2I6NPANA dataset at UTC 12 every day from January 1 to 31 De-

cember 2020. The MERRA-2 reanalysis data type was griding, the time resolution was 6 

h, the horizontal resolution was 0.625° × 0.5°, the vertical level was 42 layers, and the data 

download address was https://disc.gsfc.nasa.gov (accessed on 5 December 2021). 

2.1.2. ERA5 Data 

The ERA5 pressure-level data and single-level data were derived from the ERA5 re-

analysis data provided by the ECMWF [30]. The ERA5 pressure-level data at UTC 12 daily 

in 2020 was experimentally collected for PWV accuracy evaluation, and the surface pre-

cipitation data was used to analyze the spatial–temporal relationship between PWV and 

surface precipitation. Both the ERA5 pressure-level data and the surface precipitation data 

were from the ERA5 dataset, and the horizontal resolution of this dataset was 0.625° × 

0.5°. The ERA5 reanalysis data horizontal resolution was 0.25° × 0.25°, the time resolution 

was 1 h, and the vertical resolution was divided into 37 layers. The data download address 

was https://www.ecmwf.int (accessed on 26 November 2021). Table 1 shows the CRA40, 

MERRA-2 and ERA5 reanalysis data information tables. It can be seen from Table 1 that 

ERA5 had the highest maximum spatio–temporal resolution. As CRA40 data could not be 

download freely, PWV estimated by MERAA-2 and ERA5 data was assessed. 

Table 1. Reanalysis data information. 

Dataset Agency Maximum Time Resolution 
Maximum Horizontal Resolu-

tion 
Vertical Resolution 

Assimilation 

Method 

CRA40 CMA 6 h 0.3125° × 0.3125° 47 4DVAR 

MERRA-2 NASA 6 h 0.625° × 0.5° 42 GEOS-5 

ERA5 ECMWF 1 h 0.25° × 0.25° 37 4DVAR 

2.1.3. RS Data, GNSS ZTD Data and Precipitation Data 

The RS station data was collected from the Integrated Global Radiosonde Archive 

Version 2 (IGRA2) dataset generated by the National Climate Data Center. The location 

distribution of the selected 120 stations is shown in Figure 1. The experiment used the RS 

data of UTC 12 each day in 2020. The IGRA2 dataset included pressure, temperature, rel-

ative humidity, potential height, wind speed and other data. The time resolution of the 

data was 12 or 6 h. The data download address was ftp://ftp.ncdc.noaa.gov/pub/data/igra 

[31] (accessed on 5 November 2021). 
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Figure 1. Location distribution of the selected RS stations and IGS stations (circles indicate the RS 

stations; asterisks indicate the IGS stations). 

In this paper, GNSS PWV estimations, recorded at UTC 12 every day between 1 Jan-

uary and 31 December, 2020, were used as a reference [32]. The selected IGS station loca-

tion is shown in Figure 1. 

The precipitation data of the meteorological stations from July 2021 were provided 

by the Meteorological Information Center of the China Meteorological Administration. 

The time resolution of this data was 1 h. 

2.2. Methodology 

In this paper, the PWV data provided by the RS stations and GNSS PWV were re-

garded as true values for evaluating the accuracy of NWP PWV. RMSE and Bias were 

used as precision evaluation indexes. 

2.2.1. NWP PWV Estimation Method 

The PWV estimation formula, using NWP reanalysis data, was [15]: 

0.622
q

0.378

e

p e



 (1)

   1 10
1

1 1

g 2g

s
np

i i i i
i

PWV qdp q q p p 


      (2)

where q  was specific humidity, e  was water vapor pressure, p  was atmospheric 

pressure, sp  was surface pressure and g  was a gravitational parameter. As the g  val-

ues in different regions were different, Equation (3) was used to calculate the gravitational 

parameter in different regions in this paper. The formula was as follows ( , H  was the 

latitude and geodetic height of the station [33]): 

     3 7g , 9.80616 1 2.59 10 cos 2 1 3.14 10H H        (3)

The elevation of MERRA-2 and ERA5 reanalysis data was geopotential height, the 

elevation of RS data was orthometric height, and the elevation of IGS data was geodetic 

height. In order to eliminate the elevation error caused by different elevation systems, 

different elevations were converted to orthometric height. The geopotential height geoH  

calculate formula, using geopotential, was: 

=
g

geo

Geo
H  (4)

The Geo  was geopotential and g  was a gravitational parameter. 

To resolve the problem that the plane position and the elevation of the NWP reanal-

ysis dataset grid points did not coincide with those of the IGRA2 RS stations, the PWV 

value of four grid points around the sounding station was used to interpolate the PWV 

value at the RS station. In order to weaken the errors caused by the multiple interpola-

tions, this paper first calculated the PWV value of the grid points at the same elevation as 

the site, and then used the Kriging interpolation method for plane interpolation [34]. Since 

the reanalysis dataset did not provide meteorological data at the surface, Formulas (5) and 

(6) were used, in this paper, to extrapolate the pressure and other parameters [33], taking 

the pressure calculation at station height H as an example: 

exp lower
H lower

P

H H
P P

h

 
  

 
 (5)
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 p
ln /

upper lower

lower upper

H H
h

P P


  (6)

where, upperH , lowerH , lowerP  and upperP  were the upper and lower geopotential heights, 

and Pressure, HP , was the pressure at height H . 

2.2.2. GNSS PWV Calculation Method 

The GNSS PWV calculation method was as follows: (1) the Zenith Hydrostatic Delay 

(ZHD) was calculated using the Saastamoinen model [35]; (2) the Zenith Wet Delay 

(ZWD) was stripped from ZTD provided by IGS using Equation (7); (3) the GNSS PWV 

was calculated by ZWD, using Equation (8) [36]. 

 
0.002277

1 0.00266 cos 2 0.00028

P
ZWD ZTD ZHD ZTD

H
   

 



 
 (7)

 

6

'
2 3 m

10

/ V

PWV ZWD
K K T R 





 

 (8)

where H , P and   were, respectively, the geodetic height, pressure and latitude at the 

station; '
2K , 3K , and VR  were constants, and their values were 16.48 K∙hPa−1, (3.776 ± 

0.014) × 105∙K2∙hPa−1 and 461∙J∙(Kg∙K)−1, respectively.  was the density of liquid water, 

and its value was 103 Kg∙m−3. mT  was the atmospheric weighted mean temperature, 

which was obtained by the Bevis formula, mT  = 70.2 + 0.72T. T was the atmospheric tem-

perature of the station, in K. Research showed that the RMSE of mT , calculated by the 

Bevis formula in the middle latitude region, was 4.74 K [12]. P and T were provided by 

MERRA-2 or ERA5 reanalysis data. 

2.2.3. Gross Error Detection of RS PWV 

As the sounding balloon was easily affected by multiple factors in the measurement, 

there were outliers in the measured values. As a consequence, the RS PWV estimation 

needed to be pre-processed. In this paper, the Interquartile Range (IQR) method was used 

to eliminate the deviation in the RS PWV data. The IQR criterion assumed that the de-

tected target sequence conformed to the standard normal distribution. If the target se-

quence was arranged from small to large, the 25th percentile was called the lower quartile, 

and the 75th percentile was called the upper quartile. The IQR value was the difference 

between the upper quartile and the lower quartile. The anomaly detection interval based 

on the IQR was [37]: 

 1 1.5 , 3 1.5Q IQR Q IQR    (9)

where, 1Q  and 3Q  denoted the lower quartile and the upper quartile, respectively, and 

the IQR was IQR = 3Q  − 1Q . 

The specific steps of the IQR gross error detection method were as follows: (1) the 

periodic model of each station was established by Formula (10), and the coefficients of the 

periodic model were fitted by RS PWV data; (2) the PWV model value was calculated 

according to the periodic model, and the difference between the PWV model value and 

the RS PWV was calculated to obtain the residual sequence of each station; (3) the RS PWV 

that the residual offset out of the given gross error detection interval was removed, and 

replaced by the model value [38]. 
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 (10)

where: 0A  was the mean value of PWV ; 1A , 2A , 1B  and 2B  were the required param-

eters; 
doy

 was the Day of the Year. 

2.2.4. Eigenvalue Matching Method 

In order to quantitatively analyze the relationship between PWV and surface precip-

itation during rainstorms in Henan Province, an eigenvalue matching method based on 

the upper quartile algorithm was proposed. At present, there are many different ways to 

determine the similarity level between spatial distribution images [37,39–41]. In this pa-

per, an eigenvalue matching method was used. In the IQR criterion, the value at the 75th 

percentile was called the ‘larger quartile’, also known as the upper quartile [37]. In the 

proposed eigenvalue matching method, the upper quartile was used as the threshold 

value, and PWV and surface precipitation values greater than their upper quartiles were 

taken as eigenvalues. The selected experimental area was 110°–117.5°E and 30°–38°N, 

which contained the Henan Province and surrounding areas. The flow chart of the eigen-

value matching method is shown in Figure 2. Firstly, taking the UTC 00 18 July as an 

example, the PWV value of the selected area at this hour was calculated, and the PWV 

value was arranged in descending order to determine the upper quartile value. The PWV 

value greater than the upper quartile was used as the PWV eigenvalue of the selected area. 

Secondly, as the rainfall mainly occurred within 2–6 h after PWV climbed [24], the surface 

precipitation eigenvalue of the selected area at 2–6 h after UTC 00 was determined using 

the same method. Thirdly, studies have shown that the greater the PWV, the greater the 

rainfall intensity [20]. This indicated that PWV at this grid point was strongly correlated 

with surface precipitation when the grid points of the PWV eigenvalue and the surface 

precipitation eigenvalue were the same. In this step, the grid points with both the surface 

precipitation eigenvalues at each hour and the PWV eigenvalues were selected, and were 

named the matching grid points. These points expressed the spatial relationship between 

PWV and surface precipitation. Fourthly, the matching degree at each hour was calculated 

using Equation (11). The maximum matching degree at 2–6 h after UTC 00 was named as 

the optimal matching degree (OMD) between PWV and surface precipitation, and the 

hour with the OMD was called the optimal matching time (OMT). The surface precipita-

tion at the MOT had the strongest correlation with the current PWV, and this OMT ex-

pressed the temporal relationship between PWV and surface precipitation. 

100%
CGP

MD
GP

   (11)

where CGP  was the number of matched grid points, GP  was the number of PVW ei-

genvalues at the selected hour, and MD  was the matching degree. 



Remote Sens. 2022, 14, 3636 8 of 21 
 

 

 

Figure 2. Flow chart of eigenvalue matching method. 

2.3. Precision Evaluation Index 

Bias and RMSE values were introduced to evaluate the accuracy of PWV estimated 

from the MERRA-2 and ERA5 reanalysis data. The expressions of Bias and RMSE were as 

follows: 

 e, ,1ias

N

r i r ii
X X

B
N







 (12)

 
2

e, ,i=1

N

r i r iX X
RMSE

N





 (13)

where, N  denoted the total number of samples, e,r iX  was PWV calculated for reanalysis 

data, and ,r iX  was RS PWV or GNSS PWV. 



Remote Sens. 2022, 14, 3636 9 of 21 
 

 

3. Results and Analysis 

3.1. Accuracy Evaluation and Accuracy Affecting Factor Analysis of NWP PWV 

In order to compare the accuracy of PWV inversed by the MERRA-2 and ERA5 data, 

and to analyze the factors affecting the estimation accuracy of NWP PWV, MERRA-2 PWV 

and REA5 PWV from 1 January to 31 December 2020 were calculated, and the PWV cal-

culated by the 120 RS stations and 2 IGS stations was used as the reference. The correlation 

between RS PWV and NWP PWV, Bias and RMSE of NWP PWV in the global region, and 

the relationship between latitude, altitude, season and NWP PWV accuracy is discussed 

in this section. 

3.1.1. NWP PWV Accuracy Evaluation 

Due to space limitation, this paper randomly selected an RS station to show its cor-

relation between MERRA-2 PWV and RS PWV, and between ERA5 PWV and RS PWV, as 

shown in Figure 3. The selected station, CAM00071802, was located in the middle latitudes 

of the northern hemisphere. It can be seen from this figure that the correlation coefficients 

between MERRA-2 PWV and RS PWV, and between ERA5 PWV and RS PWV, were 

0.9838 and 0.9891, respectively. Table 2 shows the correlation coefficient table of MERRA-

2 PWV, ERA5 PWV and RS PWV at portion stations selected randomly. It can be seen 

from Table 2 that the correlation of stations in Southeast Asia was lower than that in other 

regions. 

  
(a) (b) 

Figure 3. Correlation between MERRA-2 PWV/ERA5 PWV and RS PWV at CAM00071802 station: 

(a) correlation between MERRA-2 PWV and RS PWV; (b) correlation between ERA5 PWV and RS 

PWV. 

Table 2. The correlation coefficient of MERRA-2 PWV, ERA5 PWV and RS PWV at portion sta-

tions. 

Station Name Latitude Longitude Altitude (m) 
Coefficient between MERRA-2 

PWV and RS PWV  

Coefficient between ERA5 

PWV and RS PWV  

GLM00004360 65.61° N 37.63° W 54.0 0.8451 0.9181 

CAM00071802 47.51° N 52.78° W 112.4 0.9679 0.9784 

CHM00058027 34.28° N 117.15° E 42.0 0.9751 0.9822 

SAM00040430 24.55° N 39.70° E 654.0 0.7224 0.7326 

IDM00097014 1.53° N 124.91° E 80.0 0.6434 0.7365 

IDM00097072 0.68° S 119.73° E 6.0 0.5516 0.6223 

IDM00097560 1.18° S 136.11° E 11.0 0.5820 0.6209 

IDM00097180 5.06° S 119.55° E 14.0 0.4539 0.5477 

ASM00094403 28.80° S 114.69° E 36.9 0.7354 0.7373 
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NZM00093844 46.41° S 168.31° E 2.0 0.7123 0.7428 

The annual average Bias distribution of MERRA-2 PWV and ERA5 PWV in 2020, re-

ferred to RS PWV at 120 RS stations, is shown in Figure 4. From Figure 4, we can see that 

the Bias of MERRA-2 PWV and ERA5 PWV ranged between −2 mm to 5 mm. The average 

MERRA-2 PWV Bias of the 120 RS stations was 1.26 mm, which was 1.15 mm for ERA 

PWV. The Bias of MERRA-2 PWV was similar to that of ERA5 PWV. The average Bias of 

MERRA-2 PWV and ERA5 PWV in the northern hemisphere was 1.22 mm and 1.04 mm, 

respectively. The average Bias of MERRA-2 PWV and ERA5 PWV in the southern hemi-

sphere was 1.35 mm and 1.44 mm, respectively. The PWV accuracy of these two data in 

the northern hemisphere was slightly higher than that in the southern hemisphere. 

 

Figure 4. Annual average Bias distribution of MERRA-2 PWV and ERA5 PWV referred to RS PWV 

at 120 RS stations. 

The annual RMSE distribution of MERRA-2 PWV and ERA5 PWV in 2020, referred 

to RS PWV at the 120 RS stations, is shown in Figure 5. It can be seen from Figure 5 that 

the RMSE of PWV estimated from these two data was less than 4 mm, except for individ-

ual stations in the equatorial region of Southeast Asia. The average RMSE of MERRA-2 

PWV and ERA5 PWV was 3.76 mm and 3.20 mm, respectively. The average RMSE of 

MERRA-2 PWV in the northern hemisphere was 3.66 mm, and that of the southern hem-

isphere was 4.04 mm. The average RMSE of the ERA5 PWV in the northern hemisphere 

and the southern hemisphere was 3.07 mm and 3.53 mm, respectively. The RMSE of 

MERRA-2 PWV was higher than that of ERA5 PWV in the southern and northern hemi-

spheres. In short, the accuracy of ERA5 PWV was slightly higher than that of MERRA-2 

PWV referred to RS PWV. 
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Figure 5. Annual average RMSE distribution of MERRA-2 PWV and ERA5 PWV referred to RS PWV 

at 120 RS stations. 

It can be seen from Figures 4 and 5 that in the equatorial region of Southeast Asia, 

the accuracy of PWV estimated from NWP reanalysis data was slightly lower. The equa-

torial region of Southeast Asia is a tropical rainforest climate. Affected by typhoons and 

other extreme weather, the atmospheric water vapor is abnormally active, resulting in low 

accuracy of NWP data [42]. As the NWP reanalysis dataset assimilated data from different 

data sources during its generation [43], there were more ground observation stations in 

the northern hemisphere, and the data sources were richer than those in the southern 

hemisphere (such as RS and surface meteorological station observations). Therefore, the 

accuracy of PWV estimated from the two NWP reanalysis data in the northern hemisphere 

was higher than that in the southern hemisphere. 

In order to explore the accuracy of NWP PWV referred to GNSS PWV, PWV at the 

IGS station of URUM and JFNG was retrieved from the reanalysis data of MERRA-2 and 

ERA5 in 2020. Taking the GNSS PWV from IGS as reference, the Bias distribution of 

MERRA-2 PWV and ERA5 PWV is shown in Figure 6. The average Bias and RMSE of 

MERRA-2 PWV and ERA5 PWV at URUM station were 1.3 mm and 0.54 mm, and 2.82 

mm and 2.31 mm, respectively. The average Bias and RMSE of MERRA-2 PWV and ERA5 

PWV at JFNG station were 1.9 mm and 1.03 mm, and 3.79 mm and 2.43 mm respectively. 

The accuracy of PWV calculated by ERA5 data was higher than that of MERRA-2 referred 

to GNSS PWV. In addition, the PWV Bias in summer was higher than that in winter. 
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Figure 6. Bias of MERRA-2 PWV and ERA5 PWV referred to GNSS PWV. 

3.1.2. NWP PWV Accuracy Affecting Factor Analysis 

To investigate the factors affecting the accuracy of NWP PWV, the accuracy of NWP 

PWV was studied from the aspects of latitude, altitude and season. The relationship be-

tween the Bias/RMSE and the latitude of the 120 RS stations is shown in Figure 7. The 

negative value of latitude represents the south latitude, and the positive value of latitude 

represents the north latitude. It can be seen from the figure that the accuracy of PWV es-

timation from the NWP reanalysis data showed a high correlation with latitude, and its 

accuracy increased with the increase of latitude. In the equatorial and low latitude regions, 

the accuracy of PWV was relatively low. The reason was that the atmospheric water vapor 

content changed rapidly due to the complex meteorological conditions in low latitude re-

gions. In short, latitude was one of the main factors affecting the accuracy of PWV estima-

tion from NWP reanalysis data. 

 

Figure 7. Relationship between the PWV Bias/RMSE and the latitude of the 120 RS stations. 
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The relationship between the PWV Bias/RMSE and the altitude of the 120 RS stations 

is shown in Figure 8. In Figure 8, the horizontal axis represents height, and the vertical 

axis represents Bias and RMSE, respectively. It can be seen from the figure that the PWV 

Bias/RMSE reduced with the increase of the altitude of the station. At high altitude, the 

water vapor content was relatively small, and the climatic conditions were stable. There-

fore, the accuracy of the NWP PWV at high altitude was better than that at low altitude. 

In short, altitude was also one of the main factors affecting the accuracy of PWV estima-

tion from NWP reanalysis data. 

 

Figure 8. Relationship between the PWV Bias/RMSE and the altitude of the 120 RS stations. 

The correlation between the monthly mean Bias value (the red circle) of NWP PWV 

and the seasons is shown in Figure 9. CAM00071802 station and NZM00093844 station are 

located in the northern hemisphere and southern hemisphere, respectively. In summer, 

the PWV estimation accuracy of the two reanalysis data was lower than in the other sea-

sons. This was related to the fact that the atmosphere in summer is more active than in 

other seasons, and the distribution and variation of water vapor are more complex. The 

trends of ERA5 PWV and MERRA-2 PWV were similar to one another. In short, ‘the sea-

son’ was one of the factors affecting the accuracy of PWV estimated from reanalysis data. 

 

Figure 9. Seasonal variation of PWV monthly average Bias referred to RS PWV. 
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3.2. Spatial–Temporal Relationship between NWP PWV and Precipitation during the ‘July 20’ 

Heavy Rainstorm in Zhengzhou in 2021 

A comprehensive and detailed study of the relationship between PWV and precipi-

tation in the ‘July 20’ heavy rainstorm in Zhengzhou is of great significance to further 

improving early-warning ability for extreme weather, and reducing the loss of people’s 

lives and property. Therefore, this paper qualitatively and quantitatively analyzed the 

change process of the precipitation trajectory, and the spatial–temporal relationship be-

tween PWV and surface precipitation during the ‘July 20’ heavy rainstorm in Zhengzhou. 

Firstly, the variation process of precipitation trajectories during rainstorms, and the rela-

tionship between PWV and precipitation were qualitatively analyzed, based on the PWV 

and hourly precipitation of six meteorological stations (Figure 10) around Zhengzhou for 

each July from 2019 to 2021. Secondly, an eigenvalue matching method was proposed, to 

quantitatively study the spatial–temporal distribution relationship between surface pre-

cipitation and PWV during the ‘July 20’ heavy rainstorm in Zhengzhou in 2021. As the 

accuracy of ERA5 PWV was slightly higher than that of MERRA-2 PWV, according to the 

previous experiment, the ERA5 data was used for PWV calculation in subsequent experi-

ments. As the heavy rain is mainly concentrated in the central and northern regions of 

Henan province, the meteorological stations of these regions were chosen. The distribu-

tion of the six selected meteorological stations is shown in Figure 10. The red circle repre-

sents the location of the meteorological station, and the blue line represents the river. 

 

Figure 10. Distribution of selected meteorological stations. 

3.2.1. Qualitative Analysis of the Spatial–Temporal Relationship between NWP PWV 

and Precipitation 

The average PWV of the six meteorological stations each July, from 2019 to 2021, is 

shown in Table 3. The trends of PWV in July 2019 to 2021, and precipitation per hour in 

July 2021, are shown in Figure 11. From Table 3 and Figure 11, we can see that: (1) the 

average PWV of the six meteorological stations in July 2021 was higher than that in 2020 

and 2019; (2) during the rainstorm period (18–21 July 2021), each day’s PWV of six mete-

orological stations was higher than that in the previous three years; (3) precipitation was 

positively correlated with PWV, and there was a stage of PWV cumulative growth before 

each rainfall event (cyan ellipses,for instance). 
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Table 3. Average PWV in July 2019 to 2021. 

Meteorological Station 
2019 

(mm) 

2020 

(mm) 

2021 

(mm) 

PingDingShan Station 43.36 44.35 47.22 

JiaoZuo Station 49.62 50.77 53.48 

ZhengZhou Station 44.92 45.98 48.88 

XuChang Station 48.72 50.17 52.67 

KaiFeng Station 49.30 51.87 54.13 

XinXiang Station 49.76 51.44 53.82 

 

Figure 11. The trends of PWV in July 2019–2021 and precipitation in July 2021. The red, green and 

black real lines represent PWV curves in 2019, 2020 and 2021, respectively, and the two blue imagi-

nary lines represent 7.18 and 7.21, respectively. The (1) and (2) cyan ellipses represent two selected 

rainfall events. 

The 24 h cumulative precipitation of the meteorological stations during heavy rainfall 

is shown in Table 4, and the surface precipitation distribution in Henan and the surround-

ing areas at UTC 00, 06, 12 and18, from 18 to 21 July 2021, is shown in Figure 12. According 

to the definition of ‘rainstorm’ by the CMA, ‘rainstorm’ refers to 24 h cumulative precipi-

tation greater than 50 mm. The World Meteorological Organization (WMO) divides pre-

cipitation with 1 h of precipitation greater than 10 mm into rainstorm grades. From Table 

4, we can see that the rainstorm first occurred in the western mountainous area (Ping-

dingshan and Jiaozuo Station, Pingdinghsan/Jiaozuo, China), and then the precipitation 

trajectory gradually moved to the central region of Henan province (Zhengzhou and 

Xuchang Station, Zhengzhou/Xuchang, China). Finally, the rainstorm moved to the east-

ern area (Kaifeng Station, Kaifeng, China) and the north area (Xinxiang Station, Xinxiang, 
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China). A similar trend of surface precipitation can also be seen in Figure 12. Taking the 

second column as an example, at the beginning of the rainstorm, the surface precipitation 

in the western and near-alpine regions was greater than that in other regions, and then 

gradually shifted from south to north and from west to east. The PWV distribution in 

Henan and the surrounding areas at UTC 00, 06, 12 and 18, from 18 to 21 July 2021, is 

shown in Figure 13. During the rainstorm period, the orange patches in Figure 13 (PWV 

bigger than 65 mm) moved from west to east and from south to north in Henan, and then 

dissipated after the rainstorm ended. This trend of PWV was similar to that of the 24 h 

cumulative precipitation and surface precipitation. 

 

Figure 12. Surface precipitation distribution map of Henan Province and surrounding areas from 

UTC 00, 18 July to UTC 18, 21 July, 2021 (the red dots represent the positions of meteorological 

stations). 

Table 4. 24 h cumulative precipitation during rainstorms (the red values represent values of daily 

precipitation greater than 50 mm). 

Meteorological Station 
18 July 2021 

(mm) 

19 July 2021 

(mm) 

20 July 2021 

(mm) 

21 July 2021 

(mm) 

PingDingShan Station 55.0 209.5 20.2 5.3 

JiaoZuo Station 59.5 66.4 209.2 235.8 

ZhengZhou Station 37.0 228.0 376.3 77.4 

XuChang Station 3.6 166.2 175.2 27.9 

KaiFeng Station 0.3 63.7 83.1 22.1 

XinXiang Station 34.1 42.5 242.7 258.6 
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Figure 13. PWV distribution map of Henan Province and surrounding areas during the rainstorm 

(red dots represents the positions of meteorological stations). 

3.2.2. Quantitative Analysis of the Relationship between NWP PWV and Precipitation by 

Eigenvalue Matching Method 

The OMT and OMD between PWV and surface precipitation during rainstorms was 

calculated every 6 h, and saved in Table 5. Due to space limitation, the PWV eigenvalue 

grid point at (a) UTC 12 on 19 July 2021 and (b) UTC 18 on 20 July 2021, and the corre-

sponding matching grid point distribution, are shown in Figure 14. From this table and 

figure, we can see that the OMD between PWV and surface precipitation ranged between 

31.0% and 80.3%, and the average OMD was 56.6%. Twelve groups of PWV and surface 

precipitation had OMD greater than 50%. The average OMD values corresponding to the 

OMT values of 2, 3, 4, 5 and 6 h were 46.8%, 58.3%, 65.0%, 63.9% and 58.0%, respectively. 

The OMT ranged between 2 and 6 h after the time of PWV, and 2 h was the most frequent 

OMT. The average OMT was about 3.68 h. The spatial–temporal relationship between 

PWV and surface precipitation was strong. 
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(a) (b) 

Figure 14. PWV eigenvalue grid point at (a) UTC 12 on 19 July 2021 and (b) UTC 18 on 20 July 2021, 

and the corresponding grid point distribution. The blank red dots represent the grid points of the 

PWV eigenvalues, and the red dots containing a plus sign represent the matching grid point. 

Table 5. Optimal matching degree and optimal matching time. TP refers to surface precipitation. 

 Time of PWV Time of TP OMT OMD  Time of PWV Time of TP OMT OMD 

18 July 

00:00 02:00 2 h 31.0% 

20 July 

00:00 03:00 3 h 68.8% 

06:00 08:00 2 h 36.1% 06:00 08:00 2 h 54.1% 

12:00 18:00 6 h 56.0% 12:00 15:00 3 h 55.7% 

18:00 23:00 5 h 47.5% 18:00 00:00 6 h 75.4% 

19 July 

00:00 02:00 2 h 59.0% 

21 July 

00:00 02:00 2 h 54.0% 

06:00 10:00 4 h 65.6% 06:00 12:00 6 h 42.6% 

12:00 17:00 5 h 80.3% 12:00 15:00 3 h 50.5% 

18:00 22:00 4 h 60.6% 18:00 22:00 4 h 68.9% 

4. Discussion 

Comprehensive and systematic monitoring of PWV changes is necessary for study-

ing and forecasting extreme weather. In this paper, the accuracy of MERRA-2 PWV and 

ERA5 PWV were assessed by using RS PWV and GNSS PWV. The experimental results 

showed that, compared with RS PWV, the average RMSE of PWV estimated by MERRA-

2 and ERA5 was 3.76 mm and 3.20 mm, respectively. Compared with GNSS PWV, the 

average RMSE was 3.305 mm and 2.37 mm, respectively. Consequently, the accuracy of 

the ERA5 PWV was slightly higher. This result was consistent with Huang’s research [18]. 

It can be seen from Table 2, Figure 4 and Figure 5 that NWP PWV had little correlation 

with RS PWV in the equatorial region of Southeast Asia, and low accuracy. The equatorial 

region of Southeast Asia is a tropical rainforest climate, and the atmospheric water vapor 

is extremely active, resulting in the low accuracy of NWP data here [42]. 

From Table 3 and Figure 11, it can be seen that there was a continuous growth stage 

of PWV before each rainfall. The more intense the PWV changes, the higher the probabil-

ity of heavy rainfall. This was consistent with Zhao’s research [20]. Figure 14 and Table 5 

show that the spatial distribution of PWV was consistent with the spatial distribution of 

precipitation, and that the average OMD and OMT values between PWV and precipita-

tion were 56.63% and 3.68 h, respectively. Barindelli’ s research showed that the spatial 

distribution of PWV was correlated with the spatial distribution of rainfall [44]. Yao’s re-

search showed that rainfall lagged behind PWV by 2–6 h [23]. The experiment results of 

this paper are similar to these research findings. 

Based on Figures 10 and 13, the reasons for the high PWV during the whole rainfall 

in western and southern Henan Province can be summarized. Firstly, the high PWV be-

fore rainfall was due to the continuous convergence of water vapor caused by the blocking 
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of the western mountains. Secondly, the reason for the high PWV during rainfall was due 

to the influence of typhoons and the western Pacific subtropical highs, and to the warm 

and humid airflow from the southeast direction continuously recharging the water vapor 

in the atmosphere of Henan Province, resulting in the PWV being at a high level in the 

process of heavy rainfall. Thirdly, due to the precipitation in the eastern and northern 

regions, and the fact that the atmospheric water vapor could not be supplemented in time, 

the PWV in the eastern and northern regions was smaller than that in the western and 

southern regions after rainfall. 

In addition, in this paper, NWP PWV, GNSS PWV and eigenvalue calculations were 

calculated by our own program. MATLAB software was used as statistical software. For 

the illustrations, we used the m_map toolbox. 

5. Conclusions 

A comprehensive and detailed study of NWP PWV accuracy and the relationship 

between PWV and precipitation is of great significance for improving early-warning abil-

ity for extreme weather, and reducing the loss of people’s lives and property. Conse-

quently, in this paper, the accuracy of NWP PWV estimated from MERRA-2 and ERA5 

reanalysis data, and the affecting factors of NWP accuracy, were evaluated using PWV 

from 120 RS stations uniformly distributed throughout the world, and 2 IGS stations in 

China. Furthermore, the spatial–temporal relationship between NWP PWV and surface 

precipitation was analyzed qualitatively and quantitatively by an eigenvalue matching 

method, using the ‘July 20’ heavy rainstorm in Zhengzhou for analysis. The following 

conclusions were drawn: 

(1) The PWV of both the MERRA-2 data and the ERA5 data had good consistency with 

RS PWV and GNSS PWV. Compared with MERRA-2 PWV, the accuracy of ERA5 

PWV was slightly higher. Latitude, altitude and season were the influencing factors 

on the NWP PWV estimation accuracy. 

(2) The change trend of ERA5 PWV was consistent with both 24 h cumulative precipita-

tion and surface precipitation during the ‘July 20’ heavy rainstorm in Zhengzhou. 

The average OMD and OMT between PWV and surface precipitation during the ‘July 

20’ rainstorm in Zhengzhou were 56.63% and 3.68 h, respectively, and the maximum 

optimal matching degree was 80.3%. The spatial–temporal relationship between 

PWV and surface precipitation was strong. 
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