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Abstract: In recent years, significant progress has been made in arbitrary-oriented object detection.
Different from natural images, object detection in aerial images remains its problems and challenges.
Current feature enhancement strategies in this field mainly focus on enhancing the local critical
response of the target while ignoring the target’s contextual information, which is indispensable for
detecting remote sensing targets in complex backgrounds. In this paper, we innovatively combine
semantic edge detection with arbitrary-oriented object detection and propose a feature enhancement
network base on a semantic edge supervision module (SES) that realizes an attention-like mechanism
in three dimensions of space, channel, and pyramid level. It helps the network pay attention to
the edge features of targets at multiple scales to obtain more regression clues. Furthermore, to
solve the problem of dense objects with different directions in remote sensing images, we propose a
rotation-invariant spatial pooling pyramid (RISPP) to extract the features of objects from multiple
orientations. Based on the two feature enhancement modules, we named the network SE2-Det;
extensive experiments on large public datasets of aerial images (DOTA and UCAS-AOD) validate
our approach’s effectiveness and demonstrate our detector’s superior performance.

Keywords: aerial images; oriented object detection; feature enhancement; convolutional neural
network

1. Introduction

With the rapid development of deep neural networks, more and more excellent object
detection algorithms based on convolutional neural networks have been proposed. The
generic object detection mainly utilizes the horizontal detection box algorithm, which
is divided into two-stage detectors [1–5] and one-stage detectors [6–9] according to the
algorithm detection process.

However, current horizontal detectors still have many limitations for some practical
scenarios, such as remote sensing image analysis. The oriented object detection task in
remote sensing image analysis aims to detect and classify objects in remote sensing images,
such as planes, ships and bridges. Because the remote sensing image is taken from the
top view, the target to be detected has different directions. Applying a horizontal detector
to detect these objects will cause the area covered by boxes to contain a large amount of
redundant background, further leading to problems such as overlapping multiple detection
boxes. In order to locate the target more accurately, this task needs to predict a set of
oriented bounding boxes (obbs). The oriented object detection of remote sensing image
analysis is applied in many military and civilian fields, such as topographic survey and
emergency rescue. Still, in addition to the characteristics of arbitrary direction mentioned,
the task has challenges such as small and dense, and large aspect ratios.

The current state-of-the-art methods for oriented object detection solve the domain-
specific problems proposed above from multiple perspectives. They can be summarized in
four directions: feature enhancement and alignment methods for dense and high aspect
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ratio remote sensing targets [10,11], denoising and attention modules for complex back-
grounds [12,13], specific sampling strategies for overhead view target [14,15], and novel
angle representations and loss functions [16,17] for field-unique regression issues. Our
work focuses on the first and second directions mentioned above to improve single-stage
oriented object detectors by introducing a novel attention-like mechanism network and
rotation-invariant feature enhancement module to tackle different challenges in remote
sensing image analysis.

Existing representative methods of feature enhancement and attention mechanism
in remote sensing image analysis can be divided into the following three aspects: using
effective attention mechanisms lets the network focus on targets’ salient features, which
solves the noise and boundary blur problem [14,18]; using the task-aware feature activation
method enhances the decoupled detection head, which solves the feature incompatibility
problem [18]; using more robust convolution extracts rotation-sensitive features, which
solve the problem of the arbitrary orientation of targets [11,19].

Nevertheless, it is found that there are three significant shortcomings in these methods.
Firstly, few detectors manage to pay attention to the contextual features of remote sensing
targets, which are pretty crucial according to prior knowledge [20] (see the first row of
Figure 1). Secondly, most attention modules are inadequately supervised, so they cannot
directly guide the network (see the second row of Figure 1). Besides, the rotation-invariant
features, which are essential to solve the problem of targets with various orientations [21],
are indirectly extracted by pooling rotation-sensitive features.

Figure 1. Baseline feature map (left), feature map of our method (middle), and detection result
(right). The first line: baseline only focuses on the local key features of the target with a large aspect
ratio, so the final regression box cannot completely contain the entire target. Our method focuses on
the target global edge features and provides rich contextual information to obtain accurate detection
boxes. The second line: our method implements an attention-like mechanism in the form of strong
supervision to guide the network to learn the global features of objects with different shapes in a
targeted manner and obtain accurate regression boxes.

To better pay attention to the context information of remote sensing objects, we in-
troduce semantic edge detection into arbitrary-oriented object detection for the first time.
In this way, we can instruct the network to learn the targets’ edge features purposefully.
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After careful analysis of the difference between remote sensing object detection and con-
ventional object detection, it is found that the remote sensing scene has a very high degree
of fit with edge detection. Objects in natural images are easily occluded from a heads-
up view, resulting in overlapping edges and bounding boxes between different objects.
CASENet [22] proposed a multi-label loss function for this issue, allowing a pixel to belong
to multiple categories. Combining semantic edge detection with general object detection
is still very challenging. While compared to the remote sensing targets in the top-down
view, the edges of both inter-class and intra-class targets are separated and do not overlap.
Therefore, semantic edge detection can better help arbitrary-oriented object detection from
a bird’s-eye view.

In this paper, we propose a novel feature enhancement network base on a semantic
edge supervision module (SES), which aims to guide the network to pay attention to the
contextual features of the target from complex backgrounds, thereby giving the network
more regression clues. Besides benefiting from its unique semantic characteristics compared
with binary edge detection, the proposed semantic edge supervision can achieve the
effect of an attention-like mechanism, which guides the network more pertinently in the
channel, space, and pyramid levels. Different from general attention mechanisms [23–25],
its advantage is to help the network learn the context information of different instances
among the same category in the spatial dimension. The edge maps of different categories
can be decoupled in the channel dimension. Meanwhile, it can enrich the communication
between the features among different scales in hierarchical dimensions and guide the
network to learn the importance of different categories at each pyramid level. In general,
our network suppresses redundant backgrounds and highlights the edge response of
the target in the form of strong supervision. In this way, the network can accurately
and completely pay attention to the remote sensing target to be detected. More detailed
experimental results can be found in Section 3.2.2.

Based on the above analysis, we innovatively guide the network to focus on the edge
features of the target to further extract the features required for regression. However, the key
features of the target are also indispensable, which play a decisive role in the localization
and classification of the target [18,26]. In remote sensing, the target to be detected has the
characteristics of changing directions. The key features should also have rotation invariance,
so our goal is to extract the rotation-invariant features. We propose a rotation-invariant
spatial pooling pyramid (RISPP) based on the spatial pooling pyramid proposed in [27] to
enhance the rotation-invariant feature of the target. This module focuses on the fusion of
features under multiple rotation angles to obtain more comprehensive rotation-invariant
features. It is worth noting that the rotation-invariant features of the target are often located
at the center of the target, so the rotation-invariant feature enhancement method can also
focus on the center response of the target to further assist in locating the center of the target.
Finally, our work enhances the comprehensive features suitable for remote sensing objects
from two aspects, the SES module and the RISPP module. Our proposed architecture and
method achieve competitive performance with state-of-the-art approaches on two public
remote sensing datasets, DOTA [28] and UCAS-AOD [29]. The contributions of this paper
are as follows:

• We creatively introduce semantic edge detection technology into oriented object
detection and propose a semantic-edge-supervision feature enhancement network
(SE2-Det) based on the core ideas in its field. This module guides the network in a
strong supervision form in the channel, space, and pyramid level dimensions. It also
effectively solves the problems of complex background and lack of context regression
clues in remote sensing object detection.

• In order to more effectively and comprehensively extract the rotation-invariant features
of remote sensing targets in any direction, we propose a rotation-invariant spatial
pooling pyramid (RISPP) and achieve remarkable results.

The rest of this paper is organized as below. Section 2 introduces the work related to
this paper from three aspects: general object detection, arbitrary orientation object detection
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in remote sensing, and semantic edge detection. It also introduces our method in detail.
Section 3 describes the datasets used in the experiment and demonstrates all the ablation
experiments related to our innovations, as well as the excellent performance of our method
on different datasets. Section 4 objectively discusses the limitations and future direction of
the proposed network. Conclusions are given in Section 5.

2. Material and Methods
2.1. Related Work

This section reviews some excellent object detection frameworks in two directions.
First, the generic target detection method based on a horizontal bounding box (hbb) has
made remarkable achievements in natural image object detection. Secondly, we introduce
several object detection methods based on an oriented bounding box (obb), which are
directly related to our paper. Finally, since we introduce edge detection to remote sensing
image analysis for the first time, we also introduce the related content of semantic edge
detection. In particular, some efforts have attempted to have edge detection assist their
tasks, such as semantically segmented domains.

2.1.1. Generic Object Detection

More and more high-performance object detection algorithms have been proposed
in recent years. Horizontal detection algorithms are primarily used in conventional object
detection tasks and are divided into two-stage and one-stage detectors. RCNN series
of algorithms can be called the classic two-stage detectors. RCNN [1] first introduces
a convolutional neural network into two-stage detection. On its basis, many improved
algorithms have also been proposed, such as Fast RCNN [2], Faster RCNN [3], Mask
RCNN [4], and Cascade RCNN [5]. Two-stage detectors are generally accurate but slow
due to the presence of the two-stage.

One-stage detectors do not generate proposals before classification and regression
and are widely used because of their fast speed. YOLO [6] series and SSD [9] series are
representatives of one-stage, but the accuracy of the one-stage detector is slightly lower
than the two-stage detector. RetinaNet [8] introduces the focal loss function for the class
imbalance problem, which combines the one-stage detector’s speed advantage and the
two-stage detector’s accuracy advantage.

2.1.2. Arbitrary-Oriented Object Detection in Aerial Images

Horizontal detectors have limitations in practical applications, such as detecting small
and dense remote sensing targets with arbitrary directions and large scales. In order to
adapt to these tasks, more and more oriented remote sensing detectors for different aspects
are proposed. Because of targets’ small and dense characteristics in complex backgrounds,
some detectors achieve the effect of denoising by improving the attention mechanism.
Unlike the commonly used spatial and channel attention [23–25], SCRDet [12] proposes
a supervised multi-dimensional attention mechanism. Nevertheless, it does not consider
the interaction between intra-class and inter-class objects, which is especially important
for complex scenes. Based on this, SCRDet++ [13] uses mask supervision to guide features
at multiple scales and act on the classification score, realizing inter-class decoupling and
intra-class denoising. However, the above methods do not directly provide regression
feature clues for regression tasks. CFC-Net [18] adopts the idea of decoupling to solve the
problem of incompatible classification and regression features. Although the polarization
function obtains more regression clues in the regression head, the regression clues lack
pertinence and stability, and it is not easy to obtain the global context information of the
target. S2A-Net [11] uses ARF [30] to extract rotation-sensitive features, which solves
the problem of arbitrary orientation to a certain extent. Nevertheless, it will generate
additional orientation channels, significantly impacting the number of model parameters
and inference speed.
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2.1.3. Semantic Edge Detection

With the continuous advancement of deep neural networks, edge detection has also
evolved from simple low-level filtered edge detection, such as Sobel [31] or Canny [32],
to deep binary or semantic edge detection. The most relevant work of this paper is se-
mantic edge detection. CASENet [22] solves the problem of edge classification through a
multi-label learning framework and uses a new nested architecture to fully let the low-level
features assist the high-level features in semantic classification. DFF [33] improves the
limitations of the fixed weight fusion model through a new dynamic feature fusion strategy.
In semantic segmentation, some people adopt multi-task learning methods to improve
the segmentation performance by using the auxiliary edge detection information. The
semantic segmentation network Gated-SCNN [34] adopts a two-stream structure, and the
gating mechanism of the shape branch uses edge information to improve the segmentation
effect of small structure objects. Different from Gated-SCNN assisting semantic segmenta-
tion through binary edge detection, RPCNet [35] first combines semantic edge detection
and semantic segmentation tasks and improves the boundary pixel accuracy of semantic
segmentation by constraining the loss through edge consistency loss. In order to help
salient object detection, EGNet [36] models the salient edge and target information and
uses the complementarity between the two tasks to optimize the two tasks jointly. We
introduce semantic edge detection into remote sensing detection for the first time, which is
fundamentally different from the above methods.

2.2. Methods
2.2.1. Overall Pipeline

The proposed SE2-Det is built based on the basic single-stage detector. The overall
framework is shown in Figure 2. It consists of four parts: feature extraction backbone,
contextual feature enhancement module based on the SES module, RISPP module and
detection head for classification and regression tasks.

Figure 2. The overall architecture of the SE2-Det. Take an RGB image as input and output, where the
output image has OBB prediction boxes. The backbone (ResNet [37] + FPN [38]) extracts common
features; then, contextual edge features and rotation-invariant features are extracted through SES
module and RISPP module, respectively. Finally, the features of the two branches are fused and sent
to the classification head and the regression head to obtain the OBB prediction result.

The specific process of the framework is as follows: firstly, we use the currently
common ResNet-based feature pyramid network (FPN) as the feature extraction network
to extract multi-scale features from RGB aerial images. On the one hand, the ResNet
network uses skip connection, which combines shallow and deep semantic features well.
On the other hand, the feature pyramid network takes full advantage of different scale
information to overcome the challenges of target prediction with different sizes. Therefore,
the ResNet-based feature pyramid network combines shallow and deep feature fusion and
multiresolution prediction to better deal with large-scale changes and small and dense
problems of object detection for remote sensing. For the extracted multi-scale features, we
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first feed them into the proposed SES module to guide the network to learn the edge and
context features of the target and decouple the different inter-class and intra-class instances.
Then, to further supplement the critical features of remote sensing targets, we feed the
features into the proposed RISPP module to extract the rotation-invariant features of the
target. So far, we have strengthened the target feature’s center and edge response through
the above two modules and obtained a rich and accurate feature description. Finally, we
send it to the detection head for classification and regression, and the output is an RGB
image with OBB prediction boxes. The following is a detailed introduction to the proposed
modules.

2.2.2. Semantic Edge Supervision for Contextual Feature Enhancement

In remote sensing, aerial imagery often has more complex backgrounds than natural
images, and the target has the characteristics of large-scale change, high aspect ratio, small
and dense. After our observations, basic one-stage detectors tend to have the following
three problems:

(i) It is challenging to capture the target’s global features and only focus on the critical
local features of the target while ignoring the significant target edge and context
features, which is very unfavorable for regression, especially those remote sensing
targets with high aspect ratios, as shown in the second row of the first column of
Figure 3;

(ii) The network invariably pays attention to the apparent boundaries in the image, but it
is worth noting that these boundaries are often the background, thus causing a lot of
redundant background interference, as shown in the second row of the second column
of Figure 3;

(iii) It is challenging to pay attention to small targets in complex backgrounds. Due to the
lack of targeted attention, a large amount of background noise drowns out the small
targets, as shown in the third column of the second row of Figure 3.

Figure 3 shows the above three problems. The comparison in the first column shows
that the baseline only pays attention to some harbor features. Our method not only pays
attention to the global boundary features of the harbor but also provides rich contextual
information. The second column represents the background boundary interference problem.
The bridge to be detected is only located above the lake in the center of the picture. Because
the network is sensitive to all boundaries, the baseline pays more attention to the road
boundary where the bridge deck extends to the land, which seriously interferes with the
detection of the original bridge deck. From the comparison in the third column, in the
baseline feature map, many high-response areas are distributed on the white line of the
parking area, focusing only on the local features of the vehicle head. After introducing the
proposed attention-like mechanism, our method not only has the effect of eliminating noise
but also pays attention to the global features of the large vehicle.

In order to deal with the above challenges, various attention mechanisms in the
spatial and channel dimensions have been widely proposed [18,23–25,39,40], and achieve
significant results in model accuracy performance and feature response. However, we
find that there are still some shortcomings. Firstly, these attention mechanisms make
the high response of the feature map expand outward from the center area of the target
without paying extra attention to the edge features of the inter-class and intra-class targets.
Thus, the ability to capture the contextual edge information of the target is relatively weak.
Some research [41,42] has demonstrated that the discriminant features required to locate
the target are often not wholly distributed on the ground truth; this also confirms the
importance of the context edge information of the target. Secondly, they all work through
back-propagating from the head of the network during the training phase. However, as
the depth of the network deepens, the propagation chain also gradually increases. This
long-distance supervision may cause the effect of the attention mechanism to be weakened.
Therefore, we call these attention mechanisms general “inadequately supervised” attentions
in the domain, and it is challenging to achieve domain-specific effects.
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Figure 3. The original image (the first row), the baseline feature map (the second row), and the feature
map of our method (the third row). The first column represents the problem of only focusing on local
features and ignoring global context information. The second column represents the background
boundary interference problem. The third column represents the difficult problem of small object
detection with a dense arrangement and different orientations.

Based on the above analysis of domain-specific problems and previous methods, we
innovatively combine semantic edge detection with oriented object detection and design a
semantic edge supervision network with a high domain fit. This module is fundamentally
different from the attention mechanism mentioned above. We solve all the problems with
excellent adaptability between semantic edge detection and remote sensing object detection.
The following will introduce the module’s implementation details and specific processes.

Figure 4a shows the detailed flow of the semantic edge supervision module, in which
we use pyramid levels P2 to P4 for semantic edge detection, where Pi has 1/2i resolution
of the input image. On the one hand, because the receptive field of the shallow feature
map is small and the semantic information is weak, the conventional object detection
tasks are predicted based on the pyramid level P3 to P7. In our work, we also perform
edge detection on the P2 feature map, but considering the computational overhead of the
feature map at this scale, we do not send it into the detection head. This advantage is that
more edge details can be extracted without increasing the computational overhead of the
head. Meanwhile, it can indirectly guide the upper-layer features to suppress background
information and provide more accurate edge localization and structural information to
retain more contextual details for the final edge activation map. On the other hand, the
maximum downsampling stride of the features in edge detection [22,43–45] is eight. It can
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be inferred that feature maps with too small scales are challenging to restore the detailed
features of the edge, so out of the above analysis, we decide to use pyramid levels P2 to P4
for semantic edge detection.

(a)

(b)

(c)

Figure 4. (a) Structure of semantic edge supervision module. The dilated convolution module
expands the receptive field of feature maps; the self-adaptive upsampling module obtains the
semantic edge activation map, and the bypass activation map obtains the fusion activation map via
the shared connection operation; the pixel-wise loss is utilised to compute coarse edge ground truth
with bypass activation maps and the fused activation map in different strategies. (b) Self-adaptive
decoder block. (c) Shared connection.

The specific implementation details are as follows: we first consider expanding the
receptive field for the above stack of pyramid blocks output. Due to the uniqueness of
edge detection, a larger receptive field is generally required to cover the target’s edge
information. Therefore, we first use multiple dilated convolutions to adapt the subsequent
edge detection to obtain edge information of different scales. The dilation rate follows the
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strategy in [43], which also well copes with the challenge of large-scale changes in remote
sensing targets. Then, we use two convolution layers to split the feature into two branches.

The first branch obtains the semantic edge activation map through the output of a
self-adaptive upsample block (SAU), a new method proposed by us, as shown in Figure 4b.
This module aims to optimize the checkerboard effect caused by upsampling using only
a single transposed convolution for traditional semantic edge detection [46]. Specifically,
for the input feature F ∈ RC×H×W , we first reduce the channel dimension by using a 1 × 1
convolution and ReLU activation function. We use the transposed convolution with a stride
of 2 for upsampling. So the factor of each upsampling is 2. We repeat the above operation n
times until the size of the edge map is consistent with the original image. Finally, we use a
1 × 1 convolution with the number of channels equal to the number of categories to extract
category-aware features. So far, we have obtained edge activation maps of multiple scales.

AP2 = A(1)
P2

,

AP3 = {A(1)
P3

, A(2)
P3

, . . . , A(n)
P3
},

AP4 = {A(1)
P4

, A(2)
P4

, . . . , A(n)
P4
},

(1)

where APk represents the edge activation map of the k-th pyramid level obtained by the

decoder output, A(n)
Pk

represents the n-th class channel of the current bypass activation
map. For AP2 , due to its limited receptive field, it is difficult to obtain sufficient semantic
information, so this bypass only outputs a single-channel activation map to provide edge
details. The number of channels in AP3 and AP4 is equal to the number of categories in the
dataset, so in theory, different instances of each category have been decoupled to different
channels. Next, we perform a shared connection operation on {AP2 , AP3 , AP4} (Figure 4c);
the module fuses the edge activation maps obtained above at different feature scales and
category channels. Specifically, we first copy the single-channel edge map of AP2 by n,
denoted as F, and then concatenate it with each class of the other two bypasses, which is
expressed as follows:

Afuesd = Concat
(

F, A(1)
P3

, A(1)
P4

, F, A(2)
P3

, A(2)
P4

, . . . , F, A(n)
P3

, A(n)
P4

)
. (2)

Finally, the activation map Afuesd with 3n channels is obtained by concatenating. Then,
through a depth-wise convolution with n groups and the convolution kernel size of 1, we
can obtain the fused category-aware edge activation map. The above operations can further
help the decoupling between classes and reweighting the feature maps between different
pyramid levels, thus allowing the network to learn the importance of each category between
different pyramid levels. Finally, the poly-based coarse edge ground truth and all the above
activation maps are used to calculate the pixel-wise loss in a deeply supervised manner
to guide the network to focus on different instances in each class in the spatial dimension.
The poly-based coarse edge ground truth is generated from the annotations of the original
dataset. In order to further explain the similarities and differences between the role of the
proposed attention-like mechanism and the conventional attention method, we also list the
attention mechanism in [24], and its expression is shown in Equation (3):

Y = Ms(Mc(X))

= ws �
C⋃

i=1

x(i) · w(i)
c , (3)

where X, Y ∈ RC×H×W represents the feature maps before and after attention. Compared
to the attention mechanism in [24], the channel attention Mc and the spatial attention Ms

act on the input feature map in an insufficient supervised form. w(i)
c ∈ RC×1×1 represents

the attention weight of each channel dimension,
⋃

represents channel concatenation, and
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C is the number of channels. In CBAM [24], the importance of each channel is obtained
by using global max pooling and global average pooling, followed by a fully connected
layer. Then, the channel attention is obtained by multiplying the channel weights one
by one with each channel’s feature x(i) and concatenating them. Subsequently, perform
pooling, dimensionality reduction and sigmoid operations based on the channel again to
obtain the response weight of the spatial dimension ws ∈ R1×H×W , where � represents the
element-wise product.

Y = SES(sc(‖X‖))

=
N⋃

n=1

K⋃
k=1

C⋃
c=1

x(n)k,c · w
(n)
k,c . (4)

Our method is significantly different from the attention methods described above.
The expression is shown in Equation (4), where ‖ · ‖ represents our proposed self-adaptive
upsampling, the factor of each up-sampling is 2, sc represents the shared connection
operation, and SES stands for semantic edge supervision.

The main differences are as follows: first, in the channel dimension, the self-adaptive
upsample block first reduces the channel dimensions through a 1×1 convolution and ReLU
activation function, then uses the transposed convolution with a stride of 2 for upsampling,
repeating the above until the edge map size is the same as the original. Quantitatively, we
use a 1 × 1 convolution with the same number of channels as the number of categories to
obtain edge activation maps with the same number of channels as the number of categories.
Therefore, the above operations can achieve the effect of decoupling each category to its
corresponding category channel. Finally, the channel supervise is performed by calculating
the multi-label pixel-wise loss on the poly-based coarse edge ground truth and the multi-
scale edge activation map obtained for different categories of channels, and then reweight
is applied to each category of channels. Specifically, assuming that the number of categories
in the current picture is n ∈ [0, N], these n channels will be strengthened, and the remaining
channels will be weakened as the background.

Next, we use the shared connection operation to achieve the effect of hierarchical
attention under the action of supervision. To expand, we have obtained the activation
maps of multiple scales after reweighting the channels in the previous step. Assuming
that the activation maps of one of the categories in multiple bypasses are A1, A2, . . . , Ak ∈
RN×H×W , we concatenate them to obtain the activation map of dimension kN. Then,
we reduce its dimension via depth-wise convolution to obtain the fused activation map
Afused ∈ RN×H×W . At this time, the activation maps of multiple scales are reweighted and
communicated to obtain the importance of different pyramid levels.

On the spatial dimension: we propose a semantic edge label, a coarse edge label
derived from the oriented annotation bounding boxes of the original dataset. The target
edges to be detected are supervised, not all edges. The background area, especially the
non-object with an object-like shape, does not introduce edge guidance, weakens the back-
ground, highlights the target edge, and achieves some noise reduction effect. Specifically,
we calculate the multi-label pixel-wise loss between the poly-based coarse edge ground
truth of the target to be detected and multiple bypass activation maps for supervision. The
spatial responses Ws ∈ RN×H×W within N categories are obtained. After attention to the
channel and hierarchy dimensions, it is multiplied by the element with the previously
obtained features. The effect of suppressing the background, highlighting the foreground
contour in a strongly supervised form, and capturing the target global context information,
can be achieved.

Y = σ(F
′
Pk
)� FPk + FPk . (5)

After that, to take advantage of this guiding role, we express another branch in the
form of Equation (5). σ represents the sigmoid activation function, FPk represents FPN
feature, F

′
Pk

represents FPN feature after expanding the receptive field and � represents
the element-wise product. We first use the sigmoid activation function to convert the FPN
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feature after expanding the receptive field F
′
Pk

into the attention-like weights, multiply it
element-wise by itself FPk and finally perform the residual operation. The effect of this kind
of attention can directly guide the adjacent network to pay attention to the edge features
of the target and capture the complete object-wise context information through the above
operations, so it is more influential and targeted. The final effect is shown in the third
row of Figure 3. Meanwhile, we have conducted detailed ablation experiments for this
innovation, and the results can be found in Section 3.2.2.

2.2.3. Rotation-Invariant Spatial Pooling Pyramid for Feature Enhancement of
Arbitrary-Orientated Target

We tackle the challenging problem above and capture global contextual informative
features in remote sensing images with complex backgrounds. Nevertheless, the key
features of the target are still lacking, which is very unfavorable for the classification task.
In order to solve this problem, we consider the particularity of remote sensing images that
the target has arbitrary orientation characteristics in the top view. Therefore, we believe
that the rotation-invariant feature of the target can be extracted as a critical feature in
this field. However, it should be noted that the convolution filter cannot extract rotation-
invariant features, so extracting general deep features for the same type of targets in
different directions is difficult. Current works address these problems from two aspects,
in which [30,47] improve the convolution operation itself so that they can extract rotation-
sensitive features; [11,19] extract rotation-invariant features by pooling feature maps with
rotation channels.

Figure 5. The structure of rotation-invariant spatial pooling pyramid.

In order to solve the above problems, we propose a rotation-invariant spatial pooling
pyramid based on [27], which extracts rotation-invariant features by fusing feature maps
of multiple rotation angles without adding additional direction channels. As shown in
Figure 5, the overall process is as follows: for the single-scale feature F ∈ RC×H×W extracted
from the SES module, we first use n convolution kernels as 1, and the convolution with
C
2 channels divides the original features into F1, F2, . . . , Fn. Next, one of the branches will
be rotated θ, 90◦, 180◦, or 270◦. Then, we calculate the scaling ratio according to the angle
and scale the feature map to avoid the loss of partial offset of the feature map after rotation.
Subsequently, we use the deformable convolution [48] to extract the features of the target
at this angle. This is owing to the following considerations:

(i) The offset learning in deformable convolution can better extract the representative
features of targets in any direction and has better feature extraction ability for targets
with large aspect ratios and different shapes;

(ii) Because of padding, the oriented feature map has obvious boundaries, bringing
additional background noise to the ordinary convolution operation. The use of
deformable convolution can alleviate this problem.

Through the above operations, we use multiple branches to extract features from the
same feature map at different rotation angles. We rotate and scale the feature map back to
its original state and concatenate the n branches together in the channel dimension. Finally,
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the rotation-invariant features can be obtained by restoring and compressing the number
of channels through a 1 × 1 convolution.

2.2.4. Multi-Task Loss Function

The multi-task loss function consists of three parts. In addition to the loss used for
classification and regression tasks in the original single-stage detector, we introduce an
additional edge detection task loss to correspond to the proposed semantic edge detection
module. Therefore, the overall definition of the multi-task loss function is as follows:

Ltotal = Lcls(pi, p∗i ) + Lreg(vi, v∗i ) + Ledge. (6)

The classification loss Lcls uses focal loss [8], pi represents the probability of whether
the i-th anchor predicted by the network is the target, and p∗i represents its ground truth
labels. We use the smooth L1 loss [2] as the regression loss Lreg, where vi and v∗i represent
the predicted box and ground-truth box, each box is in vector form, and the box is encoded
according to the format in [11]. For the edge detection task in the SES module, since multiple
pyramid levels are involved, the overall edge loss of multiple bypasses is as follows:

Ledge =
S

∑
i=1

α(i)L(i)side (7)

in which S represents the number of bypasses used for supervision, α(i) provides a trade-off
coefficient for each bypass, which is set to 1 by default, and the total edge loss is the sum
of the losses of the S bypasses. Next, for the loss calculation of each bypass, considering
the extreme imbalance between edge and non-edge labels and the semantics of the edges
to be predicted, we use weighted cross-entropy loss for multiple category labels, which is
expressed explicitly as follows:

L(i)side =∑
k
Lk(W

(i))

=∑
k

∑
p

{
−βYk(p) log Yk(p | I; W(i))

−(1− β)
(
1− Yk(p)

)
log
(

1− Yk(p | I; W(i))
)}

.

(8)

In the above formula, W(i) represents the parameter of the network in the i-th bypass,
and k represents the number of categories. We generate the coarse edge ground truth
from the polygon annotations in the dataset, where Yk(p) represents the value at the k-th
class pixel p on the ground truth. Yk(p | I; W(i)) represents the pixel point p in the input
image I after the network inference about the k-th semantic category forecast result. The
introduction of the non-edge pixel percentage β is used to solve the problem of label
imbalance. In summary, the predicted value of each bypass and the ground truth calculate
a binary cross-entropy loss for all categories k to determine whether it is an edge. Finally,
we accumulate the multiple bypass output losses obtained above and obtain the overall
multi-label loss for multi-category.

3. Results

In this section, we describe the two datasets used in the experiment and the main results
of the experiment. Details of the ablation experiment design are described and analyzed.

3.1. Datasets

The DOTA[28] is a large-scale public dataset for object detection in the aerial im-
age. There are 2806 images in total. The pixels of each image is between 800 × 800 and
4000 × 4000 pixels. The instance objects in the image are divided into 15 categories with a
large variation in object scale, aspect ratio, and arbitrary orientation. These fifteen categories
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include Bridges (BR), Harbor (HA), Ship (SH), Plane (PL), Helicopter (HC), Small vehicle
(SV), Large vehicle (LV), Baseball diamond (BD), Ground track field (GTF), Tennis court
(TC), Basketball court (BC), Soccer-ball field (SBF), Roundabout (RA), Swimming pool (SP),
and Storage tank (ST). The experts in remote sensing image analysis used horizontal and
oriented bounding boxes to label each instance respectively, annotating 188,282 instances.
The annotation boxes we use are all oriented bounding boxes, and the proposed semantic
edge annotations are coarse edge maps obtained from the oriented annotation boxes. The
entire dataset is divided into 1/2 training set, 1/6 validation set and 1/3 testing set, and
the final test results are obtained through the official evaluation server. During training,
since the original DOTA image is too large, we split the image into 1024 × 1024 sub-images
with an overlap of 200 pixels. The network is trained with the SGD optimizer in training.
The learning rate is 0.0025, weight decay and momentum are 0.0001 and 0.9; we train 12
epochs with batch size 2 on GeForce RTX A4000, and the 9th and 11th epochs are an epoch
decreasing learning rate. To avoid overfitting, we apply random horizontal flipping.

UCAS-AOD [29] is a dataset containing two types of oriented aerial images: 510 car
images and 1000 aircraft images. The pixels of each image is 659 × 1280. The instances
in each image are annotated with horizontal and oriented bounding boxes containing
14,596 instances. There is no division standard for the original dataset. To make a fair
comparison with the comparison method, we adopted the same division ratio of 5:2:3. In
training and inferencing, all images are resized to 800 × 800. We use the SGD optimizer,
and the initial learning rate is set to 0.01, and the weight decay and momentum are 0.0001
and 0.9.

3.2. Main Results

In this section, we conduct a series of ablation experiments on DOTA-v1.0 to verify
the effectiveness of our proposed method. Unless otherwise stated, we all train on the
training set of the DOTA dataset and evaluate on the validation set, and the image size
is 1024 × 1024. We use RetinaNet based on ResNet50 as the baseline. To evaluate the
performance of object detectors, we adopt the typical measure of mean Average Precision
(mAP) and Frame Per Second (FPS).

3.2.1. Evaluation of Different Components

We evaluate all proposed modules to verify the contribution and effectiveness of each
module. The experimental results are shown in Table 1, and the abbreviations are explained
as follows: Bridges (BR), Ground track field (GTF), Large vehicle (LV), Basketball court (BC),
Storage tank (ST), Soccer-ball field (SBF), Roundabout (RA), Harbor (HA), and Swimming
pool (SP).

Table 1. Component-wise experiment.

Methods SES RISPP BR GTF LV BC ST SBF RA HA SP mAP FPS

Baseline - - 37.9 64.8 67.5 60.2 60.3 49.0 62.9 58.4 50.8 63.49 18.2

Ours
× ! 39.4 63.4 68.2 61.8 63.8 50.7 62.9 60.0 52.5 63.68 7.9
! × 41.1 69.0 69.0 63.2 63.7 52.9 67.0 60.2 54.4 65.42 14.1
! ! 41.7 68.4 69.8 63.3 64.5 53.2 66.4 61.1 54.5 65.95 6.0

First, to verify the effectiveness of the SES and RISPP modules themselves, we build
model variants containing only themselves based on the baseline, respectively. Introducing
the SES module can improve detection performance by 1.93%, indicating that the SES
module can guide the network to focus on the target itself and provide better regression
and contextual guidance information. For small and dense target swimming pools, it
increases by 3.6%; while for high aspect ratio ground track field, it increases by 4.2%. After
only introducing the RISPP module to extract the rotation-invariant features, the detection
performance is improved by 0.19%, indicating that the extracted rotation-invariant features
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can help the network obtain key features beneficial to classification and localization. There
is a 3.5% increase for the small and dense storage tanks. Finally, under the joint action
of the two modules, the overall improvement is 2.46%, indicating that the two feature
enhancement components have achieved a complementary effect and can achieve 65.95%
mAP. In terms of time performance, Table 1 shows that the proposed two modules perform
well in time and that the fused model greatly shortens the detection time. So far, we have
verified the effectiveness of each proposed module. Next, we will perform a more detailed
ablation analysis of each module.

3.2.2. Evaluation of Semantic Edge Supervision

In this section, we design detailed ablation experiments from three perspectives to
verify the effectiveness of the proposed feature enhancement network based on semantic
edge supervision. As shown in Table 2, we first evaluate the attention-like mechanism of
this module from three dimensions: space, channel, and pyramid level. When the sides’
channel is set to 1, it means that only space supervision is carried out to verify the effect
of space supervision. Number 15 in the table corresponds to the number of categories of
DOTA in the dataset for ablation experiments. Therefore, when the sides’ channel is set to
15, it means that category channel supervision is introduced. Finally, the introduction of
shared connection operation means the introduction of pyramid hierarchical attention.

Table 2. Ablation of attention-like mechanism.

Sides’ Channel Shared Connection mAP

− − 63.49
1, 1 × 64.30(+0.81)

15, 15 × 64.43(+0.13)
15, 15 ! 64.94(+0.51)

To avoid the interference of other variables, we first only output the single-channel
activation map on the P3 and P4 bypasses of the pyramid level for spatial supervision.
Compared with the baseline, it can be observed that the detection performance is improved
by 0.81%, indicating that this attention-like mechanism can help the network pay attention
to the contextual information between different instances in the spatial dimension. Next,
we expand the number of channels of the bypass activation map to the number of categories
and try to decouple the edge maps of different categories in the channel direction to verify
the effect of channel dimension attention. Experiments show an increase of 0.13% based
on spatial attention. Finally, we fuse the above-mentioned multi-scale and multi-channel
edge activation maps through shared connections, which further improves the 0.51%
mAP. It further verifies the importance of multi-scale feature interaction in the hierarchical
dimension. It verifies that the network can learn the importance of different categories at
each pyramid level under strong supervision.

Table 3. SAU and different supervised strategies ablation.

Supervision Strategy Sides’ Channel SAU mAP FPS

Deep 1, 15, 15 × 64.60 14.1
Side3, Fuse 1, 15, 15 × 64.82 14.4
Side3, Fuse 15, 15 × 64.61 16.8
Side3, Fuse 1, 15, 15 ! 65.21 13.6

The rationality of different supervision strategies and the effectiveness of the self-
adaptive upsample module (SAU) are verified in Table 3. We add a pyramid level P2 to
assist edge supervision in this experiment. First, we try to supervise the edge activation
maps at all scales without using the SAU module, and the overall detection performance
only reaches 64.60%. At the same time, according to the research in [49], we try to use SAU
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to build a buffer on each depth-supervised bypass to obtain better performance, but the
result is reduced by 0.12%. Subsequently, we try to change the supervision strategy. It
is found that the activation map after only supervising side3 and the shared connection
fusion is better, with an improvement of 0.22%. Next, we try to verify the effect of the P2
single-channel activation map under this supervised strategy and find that the detection
performance is decreased by 0.21% without P2 providing detailed information. This verifies
that there are more edge details in the low-level feature maps, and more contextual details
are preserved for the final edge activation map. It also verifies the rationality and necessity
of selecting pyramid levels P2 to P4 for semantic edge supervision. Finally, to verify the
superiority of the proposed SAU module over traditional semantic edge detection using
only a single transposed convolution for upsampling, we add this module based on the
above and achieve a performance of 65.21% mAP and 13.6 FPS. Therefore, the final setting
achieves the best performance in terms of accuracy and time performance.

Table 4. Ablation of each module in SES module.

Dilated Conv SES Decoder mAP FPS

− − − 63.49 18.2
× ! raw 64.82 (+1.33) 14.4

ASPP{6, 8, 16} ! raw 64.55 12.4
2,2,2,4 ! raw 64.99 13.2
1,2,5 ! raw 65.42 (+0.6) 14.1

1,2,5 ! SAU 65.52 (+0.1) 12.8

We have completed the ablation experiments within each component independently
in the above experiments, while we also verify the interaction and effectiveness between
all components in Table 4. First, we add the optimal SES module using the raw decoder
to the baseline, improving 1.33% mAP and reducing 3.8 FPS. Then, we add different
dilated convolution assist edge tasks before SES and find that the dilation rate of 1, 2,
and 5 has the best effect, increasing to 0.6% mAP, verifying that expanding the receptive
field can improve the edge detection performance. The dilated convolution block further
strengthens the attention-like mechanism’s role and deals with the large-scale change of
remote sensing targets. Finally, we add the SAU module, which increases by 0.1% and
achieves good performance in time, verifying that this module is still effective after a dilated
convolution block. It can be observed that SES suppresses redundant backgrounds in a
strong supervised form and highlights the edge responses of the objects to be detected. It
enables the network to focus on the target, improving the detection performance. Therefore,
SES has the most noticeable improvement to the whole with attention-like mechanism and
supervision strategies and is the core component of the entire module.

3.2.3. Evaluation of RISPP

As shown in Table 5, we also design corresponding ablation experiments to compare
the effect of RISPP applying different convolution types. All comparative experimental
angles are set to 90◦, 180◦ , and 270◦ to avoid feature loss after feature rotation. The abbrevi-
ations in Table 5 are explained as follows: Bridges (BR), Ground track field (GTF), Basketball
court (BC), Harbor (HA), and Swimming pool (SP). When using 1× 1 convolution, the
overall mAP is only 63.07%. Subsequently, after changing to 3× 3 convolution, the overall
increase is 0.57%, where the large aspect ratio of the basketball court is improved by 4.8%.
Finally, after replacing the convolution with a deformable convolution that is more suitable
for this module, it is increased by 0.04% compared to the 3× 3 convolution. Compared
to using the 1× 1 convolution, there is a 3.4% increase for the large aspect ratio harbor.
In terms of time performance, this setting also achieves the best performance. The above
ablation experiments fully verify that offset learning in deformable convolution can better
extract the representative features of objects in any direction and has better feature extrac-
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tion ability for objects with large aspect ratios and different shapes. Moreover, by observing
the feature map and combining this module with the effect of deformable convolution on
small targets with complex backgrounds, it is concluded that padding makes the feature
map after rotation have apparent boundaries. These newly generated boundaries bring
additional background noise to ordinary convolution operations, which we successfully
mitigate using deformable convolution.

Table 5. Ablation of RISPP.

Conv. Type BR GTF BC HA SP mAP FPS

1× 1 37.6 63.3 56.8 56.6 50.6 63.07 8.5
3× 3 38.6 61.9 61.6 59.3 52.1 63.64 8.3

3× 3, deformable 39.4 63.4 61.8 60.0 52.5 63.68 7.9

3.2.4. Results on DOTA

We compare the proposed method with other state-of-the-art methods on the DOTA
dataset. As shown in Table 6, our method achieves an mAP of 76.42 % and 6.0 FPS,
surpassing all the methods compared. We use the single-stage RetinaNet as the baseline
for improvement, which surpasses some single-stage detectors and far surpasses other
two-stage detectors. The abbreviations in this table are explained as follows: Plane (PL),
Baseball diamond (BD), Bridges (BR), Ground track field (GTF), Small vehicle (SV), Large
vehicle (LV), Ship (SH), Tennis court (TC), Basketball court (BC), Storage tank (ST), Soccer-
ball field (SBF), Roundabout (RA), Harbor (HA), Swimming pool (SP), and Helicopter
(HC).

Table 6. Comparisons with other state-of-the-art methods on DOTA dataset.

Methods Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

Two-Stage:

ICN [50] R-101 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20
RoI-Trans. [51] R-101 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56
SCRDet [12] R-101 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
FADet [52] R-101 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28
Gliding Vertex [53] R-101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
Mask OBB [54] RX-101 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33
FFA [55] R-101 90.1 82.7 54.2 75.2 71.0 79.9 83.5 90.7 83.9 84.6 61.2 68.0 70.7 76.0 63.7 75.7
CenterMap OBB [56] R-101 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

Single-stage:

PIoU [57] DLA-34 80.9 69.7 24.1 60.2 38.3 64.4 64.8 90.9 77.2 70.4 46.5 37.1 57.1 61.9 64.0 60.5
P-RSDet [58] R-101 89.02 73.65 47.33 72.03 70.58 73.71 72.76 90.82 80.12 81.32 59.45 57.87 60.79 65.21 52.59 69.82
A2S-Det [59] R-101 89.59 77.89 46.37 56.47 75.86 74.83 86.07 90.58 81.09 83.71 50.21 60.94 65.29 69.77 50.93 70.64
O2-DNet [60] H-104 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04
DAL [15] R-101 88.61 79.69 46.27 70.37 65.89 76.10 78.53 90.84 79.98 78.41 58.71 62.02 69.23 71.32 60.65 71.78
DRN [61] H-104 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23
BBAVector [62] R-101 88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70 72.32
CFC-Net [18] R-50 89.08 80.41 52.41 70.02 76.28 78.11 87.21 90.89 84.47 85.64 60.51 61.52 67.82 68.02 50.09 73.50
SLA [14] R-50 88.33 84.67 48.78 73.34 77.47 77.82 86.53 90.72 86.98 86.43 58.86 68.27 74.10 73.09 69.30 76.36

SE2-Det(Ours) R-101 89.31 85.67 50.53 72.82 79.99 73.96 85.85 90.69 84.73 83.23 64.84 67.83 72.56 76.59 67.85 76.42

Some detection results of DOTA are shown in Figure 6. It can be observed that the
presented method is friendly to the detection of densely arranged small objects in different
directions, especially the small vehicles, ships, and large vehicles in the first row. All objects
in the image are successfully identified and have accurate regression boxes. It benefits from
the background denoising effect of the attention-like mechanism and the sensitive capture
of the target orientation by the rotation-invariant features. Represented by detecting large
vehicles, bridges, and harbors, our method can well detect and regress large aspect ratio
targets. It is mainly due to the introduction of edge supervision, which enables the network
to pay attention to the target’s global characteristics and context characteristics from a
complex background and has more regression clues. Overall, our method also copes well
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with remote sensing targets’ intra-class and inter-class scale changes. Figure 6 shows the
intra-class scale variation for the harbors, the roundabouts and the storage tanks. Inter-
class scale variation is also easy to find, such as small vehicles and basketball courts. The
excellent performance of our method on the scale variation is mainly due to the feature
enhancement network based on semantic edge supervision that realizes an attention-like
mechanism in the three dimensions of space, channel, and pyramid level.

Figure 6. Visualization of predictions on the DOTA dataset using our method, SE2-Det.
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3.2.5. Results on UCAS-AOD

We also conduct experiments on the UCAS-AOD dataset to verify the generality of
our method. Table 7 shows that our method exceeds many advanced methods, achieving
a 2.43% improvement over the baseline RetinaNet-R to 90.00% mAP. Our method is not
only 1.64% higher than the classical two-stage Faster-RCNN but also 0.51% higher than
the oriented object detection method, CFC-Net. Among all the methods compared, our
method achieves the highest level of plane class detection, indicating that the proposed
SES and RISPP modules make our method more robust to targets in different directions.
Some detection results on UCAS-AOD are shown in Figure 7.

Table 7. Comparisons with high-quality detection performance on UCAS-AOD dataset.

Methods Car Plane mAP

RetinaNet-R [8] 84.64 90.51 87.57
Faster-RCNN [3] 86.87 89.86 88.36
RoI-Trans. [51] 87.99 89.90 88.95

SLA [14] 88.57 90.30 89.44
CFC-Net [18] 89.29 88.69 89.49

DAL [15] 89.25 90.49 89.87
SE2-Det(Ours) 89.24 90.71 90.00

Figure 7. Visualization of predictions on the UCAS-AOD dataset using our method SE2-Det.

4. Discussion

Since we introduce edge detection to remote sensing for the first time, we also conduct
statistical analysis for further discussion to verify the effectiveness of edge supervision.
From Figure 8, we can see that most categories’ average deviation between regression boxes
and ground truth has improved after edge supervision. The improvement of Basketball
court (BC), Large vehicle (LV), and Harbor (HA) are more pronounced, showing that the
regression boxes’ quality for high aspect ratio targets is generally improved after edge
supervision [63].
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Figure 8. Average IoU of each category of ground truth boxes and regression boxes before and after
edge supervision.

We verify that our method surpasses the comparison detector and the effectiveness of
the proposed module, but the proposed network can have a better development direction.
On the one hand, Figure 8 shows that after the introduction of edge detection, the mean
deviation between regression box and ground truth has been significantly improved in
many categories. Still, it does not perform well in some categories, such as the Soccer ball
field (SBF), which needs further research. On the other hand, the semantic edge labels
introduced in this paper are rough edge graphs derived from oriented bounding boxes. This
means that the edge ground truth used for supervision is the object’s bounding rectangle,
not the object’s actual edge, which may limit the effect of edge supervision. Changing the
coarse edge to the actual edge of the target to be detected may solve this problem, which
will be our future research direction.

5. Conclusions

We pioneeringly introduce semantic edge detection into oriented remote sensing
object detection and propose a simple and effective semantic-edge-supervision feature
enhancement network (SE2-Det). The SES module’s core idea is to guide the network to pay
attention to the multi-scale contextual features of each category target through the attention-
like mechanism of three dimensions: space, channel, and level. While suppressing the
background, it strengthens the edge response between different instances in each category,
which solves the lack of global response for complex backgrounds and single targets
(especially targets with high aspect ratios and different shapes) in remote sensing scenes.
Meanwhile, we further enhance the rotation-invariant features of remote sensing targets
through the RISPP module to capture the essential features specific to remote sensing
targets. We conduct detailed ablation and comparative experiments on two public remote
sensing datasets, DOTA and UCAS-AOD, and achieve competitive performance.
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