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Abstract: The main challenge in extracting coastal aquaculture ponds is how to weaken the influence
of the “same-spectrum foreign objects” effect and how to improve the definition of the boundary
and accuracy of the extraction results of coastal aquaculture ponds. In this study, a recognition
model based on the U2-Net deep learning model using remote sensing images for extracting coastal
aquaculture ponds has been constructed. Firstly, image preprocessing is performed to amplify the
spectral features. Second, samples are produced by visual interpretation. Third, the U2-Net deep
learning model is used to train and extract aquaculture ponds along the coastal region. Finally,
post-processing is performed to optimize the extraction results of the model. This method was
validated in experiments in the Zhoushan Archipelago, China. The experimental results show that
the average F-measure of the method in the study for the four study cases reaches 0.93, and the
average precision and average recall rate are 92.21% and 93.79%, which is suitable for extraction
applications in aquaculture ponds along the coastal region. This study can quickly and accurately
carry out the mapping of coastal aquaculture ponds and can provide technical support for marine
resource management and sustainable development.

Keywords: U2-Net; deep learning; remote sensing image; object detection; coastal aquaculture ponds

1. Introduction

Aquaculture is a traditional fishery production method. Since the 1990s, the produc-
tion of edible aquatic products that are provided by the fast-growing aquaculture industry
has increased significantly. According to FAO data, global aquaculture production in-
creased from 15,000 tons in the 1990s to 82,000 tons in 2018 [1]. As the largest producer,
China’s aquaculture contributes 16.3% to the total global fish production, and aquaculture
production accounts for 76.5% of the total domestic fish production. Aquaculture ponds
along the coastal region are an important part of aquaculture facilities, usually located in
coastal areas with rich biodiversity and high ecological value. In 2020, the pond aquaculture
area of China accounted for 43% of the national aquaculture area. The breeding ponds
are completely or partially man-made, and the breeding environment is easily affected by
seasonal changes. The use of chemicals such as antibiotics and pesticides in the breeding
process can easily cause environmental degradation [2–6] and biodiversity damage [7–9].
According to Sustainable Development Goal 14 of the “2030 Agenda for Sustainable Devel-
opment” “Conservation and sustainable use of oceans and marine resources for sustainable
development”, the scientific management of aquaculture facilities is an important link in
promoting the sustainable development of fishery ecology and means. Therefore, the accu-
rate acquisition of aquaculture pond information is of great significance for the scientific
management of fishery resources and coastal environmental governance [10–12].

Usually, the acquisition of information on coastal aquaculture ponds is carried out in
the form of statistical surveys [13,14]. The results are accurate, but time-consuming and
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labor-intensive, and the statistics are often disturbed by human factors. Remote sensing
technology has become the main means of information extraction and target recognition
due to its fast imaging speed, wide observation range [15–17], multiple imaging spec-
trum [2,18–22], long practical sequence [23–26], and good economic benefits [27,28]. The
information extraction of coastal aquaculture ponds that is based on remote sensing technol-
ogy can broadly be grouped into five categories including threshold segmentation, region
growth segmentation, pixel-based classification, object-oriented classification, and deep
learning approaches. The threshold segmentation is a method by truncating the interval
of a single attribute value to separate the target recognition object from the image [29–31].
This kind of method is simple to implement and has a small amount of calculation, but this
method only considers the information of a single waveband of the image, and the anti-
interference performance is poor. The region growing method is a segmentation method
that forms a larger region by aggregating pixels or sub-regions with similar properties near
the growing point [32]. This kind of method is simple to calculate and has a better seg-
mentation effect for relatively uniform connected objects [33]. However, it is necessary to
manually determine the growth points, and the segmentation results are seriously affected
by noise points. The pixel-based classification method divides category attributes based on
the performance characteristics of similar objects on remote sensing images [34], based on
the maximum likelihood classifier [35], random forest classifier [36], etc. [37–42]. Although
such methods are convenient to calculate, the classification results are easily affected by
the phenomenon of “same-spectrum foreign objects”. It is also necessary to select an
appropriate threshold for segmentation during classification [43]. However, the segmen-
tation threshold is difficult to define, and the segmentation results are prone to blurred
boundaries or exceeding the boundaries. The object-oriented method comprehensively
considers the spectral statistical characteristics, shape, size, texture, adjacent relationship,
and other factors [44]. The classification results are not based on individual pixels but form
homogeneous image objects [39,45]. It not only effectively suppresses the “pepper salt
effect” that is caused by spectral variation, but also reduces the misclassification of ground
objects that is caused by “foreign objects of the same spectrum”. The classification results of
such methods improve with the increase of image resolution, but the scale and parameters
of segmentation are difficult to determine and need to be adjusted repeatedly [46].

Deep learning methods build neural networks by combining different convolutional
layers [47–50]. As an important research tool of artificial intelligence, deep learning has
achieved major breakthroughs in computer vision [51–54], natural language processing,
medical image processing [55], and so on [56–58]. In the deep learning method, as long as
the samples are selected in advance and the model parameters are continuously updated
and iterated, the target features can be automatically learned to identify the target object.
Lu et al. used a method that was based on U-Net by improving the ASPP structure and
up-sampling structure to avoid ‘adhere’ and extracted the aquaculture areas in Fujian [59].
Zeng et al. proposed a method by combining FCN and RSCA and fusing water index to
distinguish ponds and cropland [60]. Cheng et al. utilized HDC and U-Net to further ex-
pand the receptive field and weaken the ‘gridding’ problem [27]. Such methods effectively
improved the problem of the blurred boundaries in the traditional method, and also sup-
pressed the influence of the ‘same-spectrum foreign objects’ phenomenon. It also realizes
the application of pond extraction for images of different scales and different resolutions.

At present, the main factors affecting the identification results of coastal aquaculture
ponds are as follows: (1) How to reduce the interference of other types of land cover in
extracting aquaculture pond information? There are multiple sources of interference in
complex environments, and the phenomenon of “same spectrum foreign objects” is serious.
The types of ground objects such as paddy fields, salt fields, and river canals are similar
to the spectral characteristics of coastal aquaculture ponds. It is usually difficult to find
suitable thresholds for segmentation using traditional identification methods. (2) How to
improve the accuracy of extracting coastal aquaculture ponds, especially the boundaries?
The spectral characteristics of coastal aquaculture ponds are unstable. The characteristics of
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different production stages of coastal aquaculture ponds are different. The periodic changes
in their characteristics can affect our judgment of coastal aquaculture ponds. Although
the internal spectral characteristics of coastal aquaculture ponds are unstable, the edge
composition is single and the characteristics are relatively stable. It is useful for improving
the accuracy of extracting coastal aquaculture ponds by using the context information in
the image and comprehensively considering the internal features and boundary features of
coastal aquaculture ponds. Therefore, due to the low accuracy and poor integrity of the
information extraction of coastal aquaculture ponds in complex geographical environments,
this study proposes a remote sensing information extraction method for coastal aquaculture
ponds based on the U2-Net deep learning model. The research in this study can provide
important data support and technical support for the survey of coastal resources, scientific
management of marine resources, and the sustainable development of humans.

2. Study Area and Data Sources
2.1. Study Area

The study areas that were selected in this paper were Zhoushan Archipelago and the
three representative islands in the Zhoushan Archipelago. Zhoushan Archipelago is located
in the East China Sea on the outer edge of Hangzhou Bay. The cold and warm currents
along the coast of the archipelago meet, and the seawater disturbance is obvious [61–63].
Figure 1 shows the exact location of the Zhoushan Archipelago. With the favorable natural
environment and excellent port resources, many large islands in the Zhoushan Archipelago
have vigorously developed aquaculture since the last century. In recent years, in order to
improve productivity and reduce unnecessary production pollution, the degree of intensifi-
cation of coastal aquaculture ponds in Zhoushan Archipelago has increased significantly.
Intensive coastal aquaculture ponds have become one of the main production methods in
the archipelago.
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Figure 1. The left of the map is the location of Zhejiang Province in China and the location of
the Zhoushan archipelago in Zhejiang Province. The right of the map is the specific geographic
coordinates of the Zhoushan archipelago. The red line areas were the study areas in this study.
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Liuheng Island is located in the southern part of the Zhoushan Archipelago, with an
area of 93 km2, making it the third largest island in the Zhoushan Archipelago. The warm
currents in the Taiwan Strait and the cold currents along the coast of Zhejiang have formed
natural fishing grounds, and marine fishery resources are very rich. The aquaculture area
of the pond in Liuheng Town ranks first in Zhoushan City and is one of the most important
aquaculture towns in Zhoushan.

Daishan Island is located in the middle of the Zhoushan Archipelago, with a total area
of about 105 km2, and is the second largest island in Zhoushan. The location of Daishan
Island is shown in the figure below. The waters near Daishan Island are fertile, broad,
and rich in fishery resources. Daishan County is also one of the ten key fishery counties
in China.

Qushan Island is located in the north-central part of Zhoushan Archipelago, with an
island area of 59 km2. The interior of the island is more mountainous and less plain. In the
past, salt pans were used as the main production method. The island is also narrow and
long with many bays, and the coastline can be used for more than 30 km. Many bays have
geographic advantages for developing aquaculture. In recent years, Qushan Island has
vigorously developed aquaculture, and both pond aquaculture and marine aquaculture
have begun to be scaled up.

2.2. Data Sources

The data that were used in this study were Landsat 8/9 Collection 2 Level 2. The USGS
(United States Geological Survey) provides two collections and two levels data products
according to different processing procedures. The Landsat Collection 2 Surface Reflectance
dataset has atmospheric correction and radiometric calibration by Land Surface Reflectance
Code (LaSRC) [64–66]. These images contain 5 visible and near-infrared (VNIR) bands and
2 short-wave infrared (SWIR) bands which have been processed to orthorectified surface
reflectance. We also filtered ‘CLOUD_COVER’ under 20. The details of the data are shown
in the Table 1. The technical indicators of Landsat images that were used in this study. The
images from Landsat 8 were used for model training and from Landsat 9 for model testing.

Table 1. The technical indicators of Landsat images that were used in this study.

Satellite Sensor Shooting Date Resolution

Landsat 8 OLI

26 July 2018

30 m
29 July 2019

22 December 2020
29 April 2021

Landsat 9 8 April 2022

3. Methodology

The specific steps of the model are shown in Figure 2, the overall workflow of the
coastal aquaculture ponds extraction using the U2-Net deep learning model from remote
sensing images can be divided into several steps: (a) making samples, (b) image augmenta-
tion, (c) coastal aquaculture ponds extraction based on U2-Net deep learning model, and
(d) accuracy assessment.

3.1. Making Samples

Although it is convenient for us to directly sample the surface reflectance data, the
reflectance data of coastal aquaculture ponds in different bands express different char-
acteristics. We still need to store the data to color maps. Firstly, we performed spectral
analysis on some samples, and the results (Figure 3) showed that in the short-wave infrared,
near-infrared, and red bands, coastal aquaculture ponds were best distinguished from other
types of ground objects except the sea. So, we chose to combine the three bands as the
input of the Red, Green, and Blue channels for layer stacking. Secondly, based on expert
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experience, the samples are labeled on the stacking images. Finally, the labeled images are
cropped into a subgraph of size 581 pixels × 581 pixels.
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3.2. Image Augmentation

The training effect of the model is greatly affected by the quality of the training samples.
The cropped image can be divided into three categories: the pixel point is the type of coastal
aquaculture ponds in each image, the pixel point is the type of coastal aquaculture ponds in
part of images, and the pixel point is not the type of coastal aquaculture ponds in all images.
However, the number of pixels in non-aquaculture ponds in the image is much larger than
the number of pixels in the coastal aquaculture ponds. In order to improve the quality of
training samples, we analyzed the cropped image dataset by a rule method and performed
data augmentation on it. The rule was: if all the pixels in an image were of the third
category, the image would be removed from the dataset. If all the pixels in an image were
non-aquaculture pond pixels (only in this image are determined as non-aquaculture pond
types), but there was a pixel belonging to this image in other images that was determined as
the type of aquaculture pond, the image would be retained. In order to enlarge the dataset,
we augmented all the images by zooming in, zooming out, rotating, and flipping [66].
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3.3. Extraction of Coastal Aquaculture Ponds Using U2-Net Deep Learning Model

Olaf proposed a deep learning model, the U-Net network model, which is different
from the traditional deep convolutional neural network model, which continuously deepens
the convolutional structure [67,68]. The U-Net network model consists of three parts: en-
coding, decoding, and feature fusion. In the encoding process, multi-layer down-sampling
is used to extract more comprehensive features; in the decoding process, multi-layer up-
sampling is used to restore the feature results; and in the feature fusion stage, the feature
results are generated in the fully connected encoding and decoding process generate a
saliency probability map. Qin [69] proposed a two-level nested U-structure model on
the basis of U-Net network. The U2-Net network model inherits the idea of encoding
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and decoding the U-Net network model, but no longer uses a single convolution layer or
deconvolution layer for each sample, but embeds a complete U-structure residual block
structure (Figure 4. Residual U-blocks (RSU)) to replace a single convolution operation.
The U-structure residual block solves the defect that the receptive field is too narrow due
to the use of small convolution kernels in the past, and only local details can be extracted.
At the same time, the problem of excessive calculation that is caused by the use of hole
convolution is reduced. The U2-Net network model can extract multi-scale features layer
by layer by designing a simple framework, thereby improving the recognition efficiency.
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Figure 4. Residual U-blocks (RSU) [69].

The U2-Net network model (Figure 5. The construction of U2-Net) consists of three
parts: six-layer encoding layer, five-layer decoding layer, and a fully connected layer. Each
layer contains a U-shaped residual block for extracting multi-scale features. Each time the
training sample passes through an encoding layer, the sampled training sample is passed
down, and the training result of this layer is passed to the decoding layer of the same level
and the loss function is calculated. After traversing all the encoding layers and decoding
layers, six extraction results that are restored to the same size as the training samples will
be obtained. Finally, all the feature results are aggregated in the fully connected layer to
obtain the final recognition result and loss function. By iterating continuously to reduce the
value of the loss function, the recognition effect of the model is improved.
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3.4. Accuracy Evaluation

Accuracy evaluation is an important step that cannot be obtained in remote sensing
information extraction. It can not only evaluate the accuracy and reliability of the obtained
results, but is also an important basis for optimizing the process and adjusting parameters.
In this study, three precision indicators, precision, recall, and F-measure were used to
evaluate the precision of the extraction results of the breeding ponds.

FN = ∑ labelth(x)− mapth(x) (1)

FP = ∑ mapth(x)− labelth(x) (2)

TP = ∑ mapth(x)− FN (3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Fmeasure =
2 × Precision × Recall

Precision + Recall
(6)

where labelth(x) represents the value of the pixel point in the binarized label image, and
mapth(x) represents the value of the pixel point in the binarized result image. When
labelth(x)− mapth(x) is greater than 0, it means that the pixel is true, but the classification
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result is false, and the pixel belongs to “missing points”. When mapth(x)− labelth(x) is
greater than 0, it means that the pixel is false, but the classification result is true, and the
pixel is “misclassified”. TP is the number of correctly identified pond extraction result
pixels. FP is the number of misidentified pond extraction result pixels. FN is the number of
unidentified pond pixels.

4. Results and Analysis

In this study, we selected four study cases using a Landsat 9 image shooting on 8 April
2022 in the Zhoushan archipelago to illustrate the validation of our approach. Qualitative
and quantitative evaluation was used to assess the accuracy of our model.

4.1. Case Study in Liuheng Island, China

In this case, we select Liuheng Island as a study case (Figure 6).
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Figure 6. Location of Liuheng Island, China.

As shown in Figure 7, we successfully extracted 19 aquaculture areas from the image,
with a total area of 9.7 km2. The coastal aquaculture ponds on Liuheng Island are highly
intensive, and there are few independent large-scale coastal aquaculture ponds. The coastal
aquaculture ponds are concentrated on the north and south sides of the island. The location
of the recognition result was accurate, the recognition accuracy reached 94.47%, and the
recall rate reached 93.86% (Table 2).
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Table 2. Accuracy evaluation of coastal aquaculture ponds extraction in Liuheng Island, China.

Number of Coastal Aquaculture Ponds Area of Coastal Aquaculture Ponds

Ground Truth Prediction Ground Truth(Pixel) Prediction(Pixel)

19 19 11,484 11,411
Precision (%) 100 94.47

Recall rate (%) 100 93.86
F-measure 1 0.94

4.2. Case Study in Daishan Island, China

In the second study case, we selected Daishan Island as a study case (Figure 8).
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As shown in Figure 9, we successfully extracted eight aquaculture areas from the
image, with a total area of 5.41 km2. The main aquaculture bases in Daishan Island are
located in the northern part of the island. There are also scattered coastal aquaculture
ponds along the east and west coasts of the island. Different from the intensive coastal
aquaculture ponds, scattered coastal aquaculture ponds are often of different shapes and
scattered, and there are still engineering legacy along the coast of the island. These factors
all present challenges for the identification of coastal aquaculture ponds. Although we
accurately identified the distribution locations of all the ponds, the accuracy of the area was
slightly insufficient. The accuracy of the identification results of the coastal aquaculture
ponds on Daishan Island was 91.10%, and the recall rate was 93.18% (Table 3).

Table 3. Accuracy evaluation of coastal aquaculture ponds extraction in Daishan Island, China.

Number of Coastal Aquaculture Ponds Area of Coastal Aquaculture Ponds

Ground Truth Prediction Ground Truth(Pixel) Prediction(Pixel)

7 8 6444 6604
Precision (%) 87.50 91.10

Recall rate (%) 100 93.18
F-measure 0.93 0.92
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4.3. Case Study in Qushan Island, China

In the third case study, we selected Qushan Island as a study case (Figure 10).
As shown in Figure 11, we successfully extracted two farming areas from the image,

with a total area of 3.43 km2. The two aquaculture areas are located in the northern bay
and the southern bay. The location of the recognition result is accurate and the precision
is high. The recognition accuracy of the coastal aquaculture ponds on Qushan Island was
92.79%, and the recall rate was 96.45% (Table 4).

Table 4. Accuracy evaluation of coastal aquaculture ponds extraction in Qushan Island, China.

Number of Coastal Aquaculture Ponds Area of Coastal Aquaculture Ponds

Ground Truth Prediction Ground Truth(Pixel) Prediction(Pixel)

2 2 3945 4101
Precision (%) 100 92.79

Recall rate (%) 100 96.45
F-measure 1 0.95
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4.4. Case Study in Zhoushan Archipelago, China

In the last case, we analyzed the extraction of the Zhoushan Archipelago. As shown in
Figure 12. The extraction result in the Zhoushan Archipelago, China, we extracted a total
of 43 coastal aquaculture ponds (including intensive aquaculture ponds and non-intensive
aquaculture ponds). The total area is 36.45 km2. On the whole, the coastal aquaculture
ponds that were extracted by the model have accurate positioning, clear boundaries,
and accurate areas. The recognition accuracy of coastal aquaculture ponds in Zhoushan
Archipelago was 90.49%, and the recall rate was 91.67% (Table 5). Coastal aquaculture
ponds in the Zhoushan Archipelago are widespread but scattered. Most of the large islands
in the archipelago have a significant distribution of intensive aquaculture ponds. At the
same time, coastal aquaculture ponds are mostly distributed in the bays on the edge of
the islands or where the currents converge. Such terrains usually have abundant marine
fishery resources, which can provide a material basis for the construction and development
of coastal aquaculture ponds.

Table 5. Accuracy evaluation of coastal aquaculture ponds extraction in the Zhoushan Archipelago,
China.

Number of Coastal Aquaculture Ponds Area of Coastal Aquaculture Ponds

Ground Truth Prediction Ground Truth(Pixel) Prediction(Pixel)

42 43 39,984 40,503
Precision(%) 97.67 90.49

Recall rate(%) 100 91.67
F-measure 0.98 0.91
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5. Discussion

In this study, a method for the extraction of coastal aquaculture ponds along coastal
region using U2-Net deep learning model from remote sensing images has been proposed,
and the experiments on three islands that are located in the Zhoushan Archipelago and the
whole Zhoushan Archipelago were carried out. The extracted coastal aquaculture pond
areas are 9.7 km2 on Liuheng Island, 5.41 km2 on Daishan Island, 3.43 km2 on Qushan
Island, and 36.45 km2 on the Zhoushan Archipelago.

5.1. Feasibility Analysis of the Method

The use of remote sensing images to extract information from coastal aquaculture
ponds is often affected by the same-spectrum foreign objects effect. Salt pans, rivers, and
lakes are all approximate features that are easily confused with coastal aquaculture ponds,
thus affecting the extraction accuracy. The U2-Net network can effectively weaken the
influence of different water bodies on the information extraction of coastal aquaculture
ponds and extract the coastal aquaculture ponds more completely. The experimental results
show that this method can meet the requirements of coastal aquaculture pond extraction.

In order to verify the feasibility of the algorithm, we compared and analyzed the
U2-Net deep learning model-based method with the SVM-based method and U-Net deep
learning model-based method. The classification results of each method on the test data
are shown in Figure 13 and Table 6. It can be seen from the classification results that the
classification results of the SVM-based method are significantly worse than the classification
results of U-Net deep learning model-based method and U2-Net deep learning model-based
method. A large amount of coastal area is misidentified as aquaculture ponds. Compared
with the SVM-based method, the U-Net deep learning model-based method significantly
reduces the situation that the coastal areas are wrongly divided into aquaculture ponds.
However, there are still some coastal marine and inland lakes that are incorrectly classified
as aquaculture ponds. The results of the accuracy metrics for each model are shown in
the table below. It can be seen that the F-measure value of the U2-Net deep learning
model-based method is 0.93, which is significantly higher than that of other algorithms,
followed by the U-Net deep learning model-based method with an F-measure value of
0.90, and the worst is the SVM-based method. Combining the classification results, it
is not difficult to find that the coastal seawater and the lakes on the island are the key
areas that affect the classification results, and they are also typical “same-spectrum foreign
objects” phenomena. Compared with the SVM-based method and U-Net deep learning
model-based method, U2-Net deep learning model-based method has stronger adaptability
to this problem. In summary, the U2-Net deep learning model-based method that was used
in this study can better obtain multi-level features and multi-scale information, and the
classification results are significantly better than the SVM-based method and U-Net deep
learning model-based method.

Table 6. Accuracy evaluation of the SVM-based method, U-Net deep learning model-based method,
and U2-Net deep learning model-based method, and the best value is represented in bold.

Model Precision (%) Recall (%) OA (%) F-Measure

SVM 85.71 60 86.49 0.71
U-Net 88.32 92.46 98.33 0.90
U2-Net 92.21 93.79 99.71 0.93
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5.2. Error Analysis

The convenience of remote sensing image acquisition and the large scale of the image
are the guarantee for the rapid extraction of breeding ponds. But the extraction results are
still affected by other factors. The spatial resolution is the main reason for image recognition
accuracy. The low resolution makes the images less expressive, and it is difficult to manually
mark each aquaculture pond one by one in the Landsat 30 m image, and some of the small
coastal aquaculture ponds cannot even be visually interpreted. Secondly, insufficient feature
expression will also lead to low recognition accuracy and poor generalization performance
of the model.

6. Conclusions

Based on the moderate resolution of the Landsat 8/9 OLI satellite remote sensing data,
this study uses the U2-Net deep learning model to achieve remote sensing information
extraction of aquaculture ponds along the coastal region in complex geographical envi-
ronments. Experiments in four cases of the Zhoushan Archipelago show that the method
that was used in this study can accurately extract the information of coastal aquaculture
ponds, and the extraction results are accurate in the location and clear in the boundaries.
The averages of the method’s precision, recall, and F-measure are 92.21%, 93.79%, and
0.93, respectively.

Aquaculture is one of the main human activities in coastal areas. With the continuous
development of the aquaculture industry, the ecological environment pollution that is
caused by the coastal aquaculture ponds is also increasing. Based on the coastal aquacul-
ture pond information that is extracted from remote sensing images, we can continuously
monitor the mechanism of action of the aquaculture ponds impact on the coastal environ-
ment over the years. We also can scientifically plan the production cycle of aquaculture
ponds, cultivated varieties, sustainable development models, and eco-friendly industrial
structures, etc. Although this study has achieved the accurate extraction of remote sensing
information of aquaculture ponds along the Zhoushan Archipelago, there are still some
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problems that need further research: (1) to verify the validity and applicability of the model
on higher spatial resolution remote sensing images. (2) For key areas, an analysis of the
temporal and spatial pattern evolution of aquaculture ponds in coastal areas was carried
out based on long-term satellite remote sensing images.
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