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Abstract: Current Synthetic Aperture Radar (SAR) image object detection methods require huge
amounts of annotated data and can only detect the categories that appears in the training set. Due
to the lack of training samples in the real applications, the performance decreases sharply on rare
categories, which largely inhibits the detection model from reaching robustness. To tackle this
problem, a novel few-shot SAR object detection framework is proposed, which is built upon the
meta-learning architecture and aims at detecting objects of unseen classes given only a few annotated
examples. Observing the quality of support features determines the performance of the few-shot
object detection task, we propose an attention mechanism to highlight class-specific features while
softening the irrelevant background information. Considering the variation between different support
images, we also employ a support-guided module to enhance query features, thus generating high-
qualified proposals more relevant to support images. To further exploit the relevance between support
and query images, which is ignored in single class representation, a dynamic relationship learning
paradigm is designed via constructing a graph convolutional network and imposing orthogonality
constraint in hidden feature space, which both make features from the same category more closer
and those from different classes more separable. Comprehensive experiments have been completed
on the self-constructed SAR multi-class object detection dataset, which demonstrate the effectiveness
of our few-shot object detection framework in learning more generalized features to both enhance
the performance on novel classes and maintain the performance on base classes.

Keywords: Synthetic Aperture Radar (SAR); few-shot object detection; attention; support-guided
module; graph convolutional network

1. Introduction
1.1. Background

Due to its distinctive capabilities of all weather and all day imaging, as well as
ground-penetrating, Synthetic Aperture Radar (SAR) has become the mainstream active
observation system. With the rapid development of SAR imaging technology, a large
amount of high-resolution SAR imagery data from various sensors are available, which
further promote SAR applications, such as oil spill detection, urban planning and military
reconnaissance. In particular, SAR object detection and recognition is a hotspot task
widely used in maritime management and battlefield situation perception. Recently, some
high-resolution SAR satellites, such as Gaofen-3 and HISEA-1 [1], have been successfully
launched, which enables applications, such as radar target recognition, ship target detection,
image registration, and so on [2–4].

Given the strong scattering features of the SAR image object and the statistical distribu-
tion of background clutter, the Constant False Alarm Rate (CFAR) algorithm [5] calculates
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the threshold and determines whether the pixel belongs to the target or clutter. Though
numerous methods have been proposed on the basis of CFAR, the model performance
becomes unsatisfied under complex scene. In recent years, benefiting from the powerful
feature representation capabilities, Convolutional Neural Networks (CNNs) have achieved
a superior performance in the field of computer vision and largely boosted the development
of data-driven SAR object detection algorithms. The state-of-the-art deep CNN-based detec-
tors can be divided into two-stage detection algorithms and one-stage detection algorithms.
The two-stage methods [6–8] dominate detection accuracy in prediction results, whereas
one-stage approaches [9–11] perform better in training speed and inference efficiency.

In contrast to large-scale remote sensing datasets, the data volume and object type in
SAR ship dataset is very limited. Although superior performance have been gained on
SAR object detection task by leveraging a variety of advanced CNN algorithms trained on
massive labeled samples, it encounters over fitting problem and poor generalization ability
when the training set is not sufficient and new categories emerge.

Furthermore, the object occurrence in SAR interpretation applications follows a long-
tailed distribution, which means common objects appear quite often while novel objects
are long-tailed distributed. The most straightforward way is retraining a neural network
with the aid of a large amount of data with various object types, nevertheless, the collection
and annotation of new data require a lot of manpower and material resources. As for SAR
image interpretation, the identification of object type becomes even more demanding since
only the highly experienced researchers can distinguish the type of target under complex
scenarios. The above issues largely hindered the development of SAR ship detection to
some extent. Thus, it is indispensably and challenging to devise more robust object detector
capable of detecting novel objects with only few labeled samples. In this work, we aim to
design a few-shot paradigm which can still perform well on SAR ship detection models
when only a limited amount of training data are acquired.

1.2. Related Work

SAR Object Detection Methods. We mainly focus on deep convolutional neural
network methods applied for SAR object detection from anchor-based and anchor-free
perspective. To effectively detect large-difference-scale targets under large scene images,
Tang et al. [12] proposed a new metric revised bhattacharyya distance (RBD) instead of
IoU metric and utilized it in label assignment and non-maximum suppression (NMS) of
multi-stage detector Cascade RCNN. To mitigate the influence of background clutter and
enhance the edge information of targets, Zhao et al. [13] introduced morphological feature-
pyramid to preprocess the SAR images and present lightweight YOLOv4-tiny [14] network
combined with feature pyramid fusion structure to improve detection accuracy. Moreover,
Zhu et al. [15] proposed an optimal high-speed and high-accuracy detector H2Det based
on the YOLOv5 detection framework. Chen et al. [16] designed a tiny ship detector
with lighter architecture and fast inference speed by network pruning and knowledge
distillation. Considering the characteristics of SAR image scenes and ship targets, Hu
et al. [17] integrated deformable convolution, context information, and feature pyramid
networks to construct BANet for multiscale ship detection. Zhang et al. [18] proposed a
high-speed and high-performance anchor-free detector under a deformed complex scene
and noise power distribution. Ma et al. [19] applied key-point estimation to eliminate the
undetected targets and channel attention mechanism to suppress background noise, which
is also established on an anchor-free framework. To enhance the spatial features, Cui et al.
[20] added Spatial Group-wise Enhance (SGE) attention module to CenterNet and achieves
high accuracy under large scene SAR image. Although the CNN-based method has shown
superior performance on the SAR target detection task, the models are all trained with
large amounts of labeled samples, which imposes severe limitations in real applications.
Therefore, how to effectively use the existing training data and generalize the model to new
targets has become a bottleneck.
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Few-shot Object Detection Methods. To tackle the issue resulted from data scarcity,
we resort to the few-shot learning technique, which has achieved commendable progress in
image recognition and segmentation task, while more challenging in an object detection
task. Current FSOD methods can be categorized into two branches: meta-learning-based
methods and fine-tuning-based methods. The first type of methods usually adopt a parallel
structure to extract features from both support images and query images. Meta R-CNN [21]
learned the category-agnostic knowledge by the combination of region of interest (RoI)
feature and class-attentive vectors to make more accurate object recognition rate. Inspired
by category-agnostic transformation, MetaDet [22] defined RCNN head as task-specific
modules and learns a meta generator, which guide the query images to detect novel classes.
On the other hand, the two-stage fine-tuning methods are mainly based on transfer learning
theory, which first pre-trains the model on base classes and then fine-tune on the support
set by frozen some network parameters. TFA [23] fixes the feature extractor parameters
and applies a straightforward fine-tuning scheme on the last layer of faster RCNN detector.
MPSR [24] increases the scales of training sets by inserting object pyramids to refine FPN [8]
and augment the scales in the sparse distribution of novel categories. To compensate the
negative effect caused by naive data augmentation, Li et al. [25] designed a Transformation
Invariant Principle (TIP) to make the encoder invariant to intra-class variations.

Few-shot Learning Applications in Remote Sensing Fields. In the remote sensing
field, many researchers have been devoted to introducing few-shot learning in their ap-
proach due to its less dependency on training samples. For few-shot-classification methods
in optical remote sensing images, Shi et al. [26] presented a metric-based few-shot method
to generate prototypes for novel classes. In SAR interpretation applications, Yang et al.
[27] proposed a novel few-shot SAR target classification framework by designing mixed
loss graph attention network. Fu et al. [28] solved the sample restriction problem in SAR
ATR via meta-learning framework. When it comes to few-shot object detection on remote
sensing images, much less attention has been paid on this more challenging task since the
classification and localization subtasks require the model to locate the object with correct
category. Li et al. [29] built FSODM detector, which utilized the YOLOv3 [11] framework as
a meta-feature extractor and learns feature adjustment through feature reweighting module
proposed in [30]. To tackle the issue of sparse orientation space caused by lack of samples
in novel classes, Cheng et al. [31] devised a prototype learning network named prototype-
CNN (P-CNN) and further incorporated prototype-guided region proposal network into
the whole framework. These methods are based on meta-learning and other studies focus
on fine-tuning based methods. Zhao et al. [32] proposed multi-scale few-shot object detec-
tion approach by designing a more representative feature extractor, establishing a feature
pyramid for multi-scale prediction and increasing the shape bias. Zhou et al. [33] also
tackled the scale variation issue in remote sensing images by proposing a context-aware
pixel-aggregation module and feature aggregation module. Huang et al. [34] considered
the characteristic of remote sensing images and then proposed a shared attention module
with a balanced fine tuning strategy to accommodate the few-shot settings.

1.3. Problems and Motivations

Although existing few-shot object detection methods are mainly designed for optical
natural images, only a few approaches are developed for the remote sensing images and
even less for SAR images. First, geometric distortion of target in SAR images always exists
due to its special imaging mechanism. Furthermore, SAR ship targets under complex
scenes are easily confused with speckle noise in the background. These make it difficult for
few-shot object detector to extract the most effective features under complex backgrounds.
How to select the discriminative support features without background interference and
then generate enough high-qualified proposals for further classification and localization are
pivotal for the few-shot object detection framework. Secondly, the misclassification of novel
targets as base classes is more distinguished in SAR images owing to the similarity between
different instances, which further affect the detection accuracy of few-shot detection model.
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The SAR ship datasets comprise objects with arbitrary orientation and various scales, these
intra-class difference also increase the difficultly of classification subtask in few-shot object
detection.

To address the aforementioned challenges, we develop a novel few-shot detection
framework, named the Relational graph convolutional network (RelationGCN), on the
basis of the typical two-stage object detection structure, Faster Region-based CNN (Faster
RCNN), which usually contains a region proposal network (RPN) and the Region of Interest
(RoI) head. Correspondingly, the proposed detector is mainly composed of the support-
guided region proposal network, the detection head and the relationship modeling graph
structure between them.

To eliminate the background noise and ensure the high quality of support features, an
attention module is attached at the extracted support feature to undermine the irrelevant
information while strengthening the most discriminative features. As the randomly selected
support objects appear in different views, shapes, and illuminations, the support-guided
module is proposed, which generates dynamically changed kernels according to the support
feature, and thus make full use of support information to enhance query features and further
filter support-irrelevant proposals. In conventional meta-learning-based methods, only
the single-class support data are used for generating class-attentive vectors, leading the
relationship between support data and query data remain unexploited. Considering that
the limited number of novel class samples in the few-shot fine-tuning stage leads to class
imbalance and further degrades the detection accuracy on both base and novel classes, we
establish the relationship between support and query features in a graph structure to make
better knowledge transfer. In addition, consistent with other few-shot object detection
methods, a two-stage training strategy is used to enable the proposed detector to quickly
learn the knowledge of novel classes.

1.4. Contributions

With the proposed method, our detection framework can quickly adapt to novel
classes with only few annotated training samples, which largely alleviate the intensive
labeling cost in SAR images and perform well under data-constrained conditions. To sum
up, our contributions are listed as following: (1) first, we propose a novel RelationGCN
framework designed for few-shot object detection in SAR images. (2) Second, support
feature guidance via dynamic convolutions is leveraged to better utilize support images
and then provide more representative class-aware prototypes for adaptively enhancing
query features. Additionally, a lightweight channel attention mechanism is also introduced
to suppress the background noise in SAR images, thus elevating the quality of support
images. (3) Thirdly, to make the model can generalize to novel classes in the few-shot
settings, correlations between support and query features are captured by graph structure
to facilitate feature transfer learning process. (4) Fourth, a new SAR multi-class ship
dataset for few-shot object detection is constructed, several novel and base split settings are
randomly selected to verify the effectiveness of the method, and some baseline results are
exhibited for further research.

As for the organization of this article, Section 2 briefly introduces the preliminaries
of the meta-learning-based few-shot object detection method. In Section 3, the overall
architecture of our proposed few-shot detector and detailed description of each module are
illustrated. Next, experimental results and analyses on the SAR multi-class ship detection
dataset are presented in Section 4. Finally, we conclude this paper in Section 5.

2. Preliminaries
2.1. Problem Definition

In this section, we describe the dominant FSOD framework which aims at detecting
novel objects given only few annotated instances. Formally, FSOD partitions the objects into
two disjoint sets of categories: base classes Cbase, the categories for which we have access to
abundant training examples in large-scale dataset Dbase; and novel classes Cnovel , for which
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only few instances are available in small-scale dataset Dnovel . Given the support dataset S
composed of K annotated samples for each category and |Cnovel | = N, this is denoted as an
N-way K-shot few-shot object detection problem. The performance is evaluated to jointly
detect both base and novel categories from the test set. The evaluation metrics are reported
separately for base and novel classes.

2.2. Meta-Learning Structure

One of the most successful approach for FSOD is the expanded upon meta-learning
method, which trains a meta-learner and teaches the model to transfer previously learnt
knowledge on common classes to object detection tasks on rare classes.

The meta-learning method for FSOD define a series of detection tasks on the base
dataset to train the model. Typically, the initial model equipped with pretrained weight is
first trained on base dataset, then an additional fine-tuning stage is attached to fine-tune
the model on novel dataset, which adopts the similar meta-learning setting as in the base
dataset.

Distinguished from general object detection, the training and testing dataset are
organized in the episodic paradigm. In each episode, class c is randomly selected and K
support objects from several support images are involved. Each task in an episode can
be formulated as Ti = (S1, S2, . . . Sn, Q) where Sm means the mth support image and Q
denotes a query image. Then, the detector is trained to detect all objects of class c in a
query image with K supports via an episode meta-training manner. The difference between
meta-training and meta-testing lies in that the ground truths of each class in the query
dataset are only available in the meta-training stage.

3. Proposed Methods

The overall framework of the proposed method is shown in Figure 1, and the specific
modules and implementations are illustrated in Sections 3.2–3.4. First, we elaborate on the
construction of attention module and support-guided feature enhance module. Then, the
graph convolutional network is introduced into the few-shot detection framework.

Query 

Image

K-shot

support

images

Backbone

shared

Query feature

Support-guided Feature

Enhancement Module

Enhanced 

Query feature

RoI

pooling

RPN

Class-attentive 

vector

Query RoI feature

Feature Aggregation

Module 

Meta 

Classifier

RoI Head

…

GCN 

construction

Classification

Regression

Backbone

Support feature

Attention

Module

Figure 1. Architecture of the proposed RelationGCN for few-shot object detection on SAR images,
which mainly consists of three components: a lightweight attention module to extract more relevant
support information, a support-guided feature enhance module that injects different support images
as guidance for better generation of higher-qualified object proposals, and a graph convolutional
network which models the relationship between support features and query RoI features to further
implicitly boost class representation.

3.1. Overall Architecture

The proposal-based few-shot detector is defined as f (I, θ), where I refers to the input
data information and θ means the model parameters. Our approach follows a typical
two-stage training scheme—base training and few-shot adaptation. f (I, θ) adopts the episodic
training strategy in both stages, in which each episode is organized as the way illustrated in
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Section 2.2. The final objective of our few-shot detector is to learn generalized features from
abundant training samples of base classes during the first base training stage, and then
rapidly adapt to novel classes under a balanced small scale dataset with equal number of
annotations in base and novel classes during the few-shot fine-tuning stage. Our proposed
few-shot detector is developed from Faster R-CNN, where the region proposal network
is responsible for generating proposals and RCNN trains the classification and regression
head. The input images in both the support set and query set share the same backbone
as the feature extractor. With the consideration of the characteristic of SAR images, a
lightweight attention module is designed and attached at the output support feature
maps, which highlights the most relevant support features and attenuates the background
noise. Since support feature vectors are diversified from each other due to the various
characteristic of objects in support images, dynamic kernels are incorporated to adaptively
enhance the query features according to different support features. Finally, we propose a
graph convolutional network-based correlation learning mechanism to further model the
relevance between support features and query RoI features.

3.2. Attention Mechanism and Support-Guided Feature Enhancement

The performance of the few-shot object detection model heavily depends on the
support information from small amounts of samples to detect novel objects. Nevertheless,
the ambiguous outline, side-lobes, and shadow caused by SAR imaging make feature
extraction in SAR images more tricky. Therefore, how to guarantee the quality of support
features and make them more representative becomes especially important in the SAR ship
detection task under a few-shot setting. In this paper, we devise a lightweight attention
module comprised of local context branch and global context branch to impair the influence
of background noise and highlight features that are more relevant to the task. The detailed
structure of efficient double-branch channel attention (E-DCA) module is illustrated in
Figure 2.

Point-wise

Conv
ReLU

Point-wise

Conv

BN BN
GAP

Point-wise

Conv
ReLU

Point-wise

Conv

BN



Sigmoid

BN

 C H W

 C H Wsupf
supf̂

1 1 
C
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C

H W
r  C H W

 C H W

1 1 C
1 1 C

Figure 2. Diagram of our efficient double-branch channel attention (E-DCA) module.

Unlike general channel attention structure, which squeezes feature maps by a global
max pooling operator, we add the local context branch to maintain the support information
of small objects in SAR images. Both branches apply point-wise convolution for context
aggregation. Given the support feature map f sup, the local channel context is calculated via
a similar bottleneck structure as in SENet [35], which can be represented as follows:

f sup
local = BN(Conv2

pw(δ(BN(Conv1
pw( f sup))))) (1)

where BN means Batch Normalization (BN) and δ indicates the Rectified Linear Unit
(ReLU). The conventional fully-connected layers are replaced by two efficient point-wise
convolutions Conv1

pw and Conv2
pw, whose kernel sizes are C

r × C× 1× 1 and C× C
r × 1× 1,

respectively. C denotes the channel number of support features, and r means the channel
reduction ratio. For another global channel branch, the global average pooling (GAP)
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is first employed for each channel independently, resulting in the channel-wise feature
G( f sup) = 1

HW ∑H
i=1 ∑W

j=1 f sup. Similarly, the global channel context can be represented as:

f sup
global = BN(Conv2

pw(δ(BN(Conv1
pw(G( f sup))))) (2)

Given the local and global context information, the final refined support feature can
be obtained as follows:

f̂ sup = f sup ⊗ σ( f sup
local ⊕ f sup

global) (3)

where ⊗ means the broadcasting addition and ⊕ is the element-wise multiplication. σ
denotes the sigmoid function.

Thus, the proposed attention module can benefit the few-shot detection network
by highlighting class-specific features and softening redundant information for the task.
Furthermore, this block is more efficient since it abandons the fully-connected layers to
generate channel weights.

Some meta-learning-based methods, such as MetaRCNN [21] and Attention-RPN [36],
perform channel-wise multiplication to reweight the query features, which filters a large
number of support-irrelevant proposals. Nevertheless, the object view, size, or even
occlusion by objects of other categories in SAR images are various in both support images
and query images, which results in the unequal amount of information from different
images. To resolve this problem, a support-guided query feature enhance module is
devised and each support feature serves as an individual prototype, which allows for better
aggregation between diverse support data and query images and provides enhanced query
features for the RPN stage. The support-guided feature enhancement makes up for loss of
information for simply averaging the information of support data for obtaining class-wise
representative prototype in the next section. Traditional convolution operations achieve
feature fusion by fixed kernels, while dynamic convolution [37] generates various kernels
which are input-dependent and has more representation power. Motivated by this, we
propose to generate dynamic kernels from support features to sufficiently interact with
query features. The schematic of kernel generation is depicted in Figure 3.

Support feature

Attention

module

Query RoI feature

Conv+BN+ReLU

Enhanced query feature



Kernel Weight

Support-guided kernel generation

Kernel 1

Coef 1 …

… Conv

SubNet K

Conv

SubNet 1

Conv

SubNet 2

Coef 2 Coef K

Kernel 2 Kernel K

Coefficient Set



Figure 3. The structure of generating support-related kernel in support-guided query feature en-
hancement module. ∗ and ⊕ means the aggregation operation of different convolutional kernels.

Specifically, different support features are input to a kernel generator Gker, which
consists of several convolution subnetworks with the same number as the shot number. We
denote the number of channels of both support feature and query feature as Cin. The shot
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number is given as K, the number of kernels and its kernel size as K and c. The input and
output of each subnetwork both have Cin channels and the kernel size of each subnetwork
is Cin − c + 1. Ki

θ serves as the kernel weight, which can be calculated as:

Ki
θ = Gker( f s

i ) (4)

where f s
i denotes the feature of the ith support image refined by the proposed attention

module. Then, K convolution operations are carried out over the query features using the
support-related dynamic kernels to highlight the support-related regions. The resulting
enhanced query features can be expressed as v̂q ∈ RC×H×W :

v̂q = Ki
θ � vq = σ(ci

k(K
i
wvq +Ki

b)) (5)

where � denotes the convolutional operation, v̂q is the strengthened query feature. Ki
w

and Ki
b represent the weights and bias the ith kernel. Specifically, the coefficient of each

kernel weight ci
k is obtained via transformations of the input query feature, which can be

formulated as:
ci

k = So f tmax(FC2(Relu(FC1(Avgpool(vq))))) (6)

where ci
k means the attention weight for the ith kernel weight.

Assembling K multiple kernel functions is computationally efficient due to the small
kernel size, and the way of aggregation via coefficient calculated by query feature related
attention further boosts the feature representation capability.

3.3. Class Attentive Vector and Feature Aggregation

Most meta-learning based methods aggregate the RoI feature with support feature
to obtain class-specific RoI features for classification and regression tasks. Incorporated
with class-specific soft-attention vectors to achieve feature selection on RoI feature, meta-
learning paradigm achieves model predictions on novel classes. Given the support image
xsup

c,k and the query image xq
i , these datasets are sent to the same detection network in a

parallel way. Both region proposal network and RoIAlign operator are utilized to generate
RoI features from a query feature map. In most few-shot object detection methods, such
as FSRW [30] and Meta R-CNN [21], class-specific RoI features are aggregated by simple
element-wise or channel-wise multiplication between the class-attentive feature vector
and RoI feature vector generated from RPN. The aggregation combined features are used
for further classification and regression in the second stage of Faster RCNN. The way of
aggregation between class prototype with the query features determines the performance of
FSOD methods based on meta-learning. Generally, the average value of K sample features
from support dataset is taken as the class representation. The class attentive feature of class
c is calculated as,

ac
s = σ(

1
K

K

∑
k=1

Att(F(xsup
c,k ))) (7)

where F means the feature extraction network, Att denotes the proposed attention module
in Section 3.2. In this paper, a more complex RoI feature aggregation proposed in [38] is
adopted to obtain more accurate RoI feature. Given the enhanced query feature vq from
support-guided RPN, and the class attentive feature vector as, the aggregated feature vector
v f use is represented as:

v f use = [FC(vq ⊗ ac
s), FC(vq − ac

s), vq] (8)

where FC denotes the fully-connected layer, which unifies the channel dimension generated
after multiplication and subtraction. By aggregating the query features and class attentive
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features, the classification probability of query RoI features can be obtained using a fully-
connected sub-network as the predictor:

pj = so f tmax(Fcls(v f use)) (9)

where Fcls denotes the classification head implemented by a fully-connected layer. The
classification loss and bounding box regression loss are derived from the RPN training
stage of Faster RCNN framework.

3.4. GCN

Graph Convolution Neural Networks (GCNs) were first proposed by Kipf et al. [39]
to represent the data with a graph structure. Motivated by [40], which constructs a meta-
graph where each edge represents the correlation between two classes, we propose a graph
CNN-aided structure to effectively represent the interactions among support and query
RoI features. This learning paradigm can better build appropriate connections between
support and RoI features, thus guides more discriminative feature representation learning
in a implicit manner.

As illustrated in Figure 4, we construct graph G = (X, E) which is composed of the
sets of nodes X and edges E. The two types of nodes in X are the support nodes Xs, namely
the support features, and the query nodes Xq, namely the query RoI features. S denotes
the adjacency relationship matrix of G, indicating the interaction between each node. The
correlations between support features and query RoI features are adopted as the adjacency
matrix of GCN, of which each element can be calculated by cosine similarity metric,

sij =
expcos(si ,qj)

∑k∈nq expcos(si ,qk)
(10)

where si and qj denotes the support feature vector and the query RoI feature, respectively.
nq means the number of query images. Since the support images are randomly selected
during the training process, the graph nodes and edges are dynamically updated at each
training iteration, resulting in a dynamic correlation matrix S.

…
Similarity Matrix
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,1

s

cy
,2

s

cy

,

s

c ky

jp

,1

s

cy
,2

s

cy

,

s

c ky

jp

,1

s

cy ,2

s

cy

,

s

c ky

Hidden layer

Initial input nodes

Layer 1

Middle node embedding Updated node embedding

Figure 4. The construction of graph convolutional network (GCN) designed for few-shot object
detection task �means multiplication operator.

The initialization of the proposed GCN can be represented as:

Xinit =
{

pj
}nq

j=1 ∪
{

ysupport
c,k

}nmeta K

c=1; k=1
(11)

where nmeta means the category number in support image set, and K denotes the shot
number. Generally, the graph convolution is defined as:

A(l) = sigmoid(SX(l)W(l)) (12)

where l denotes the layer index of GCN, Xl is the input of layer l, W(l) ∈ Rnmeta ×nmeta

means the dynamically learned weight matrix of layer l. A(l) is the output of layer l, which
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can be considered as the relevance attention to represent the confidence of each category.
Then, these weights are multiplied by the initial input to obtain the node embeddings of
each category:

G(L) = A(L)� Xinit (13)

where L is the total number of GCN layers. To this end, the implicit relationship between
support and query RoI features can be reflected in the updated node embeddings.

The relationships between the RoI and support features are implicitly constrained by
GCN loss calculated through cross-entropy function, which is calculated by

Lgcn = − 1
nq

nq

∑
i=1

yquery
i log(ĝi(L)) (14)

where nq means the number of RoI features, ĝi(L) denotes the i-th node embedding of
the graph structure, which represents the enhanced probability that current RoI features
are classified as the ground truth class. If the high similarity is captured between pairs of
support and query RoI features, these two nodes share the strong relationship and in turn
makes the predicted class probability more close to the support label. Otherwise, more
penalties are attached on weak correlations to increase the separability between different
classes in the embedding representation.

Although the application of GCN helps in forming strong relevance between RoI
and support features, the standard cross-entropy loss may fail to ensure sufficient margin
between heterogeneous classes which show high visual similarities. Inspired from metric-
learning based FSOD techniques, we adopt a novel loss function to further reduce the
intra-class variance and inter-class bias among target classes. The orthogonality constraint
is first presented in [41] for the classification task, and we make modifications to suit for
few-shot object detection task. This is achieved by enforcing all classes to be orthogonal to
each other in the intermediate feature space. The computation of orthogonality constraint
loss is formulated in Equation (15), where the angular distances between feature vectors is
calculated using cosine similarity operator.

L f ea
oc = 1− ∑

i,j∈(N×K)
yi=yj

〈
f̂ q
i , f̂ q

j

〉
+ | ∑

i,j∈(N×K)
yi 6=yj

〈
f̂ q
i , f̂ q

j

〉
| (15)

where 〈 , ·, 〉 is the cosine similarity operator applied on two features vectors, | · | means the
absolute value operator, f̂ q

i denotes the support features of the i-th support image. Note
that the features are first normalized when computing the similarity.

3.5. Training Strategy

Given the updated RoI feature, to ensure the diversity of attentive vectors from
different classes, meta loss Lmeta is proposed to obtain the optimal support representation
in the meta-learning stage [21]. This is implemented by cross-entropy loss to diversify the
inferred object attentive vector, however, it only works well under a sufficient number of
training samples. Therefore, the meta loss is only participant in the base training stage
while absent in the fine-tuning stage.

Finally, the total loss in the base training stage can be defined as:

Lbase = Lrpn + Lcls + Lreg + Lmeta + Lgcn (16)

During the few-shot adaptation stage, the orthogonality constraint is introduced in
the final loss, as described in Equation (17).

Lfinetune = Lrpn + L f ea
oc + Lreg + Lmeta + Lgcn (17)
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In the inference stage, since the discriminative feature representation is well learned
in the training stages, we only use the original class probability prediction for classification
without the participation of GCN and features constraint between classes.

4. Experiments

In this section, we describe our experimental setup and benchmark the performance
of the proposed method on the multi-class SAR ship detection dataset.

4.1. Datasets

The high-resolution FUSAR-Ship dataset [42] is collected from the Gaofen-3 satellite,
it contains 15 ship categories and used as an benchmark for SAR ship target recognition. To
use this dataset for few-shot object detection task, 11 types of ships were selected to build a
multi-type SAR ship detection dataset. Since the ship slices in FUSAR ship dataset are quite
large, we remove the redundant background in chip images and insert these targets into
several background images from both inshore and offshore scenarios selected mainly from
AIRSARShip dataset [43]. Finally, 224 large-scale images of size 3000× 3000 are constructed
and the synthetic dataset is named as FUSAR-GEN. There are 11 categories in FUSAR-GEN,
as displayed in Figure 5. These large-scale images are cropped to 500× 500 size and the
whole dataset is comprised of 2009 chips. Each chip image contains at least one ship target
to be detected. The number of each category is analyzed in Table 1.

Cargo Dredger Fishing High Speed Craft Law Enforce Other

Passenger Reserved Tanker Tug Unspecified

Figure 5. Different categories of ships in FUSAR-GEN dataset.

Table 1. Number of objects in each category of FUSAR-GEN dataset.

Class
Name Cargo Dredger Fishing HighSpeedCraft LawEnforce Other Passenger Reserved Tanker Tug Unspecified

Class
Index C01 C03 C04 C05 C06 C07 C08 C10 C12 C13 C14

Object
Number 867 138 243 36 68 448 61 71 214 51 111

4.2. Implementation Details

Our few-shot object detection architecture is based on the two-stage Faster RCNN
framework with ResNet-101 backbone. The input of the network consists of a batch of 4
query images which are resized to 800× 800 and K-shot support images resized to 224× 224
for each query image. As for the experimental parameter settings, the initial learning rate
is set as 0.005 for the base training stage and a constant learning rate of 0.001 is used for
fine-tuning stage. We train 18,000 iterations for base training stage and 1000 iterations for
few-shot fine-tuning stage. Stochastic gradient descent (SGD) is used as the optimizer with
0.9 momentum and 0.0001 weight decay. All benchmark experiments are conducted using
Pytorch framework on Ubuntu 16.04 system and supported by GeForce RTX 2080Ti GPU
with 11G memory.
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4.3. Evaluation Metrics

Considering the randomness of selecting base and novel sets and to comprehensively
evaluate the detection performance on novel classes, three different divisions of base and
novel classes are set randomly in the following experiment. Each split is comprised of 7
base categories and 4 novel categories (N = 4), and each set contains at least two categories
with small number of samples:

• Set1: Cnovel = {Law Enforce, Passenger, Reserved, Tug}.
• Set2: Cnovel = {Fishing, High Speed Craft, Reserved, Tanker}.
• Set3: Cnovel = {Dredger, High Speed Craft, Law Enforce, Tug}.

The detailed information of each setting can be found in Table 2.

Table 2. Three different base/novel classes split settings in our experiments.

Split Novel Classes Base Classes

1 Law Enforce(C06) Passenger(C08) Reserved(C10) Tug(C13) rest
2 Fishing(C04) Tanker(C12) Reserved(C10) High Speed Craft(C05) rest
3 Dredger(C03) Tug(C13) Law Enforce(C06) High Speed Craft(C05) rest

In the base training stage, the information of novel classes in all training images
are removed. For the few-shot fine-tuning stage, a small training set which involves k
annotated ground truths of both base and novel classes are randomly selected. We follow
the widely-used protocol in [30] and compare our results with other methods adopting the
same setting. The conventional evaluation metrics for detection is adopted as the K-shot
evaluation metrics, which can be expressed as follows:

Precision =
TP

TP + FP
(18)

Recall =
TP

TP + FN
(19)

where TP, FP, and FN denote the number of correctly predicted objects, false positives, and
false negatives, respectively. The mAPs under K shot value can be calculated as:

mAPK =
∑N

n=1
∫

pK(r)dr
N

(20)

where N denotes the number of novel classes, pk and r denotes the precision and recall of
K-shot model. Although few-shot object detection algorithms focus on the performance of
the novel class, catastrophic forgetting of the base class is also worthy of attention. Apart
from the performance on novel classes, we also record the performance on base classes to
make an integral evaluation.

5. Results
5.1. Comparison of Results

To verify the effectiveness of our model, we make comprehensive comparisons with
state-of-the-art FSOD methods, including both fine-tune based approaches, such as TFA,
FSCE, MPSR, and meta-learning-based methods, such as MetaRCNN and FsdetView. The
average precision on novel classes are listed in Table 3. All these methods use ResNet101 as
their backbone network.
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Table 3. Few-shot detection results for the novel classes on FUSAR-GEN for three different splits. We
tabulate results for K = 3, 5, 10 shots under different methods.

Methods
Set1 Set2 Set3

10 5 3 10 5 3 10 5 3

MetaRCNN 0.350 0.337 0.266 0.282 0.255 0.228 0.435 0.293 0.291
FsdetView 0.317 0.272 0.235 0.297 0.248 0.211 0.393 0.325 0.318

TFA 0.254 0.188 0.199 0.235 0.256 0.194 0.401 0.230 0.277
FSCE 0.355 0.229 0.260 0.276 0.236 0.185 0.413 0.272 0.283
MPSR 0.363 0.341 0.353 0.211 0.241 0.196 0.433 0.378 0.332

Ours 0.396 0.336 0.300 0.322 0.282 0.258 0.484 0.349 0.339

Table 3 lists the few-shot object detection performance of our method and the compar-
ison methods on three different sets of novel classes. From Table 3, we have the following
observations. The fine-tuning-based method TFA exhibits the lowest AP performance,
since the inter-class differences means that the knowledge learned in the base training stage
cannot be well transferred to the novel classes. MPSR achieves the best overall performance
among three fine-tuning based methods owing to the augmented scales compensated for
the missing scales in the sparse distribution of novel classes. The advantage of our method
is not obvious in class split1 under shot number of 5, but the AP under 3-shot is still 3.4%
higher than MetaRCNN while still inferior to MPSR. When the shot number of samples
decreases from 10 to 3, the performance of our method for novel classes stills outperforms
the best AP under other methods by 4.9% and 3.0% in split3 and split2, respectively. In
comparison with a strong competitor, such as MetaRCNN and FsdetView, our method
exhibits better performance under all shot numbers.

Furthermore, to compare the results of each meta-learning based FSOD approaches
more intuitively, we visualize the mAP results on base classes, novel classes, and all classes
at different shots K in a bar chart. As shown in Figure 6, the performance boost on novel
classes can be as large as 6.3% under one shot and improvement of our method is still
distinctive under other shot numbers. For base classes, FsdetView exhibits significant drop
of performance compared with MetaRCNN especially under low shots. Nevertheless, the
base AP performance on MetaRCNN decreases a lot when more samples of novel classes
participate in the fine-tuning stage while our method maintains the high-level base AP at
all shots. The overall performance is also outstanding from the perspective of both base
and novel classes, which verifies the superiority of our method in adaptation to few-shot
object detection task on SAR images.

5.2. Ablation Study

To analyze the effectiveness of different module in the proposed method more con-
cretely, we implement ablation studies using the Set1 of FUSAR-GEN as novel classes. Our
few-shot object detection framework can be decomposed into three major components:
support-related and attention mechanism-guided query feature enhancement, graph struc-
ture relationship modeling, and orthogonal constraint loss. From the analysis of ablation
studies, we can create a comprehensive understanding of the impact of different modules
on the whole model performance. The implementation details are as follows: (1) for models
without query feature enhancement, the original query features is directly feed into RPN; (2)
for models without GCN, the relationship between support feature and query RoI feature
is not considered and then the corresponding loss function is skipped; and (3) for models
without orthogonal constraint in the hidden feature space, the loss function keeps the same
as that in MetaRCNN.
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(a) Base classes (b) Novel classes

(c) All classes

Figure 6. Performanceof different method on three type of classes under different shots. (a) Base
classes. (b) Novel classes. (c) All classes.

After thorough investigation into the effects of different modules, the results are
summarized in Table 4. We can see from the table that attaching either module achieves
better results than the baseline model FsdetView. With the enhanced query features, the
performance on novel class becomes 4.3% and 6.6% improvement when adding attention
mechanism and support-related feature refinement, respectively, which indicates the ef-
fectiveness of support-related information in generating more representative proposals.
However, the performance on base classes drops a little. After the introduction of relevance
learning between support and query RoI features, the overall performance on all classes
can increase up to 2.9%, which means better feature representation can be obtained and
further leads to more stable RoI learning stage. As for the loss constraint, we can observe a
more significant boost of 2.4% in novel classes than 1.5% performance lift in base classes.
Orthogonal constraint in the feature space can improve the precision on both base and
novel classes due to it guarantees the inter-class and intra-class separability in the feature
embedding space.

Table 4. Ablation study of different components of the proposed few-shot detection architecture.

Method Attention Dynamic Conv GCN Loss Constraint mAPbase mAPnovel mAPall

FsdetView - - - - 0.5562 0.3168 0.4692

RelationGCN(Ours)

X 0.5489 0.3598 0.4802
X X 0.5496 0.3829 0.4890

X 0.5652 0.3616 0.4912
X X X 0.5710 0.3719 0.4986
X X X X 0.5858 0.3959 0.5168

The number of layers in GCN structure is also an important hyper-parameter. In the
proposed method, the dynamic GCN structure is implemented in a more complicated way
than the static GCN, thus, the effect of different layers for our GCN structure should be
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investigated. The changes of novel AP (nAP), base AP (bAP), and overall AP (AllAP) in
the 10-shot setting of split1 under different numbers of GCN layers are reflected in Figure 7.
It can be concluded that the overall performance on all classes is not very sensitive to
the number of GCN layers and attaching more layers does not necessarily leads to the
performance boost. The performance of base AP slightly increases with more GCN layers
are involved in the model architecture. Although the model attains the best base AP when
the number of GCN layer is 4, the performance on novel classes drops a lot. To make
a comprise between overall performance and computational complexity, we choose the
final GCN layer number as 2, which guarantees good performance on both novel and
base classes.

Figure 7. The effect of different GCN layer number on performance of base classes, novel classes,
and all classes. The average precision on these three types of class sets are denoted as bAP, nAP, and
AllAP, respectively.

5.3. Visual Analysis

Qualitatively, Figure 8 visualizes some results of 10-shot model in the first split of
novel classes.

Most of the ships of novel classes can be successfully detected on both offshore
and inshore scenario. Although scale distribution varies in different classes and some
objects are too blurred to be distinguished from the background, there exists less missing
detections and false alarms, demonstrating the effectiveness of our model. We also select a
demanding situation in which both novel and base classes appear in chip images to display
the overall performance of the proposed few-shot detector. The proposed method is capable
of simultaneously detecting both base and novel targets. In addition, it can be seen that
the base classes can also be accurately detected with high prediction scores, indicating the
knowledge learned from abundant samples in the base training stage can be maintained
without catastrophic forgetting.

As shown in Figure 9, we also summarize some typical failure results, which can
be roughly divided into: (1) confusion between similar classes and (2) objects with low
illumination. For example, Cargo is misclassified as Fishing or Other class, and Unspecified
is mistaken as Cargo since they share similar characteristic of size and aspect ratio. For
novel classes, Reserved appears in lower scattering intensity and tends to be misclassified
as Tanker. Similar class confusion phenomena occurs in LawEnforce, which is incorrectly
predicted as Passenger and Tug. The aforementioned failure cases deserves further research.
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Figure 8. Visualization of detection results on base, novel, and base+novel classes. The blue and
green boxes denote the ground truth and detection results with confidence scores, respectively.

Figure 9. Typical failure detection results. The first two columns and the last two columns present
the results for base classes and novel classes, respectively.

To demonstrate the holistic performance on a large demo image, we also display
qualitative results in Figure 10. The performance of our model is contrasted against the
state-of-the-art approach for dataset split1 under 10-shot setting. We choose MetaRCNN
for comparison owing to its capability of elevating the novel class performance without
sacrificing base class performance. The prediction results of different classes are visualized
in different colors. We zoom in on specific areas to display the predicted category and
corresponding confidence score for more intuitive comparison. Owing to the small scale,
as well as low contrast compared with the background, Dredger (C03) becomes a missing
detection in MetaRCNN but can be detected with 0.75 confidence score in our method,
which is lower than other type of targets. C01 (Cargo) and C07 (Other) are easily confused
with C14 (Unspecified), as shown in Figure 10b while our method can be well adapted to
the inter-class variations. Some false alarms, such as Tanker (C12), are not correctly detected
in both methods due to their blurred scattering characteristic and especially narrowed
width. As shown in the enlarged area of the selected green area, although High Speed
Craft (C05) is both misclassified as novel category Passenger (C08) in two comparing
methods, the proposed few-shot object detector outperforms the other in detecting base
class Cargo. The class confusion between Cargo and Other is slightly alleviated in our
method since two ships of Cargo were rightly detected with a high confidence score, while
Meta RCNN treats them as the Other type with a high confidence score. The three instances
are distinctive from each other in appearance, view, and pose, so the intra-class variation
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makes it difficult for both methods to distinguish them from each other. Overall, our model
suffers from less catastrophic forgetting on base classes, such as Cargo and Other, compared
with MetaRCNN.

C01

C05

C12

(a) Our method.

C12

C01

C07C03

C01

C01

C05

A
B

C

D

A B

C D

(b) MetaRCNN.

Figure 10. Comparison of detection results on large-scale SAR image. The orange and green area are
shown enlarged on the right side of the sub-image. (a) Detection results of our method. (b) Detection
results of MetaRCNN.

6. Discussions
6.1. Performance on Novel Classes

Since our method is developed on the meta-learning-based few-shot object detection
methods, we specifically evaluate the performance of MetaRCNN, FsdetView, and our
method on novel class. The accuracy trend of each category and the average novel class AP
under different shot numbers are visualized in Figure 11. As for Dredger, the performance
is poorer than the others under low shot while it increases a lot under 5-shot and reaches
the peak point under 10-shot. Compared with MetaRCNN, smaller samples can guarantee
almost equivalent precision on this class. This can be attributed to the well-designed graph
structure modeling of the relationship between query RoI and support features. As for
Law Enforce, our method achieves the best AP under 2-shot, and more novel samples do
not bring a performance boost, which is consistent with other methods. Even under the
condition of an only 1-shot sample, the precision of Tug can start at a high initial point
and the performance under all shots always stays ahead of others. Nevertheless, for High
Speed Craft, the performance fluctuates a lot except for FsdetView. This is due to the fact
that the ambiguous internal structure of the target and the scattering information is only
highlighted at the outlines, thus making it susceptible to be interfered with by other similar
classes. In general, the precision of High Speed Craft outperforms other classes and can
perform higher than 0.65 under 10-shot, while the precision on Tug and Dredger has much
room for accuracy improvement which requires further research. From the perspective of
novel average precision, the proposed method remains higher than others under all shots,
demonstrating the comprehensive effectiveness of the proposed modules.

6.2. Adaptation Speed of Different Methods

To verify the efficiency of the proposed method, we also compare the number of itera-
tions required for model convergence. Concretely, we evaluate a model every 100 iterations
and update the best AP at each test iterations. For fair comparison, we set the default
fine-tuning iterations as 1000. If the current AP no longer surpasses the best recorded on
before 1000 iterations, we regard that the model has converged and report the iteration
which exhibits the best AP as adaptation speed. The fewer iterations required to achieve
the best AP means faster adaptation speed.
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(a) Dredger (b) High Speed Craft

(c) Law Enforce (d) Tug

(e) Novel Average

Figure 11. Comparison of precision on each novel class and average result.

As shown in Figure 12, meta-learning-based methods can adapt faster than fine-tuning-
based methods. Specifically, TFA requires much more iterations toward convergence due
to the random initialization for novel classes. In contrast, our model shows comparable
adaptation speed with FsdetView, while achieving 11.2% better novel AP and 3.7% better all
AP performance. More surprisingly, only half of the total iterations can achieve 65.1% of the
peak overall performance, which further indicates the fast adaptation ability of our method
in the early fine-tuning stage. In addition, RelationGCN can obtain a higher initial point
than most of the methods in terms of novel AP without any iteration. In conclusion, our
method can achieve satisfactory adaptation speed and maintain the high AP performance
with less few-shot transfer time consumption.



Remote Sens. 2022, 14, 3669 19 of 21

(a) Base classes (b) Novel classes

(c) All classes

Figure 12. Comparison of few-shot fine-tuning speed of different methods on three types of classes
under 10-shot setting.

7. Conclusions

In this paper, a well-adapted two-stage detector based on meta-learning is proposed
to address the challenging few-shot object detection task in SAR images. To fully exploit
the most discriminative features of support images, a lightweight double-branch channel
attention module is incorporated to reduce background interference while strengthening
the most representative information of support images. Considering the variety between
different support objects, a support-guided module is proposed to enhance query features
with weighted support features. This dynamic convolution incorporates the importance of
each support image, which not only strengthens the shared information between support
feature and query feature but also maintains intrinsic representation of support data. In
addition, we design a correlation learning mechanism via a graph structure to further
model the relevance between support images and query images, making the features
from the same category more close while from different categories far apart. With all
these modules integrated into the conventional Faster R-CNN detector, a novel few-shot
detection framework RelationGCN is developed. Comprehensive experiments have been
conducted on the self-constructed FUSAR-GEN dataset which contains various types of
ship objects, and the results fully verify the feasibility of applying meta-learning based
few-shot learning method into SAR ship detection under few-shot scenario. In the future,
we will also make further research into some fine-tuning-based few-shot detection methods
and focus on the scale variation issue in SAR images.
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