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Abstract: As unmanned aerial vehicles (UAVs) can provide flexible and efficient services concerning
the sparse network distribution, we study a UAV-assisted mobile edge computing (MEC) network. To
satisfy the freshness requirement of IoT applications, the age of information (AoI) is incorporated as
an important performance metric. Then, the path planning problem is formulated to simultaneously
minimize the AoIs of mobile devices and the energy consumption of the UAV, where the movement
randomness of IoT devices are taken into account. Concerning the dimension explosion, the deep
reinforcement learning (DRL) framework is exploited, and a double deep Q-learning network (DDQN)
algorithm is proposed to realize the intelligent and freshness-aware path planning of the UAV.
Extensive simulation results validate the effectiveness of the proposed freshness-aware path planning
scheme and unveil the effects of the moving speed of devices and the UAV on the achieved AoI.

Keywords: unmanned aerial vehicle; mobile edge computing; path planning; deep reinforcement
learning; age of information

1. Introduction

With the development of the Internet of Things (IoT) and fifth-generation cellular
communication, task computing has undergone a paradigm shift from centralized cloud
to mobile edge computing [1]. As a promising technology, mobile edge computing (MEC)
can alleviate the tension between computing-intensive applications and mobile devices
with limited resources [1,2]. The MEC offers the computing capability at the network edge
in close proximity to end devices, i.e., radio access network, such that the large distance
transmission is no longer necessary, and the information is generated locally and consumed
locally. Thus, the quality of service is improved due to a small energy consumption and
execution latency [3,4]. The traditional MEC framework with static deployment may not
be efficient in serving the devices with sparse distribution and mobility [5]. Instead, the
unmanned aerial vehicle (UAV) assisted MEC framework has been recently exploited to
enlarge the service coverage and improve performance [6]. While, how to optimize the
path trajectory of the UAV becomes a critical issue to achieve these benefits.

The MEC architecture equipped with UAVs can improve the connectivity of ground
wireless devices and expand the coverage due to its mobility [7]. Thus, it has attracted
much research attention [7–11]. The improvement of computing performance introduced
by the UAV-assisted MEC framework is validated in [7]. In [10], the trajectory of the
UAV and bit allocation scheme are jointly optimized subject to the transmission delay
and the UAV’s energy constraints. In [11], beside the trajectory, the user association is
optimized to satisfy the quality of service (QoS) requirement of applications by minimizing
the total energy consumption of the UAV. All these works focus on optimizing the path
planning and the resource allocation for the UAV-assisted MEC networks to achieve a good
performance in terms of network throughput, delay, and service reliability. Nowadays, as
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more and more real-time IoT applications are emerging, how to capture the freshness of
the information becomes a significant requirement, which has not been fully investigated
in the above works.

To realize timely information transmission and computing, the age of information (AoI)
that characterizes how old the information is from the perspective of the receiver has been
recently proposed as an important performance metric and has attracted much research
attention [12–14]. The achieved AoI of IoT devices is studied in [15–18] by optimizing the
UAV trajectory. In [17], the achieved AoI is minimized for UAV-assisted wireless powered
IoT network. For a UAV-assisted IoT network, the age-optimal data collection problem
is studied in [18] to minimize the weighted sum of AoI, which is formulated as a finite
time Markov decision process (MDP). In [19], the UAV is employed with computational
capability and acts as an edge server to reduce the power consumption and AoI of IoT
devices. While, the UAV trajectory planning is not taken into account, and the IoT devices
are assumed to be static. In practice, the location of the device may change dynamically over
time. In general, the dynamic moving of devices inevitably causes the huge or countless
states of devices’ positions, and this results in the path planning problem becoming very
complicated. To address it, the deep reinforcement learning (DRL) framework is suitable
to deal with the massive dimensions of states and actions caused by mobile devices [11].
Motivated by the above observations, this paper focuses on optimizing the service trajectory
of UAVs for a mobile edge computing network to optimize the information freshness of
IoT devices.

Different from most of the existing works, the mobility of IoT devices is taken into
account in the path planning problem of an energy-constrained UAV in this paper. Mean-
while, when the UAV is moving to an access point, multiple devices in the communication
area can be associated and upload their computing task to the UAV. A path planning
problem is formulated to minimize the sum of AoI of all mobile devices and the energy
consumption of the UAV. Then, a DRL algorithm is proposed to design the flying trajectory
of the UAV intelligently. The main contributions of this paper are summarized as following:

• We study a UAV-assisted MEC network with device mobility, in which an energy-
constrained UAV as a relay station collects and forwards the computing task of mobile
devices within its serviceable area to a faraway base station to be remotely executed.

• The path planning problem is formulated to simultaneously minimize the energy
consumption of the UAV and the averaged AoI by optimizing the service path of the
UAV. Considering the dimension explosion issue caused by the enormous state space,
a freshness-aware path planning scheme based on double deep Q-learning network
(DDQN) algorithm is proposed to optimize the trajectory of the UAV intelligently.

• Extensive experiments are conducted to validate that the proposed freshness-aware
path planning scheme performs better than the conventional schemes. Meanwhile,
the effects of the moving speed of the UAV and mobile devices on the achieved AoI
are unveiled. We further present the example of devices’ AoI evolution and the UAV’s
service trajectory.

The remainder of this paper is organized as follows. The related works are presented
in Section 2. The system model and the problem formulation are described in Section 3.
The deep reinforcement learning-based freshness-aware path planning scheme is presented
in Section 4. Experiments and Results are provided in Section 5, followed by discussion
and conclusion in Section 7. All symbols used in this paper are listed in Table 1.
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Table 1. Notations and Definitions.

Notation Definition

N Number of IoT devices
Ts Communication time of the UAV
lc Number of bits in a task
p Probability of task generation
m(t) Indicate whether the UAV is flying or hovering
(xn(t), yn(t)) Position of device n in the time slot t
(x0(t), y0(t)) Position of the UAV in the time slot t
dn(t) The distance between device n and UAV in the time slot t
H The height of the UAV from the ground
α The maximum angle from the UAV and the edge of its coverage area
un(t) Indicate whether device n is in the association area in the time slot t
ηn(t) Indicate the active status of device n in the time slot t
λ(t) The amount of unloaded task at the time slot t
Pf Flight power of UAV
L The flying distance of the UAV
V The flying speed of a UAV
Ph Hovering power of UAV
B System bandwidth
N0 Noise power spectral density
ρ0 Path loss per meter
(xB, yB) The position of the BS
tu Relay forwarding time
E(t) The energy status of the UAV in The time slot t
Zn(t) The AoI of device n in the time slot t
E0 Initial energy of UAV
∆n(t) The time interval of two successive computing tasks generated

2. Related Works

The number of smart IoT devices grows rapidly, and it is estimated that there will be
25 billion Internet of things devices by 2025 [20], which leads to the emergence of diverse
applications, i.e., real-time video analysis [21], virtual reality [22], and smart city [23]. These
applications are computationally intensive and delay-sensitive, depending on our ability
to process data and extract useful information quickly [5]. To support these applications,
mobile edge computing is regarded as a promising network architecture, which enables
cloud computing power and information technology (IT) service environment at the net-
work edge. By pushing data-intensive tasks to the edge and processing data locally in
neighboring MEC servers, this architecture has the potential to significantly reduce latency,
avoid congestion, and prolong the lifetime of mobile devices [20,24]. While, in the case of
massive devices or sparse distribution of network facilities, the existing MEC technology is
not applicable.

With the advantages of wide coverage, fast deployment, and strong scalability, the
UAV-assisted framework has been proposed to serve the ground mobile devices. Various
function modules, such as sensors, small base station, embedded computing server, can
be integrated into the UAV to achieve large-scale sensing, communication, and comput-
ing [25–27]. A four-layer hierarchical network composed of sensor nodes, cluster heads,
UAV, and BS was studied in [27] and a simulated annealing algorithm was applied to design
the trajectory of the UAV. UAV can be used as a wireless relay station or air base station,
using its maneuverability to fly closer to each mobile device to improve the connectivity
of ground wireless devices and expand coverage [28]. In [10], the UAV trajectory and bit
allocation scheme were jointly optimized by minimizing the total consumed energy subject
to the quality of service (QoS) requirements of IoT applications. A UAV-assisted MEC
network was explored in [11], where the UAV executed the computational tasks offloaded
from devices. The total consumed energy was minimized by optimizing the device associa-
tion and UAV trajectory. In [28], both the service delay and the weighted sum of consumed
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energy of the UAV were minimized by optimizing the UAV location, communication and
computing resource allocation, and task offloading decision. All these works focused on the
path planning and resource management in UAV-assisted communication networks via the
traditional optimization methods, and the great potential of UAV-assisted communication
was validated. While, the communication environment becomes complex as the dynamic
movement characteristic, which causes a great challenge in addressing the path planning
and resource management problem in the UAV-assisted communication problem.

Recently, as an exciting field of artificial intelligence (AI), the deep reinforcement
learning (DRL) framework has been exploited to the sequenced decision-making problem
in diverse applications. Due to the explosive growth of states/actions, the traditional
methods in the form of table storage become infeasible. Instead, DRL can effectively
approach the Q-value of reinforcement learning via a deep neural network (DNN) [29].
Thus, DRL has been widely used in online resource allocation and scheduling design in
wireless networks [4,30–32]. A computational offloading algorithm based on DDQN was
proposed for a MEC network in [30], in which mobile devices learned the task offloading
and energy allocation scheme based on the queue status and channel quality of the task
and energy. [31] studied the dynamic caching, computational offloading, and resource
allocation in cache-assisted multi-user MEC systems with random task arrivals. A dynamic
scheduling strategy based on a deep deterministic policy gradient method based on DRL
was proposed. The spectrum sharing problem in the vehicle network was formulated as
a multi-agent reinforcement learning problem in [32], and a multi-agent deep Q-network
(DQN) algorithm was proposed. All these works have validated that the DRL framework
is effective for the optimization problem of communication networks.

Nowadays, real-time IoT applications are emerging and timely information updates/
communication play a significant role in improving the QoS. To achieve it, a new perfor-
mance metric, AoI, has recently been proposed to evaluate the interval between the current
time and the generation time of the most recently received packet at the destination [33–35].
Afterward, the AoI was extended to the UAV-assisted framework, namely AoI-oriented
UAV communication networks [36–38]. Based on the DRL framework, an online flying
trajectory of the UAV was designed in [36] to achieve the minimum and weighted sum
of AoIs. In [37], the consumed energy and flying trajectory of the UAV was optimized to
achieve the minimum peak AoI, where the UAV acted as a relay server. The AoI-oriented
UAV path planning and data acquisition problems are jointly optimized in [38]. Some
researchers have used MEC technology to optimize the AoI of IoT devices and have made
some progress recently [12,39,40]. In [39], they studied the AoI of MEC’s computationally
intensive messages and verified that the average AoI of local computing was the smallest
compared with local computing and remote computing. In [12], the channel allocation and
computational offloading decision were jointly optimized to reduce the system cost while
guaranteeing the freshness requirement of sensory data. In [40], the authors designed a
system that supports MEC for the Internet of medical things, which minimized the system
cost of medical emergencies, AoI, and energy consumption. In the UAV-assisted mobile
edge computing network, considering AoI is also a current issue worthy of research. In [19],
the authors proposed a UAV-assisted MEC system, and the freshness of data packets is
studied separately in the case of single and multiple IoT device transmission. While, this
work does not take into account the UAV’s trajectory planning and it assumes that the IoT
devices are static.

Based on the above observations, this paper focuses on designing the service trajectory
for a UAV-assisted MEC network to minimize the information freshness of IoT devices.
Meanwhile, the dynamic movements of IoT devices are taken into account.

3. System Model and Problem Formulation
3.1. System Model

We study a UAV-assisted MEC network as illustrated in Figure 1, in which the com-
munication time is slotted with a duration of Ts second. N mobile devices are randomly
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deployed in a communication area for diverse IoT applications, i.e., environment sensing,
monitoring, and so on. Such that some specific computing tasks are generated at these
devices to be further gathered and processed by a faraway base station (BS). We assume
the tasks of mobile devices generate randomly. When the task queue of the device is empty,
it may generate new tasks in the one time slot with probability p, where the task size is lc
bits. Meanwhile, each device is employed with a single task queue to store the generated
tasks. As the limit of local computation capability resources at the devices, the generated
computing tasks have to be offloaded to the BS for remote execution, where the BS is
employed with an edge server.

UAV
BS

Los link between UAV and devicesLink from UAV to BS Devices' movementUAV's service trajectory

Figure 1. The system model of UAV-assisted edge computing networks consists of a UAV and
multiple mobile devices.

The direction transmission from devices to the BS is blocked as the large communi-
cation distance and channel attenuation. To address it, a UAV is deployed as a mobile
relay station to enlarge the communication coverage and assist the information delivery.
Accordingly, the transmission from devices to the BS is divided into two phases. In the
first phase, the UAV dynamically flies to one of the access points and serves the associated
devices. Then, in the second phase, the UAV forwards the collected information to the
BS via the wireless backhaul. In each time slot, the UAV is either flying to or hovering at
an access point to serve devices. Thus, we use a binary variable m(t) ∈ {0, 1} to indicate
whether the UAV is flying or hovering in the time slot t, and m(t) = 1 means the UAV is in
flight. Due to the large distance between the access points, the UAV may spend multiple
slots to fly from one access point to another. Followed by the flying period, the UAV is then
hovering to collect the tasks from devices within one time slot, where the time is allocated
to support the transmission of multiple devices. An example time structure of transmission
scheme in a UAV-assisted MEC network is presented in Figure 2.

For the communication links, the ground-to-air line-of-sight (LoS) link model is as-
sumed, which is widely used in UAV-assisted communication networking. Accordingly,
the channel conditions mainly depend on the communication distances between the UAV
and devices or BS, respectively, which means the accuracy of channel conditions relies
on localization. In this paper, the UAV is enabled to acquire the channel condition of
all communication links. It is sure that the imperfect channel state information (CSI) is
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practical, and the resource management under imperfect CSI has been researched in the
literature [41–43]. In [41], the performance of aerial computing supported by UAVs under
non-ideal channel estimation is analyzed. In [42], the authors study an optimization frame-
work for the energy-efficient transmission of NOMA-cooperative vehicle-to-everything
(V2X) networks enhanced for ambient backscatter (AMBC) communication under imperfect
CSI conditions. Even though the method and proposed scheme under perfect CSI can still
provide some criterion guidance for the design under imperfect scenarios. Instead, we
leave this part for our future works. All the notations and symbols used in this paper are
listed in the Table 1.

s
T

Figure 2. Time structure of transmission scheme.

3.2. Movement Model

Unlike the existing works with static deployment, this paper considers the devices
can randomly move from one point to another during a time slot, namely mobile devices.
The Gauss–Markov random movement model is adopted. We define (xn(t), yn(t)) as the
position of device n at the beginning of time slot t.Then, based on [44], the position of
device n in the time slot t + 1 is updated as

xn(t + 1) = xn(t) + vn(t) cos(θn(t))Ts, (1)

yn(t + 1) = yn(t) + vn(t) sin(θn(t))Ts, (2)

where vn(t) and θn(t) are the moving speed and direction of device n in the time slot t
respectively, and given by

vn(t) = c1vn(t− 1) + c2v +
√

1− c2
1Φn, (3)

θn(t) = d1θn(t− 1) + d2θn +
√

1− d2
1Ψn. (4)

In the above expressions, v and θn represent the averaged moving speed and direction
of device n respectively, the parameters c1, c2, d1, d2 are used to evaluate the coherence
of the devices’ movement during successive time slots. Meanwhile, Φn and Ψn are two
random variables that follow independent Gaussian distributions, i.e., Φn ∼ (ξvn

, ζ2
vn),

Ψn ∼ (ξθn
, ζ2

θn
). These two distributions reflect the randomness of the movement of

different mobile devices.

3.3. Communication Model

To enlarge the coverage and assist in information delivery, the UAV dynamically flies
in the communication area. We define (x0(t), y0(t)) as the position of the UAV in the time
slot t. Accordingly, the communication distance between device n and the UAV is

dn(t) =
√
[xn(t)− x0(t)]2 + [yn(t)− y0(t)]2, (5)
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which determines the scheduling scheme and energy consumption of device n. A device
can upload its task to the UAV only when its distance is no larger than the threshold of
maximum allowable communication distance d0. d0 = Htanα relies on both the height
of the UAV H, and the maximum angle between the UAV and the edge of its coverage
area, which is dependent on the factor that the UAV is equipped with a directional antenna
with adjustable beam width, and the azimuth and elevation half-power beam-width of the
antenna are equal [45]. Thus, we can use a binary variable un(t) ∈ {0, 1} to denote whether
the mobile device n is in the association area of the UAV in the time slot t. If dn(t) ≤ d0, it
yields un(t) = 1, and the UAV can serve device n. In contrast, un(t) = 0, and device n can
not transmit information to the UAV as the large transmission distance, i.e.,

un(t) =

{
1, if dn(t) ≤ d0,
0, otherwise.

(6)

In fact, a device is active to upload its computing task to the UAV in time slot t, only
when it is in the association area of the UAV and its task queue is non-empty. Therefore,
we define ηn(t) ∈ {0, 1} as the active status of device n in the time slot t, then we have

ηn(t) =

{
1, if un(t) = 1 and non-empty queue,
0, otherwise.

(7)

Accordingly, the number of active devices in the time slot t is η(t) = ∑N
n=1 ηn(t), and

the set of active devices is defined as Nη(t) = {n|ηn(t) = 1}.
In each time slot, an active device can only upload a computing task, which is for-

warded by the UAV to the BS for edge execution. Therefore, the total amount of data bits
that are sent to the UAV in the time slot t is given by

λ(t) =
N

∑
n=1

ηn(t)lc, (8)

which is also the amount of data bits forwarded by the UAV and affects the energy con-
sumption of the UAV for the relaying operation.

3.4. Energy Consumption

In fact, the energy consumption of devices is much smaller than that of the UAV,
which significantly affects the achieved performance of the whole system. Thus, we mainly
investigate the energy consumption of the UAV, which is used for flying, hovering, and
information relaying operations.

3.4.1. Flying Energy Consumption

During the flying period, the amount of consumed energy depends on the flying
distance, speed, and power, which is given in [46] as

e f (t) = m(t)Pf
L
V

, (9)

where L =
√
[x0(t)− x0(t− 1)]2 + [y0(t)− y0(t− 1)]2 represents the flying distance of

the UAV, V and Pf are the constant flying speed and power of the UAV’s horizontal
movement, respectively.

3.4.2. Hovering Energy Consumption

When the UAV hovers in an access point in the time slot t, it collects and forwards
the information of active devices within the serviceable area. Therefore, both the hovering
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and forwarding operation consume energy, in which the hovering energy consumption is
written as [18]

eq(t) = (1−m(t))PhTs, (10)

where Ph is hovering power.

3.4.3. Relaying Energy Consumption

In the time slot t, if the UAV is hovering in an access point, e.g., m(t) = 0, the amount
of information bits to be forwarded by the UAV is λ(t). To achieve it, the transmit power of
the UAV is

Pu(t) =

(
2

λ(t)
Btu − 1

)
BN0

l(t)
, (11)

where tu and λ(t)
Btu

represent the forwarding transmission time and the normalized data
rate, respectively, B and N0 denote the system bandwidth and noise power spectral density
respectively. l(t)= ρ0√

H2+[x0(t)−xB ]
2+[y0(t)−yB ]

2
is the channel power gain between the UAV

and BS, where (xB, yB) is the position of the BS, and ρ0 is the reference path loss of 1 meter.
Then, the actual energy consumed for relaying operation is

eu(t) = (1−m(t))Pu(t)tu. (12)

Above all, the total energy consumption of the UAV in the time slot t is

etotal(t) = e f (t) + eq(t) + eu(t). (13)

On this basis, we use E(t) to denote the energy status of the UAV in the time slot t and
set the initial energy as E(0) = E0. Accordingly, the energy status of the UAV is not only
dependent on the energy status in the last time slot but also relies on the energy consumed
in the current time slot. Thus, the evolution of the energy status of the UAV is given by

E(t + 1) = E(t)− etotal(t). (14)

3.5. Age of Information

For real-time IoT applications, timely information updates/transmission plays a criti-
cal role in improving service quality. To realize timely data delivery, the performance metric
called the age of information (AoI) has been recently proposed to evaluate the interval
between the current time and the generation of the most recently received information
packet of a device. In this paper, we incorporate the AoI as an important performance
metric to achieve a freshness-aware UAV-assist MEC network.

The AoI characterizes how old the information is from the perspective of the receiver.
Let’s define Zn(t) as the AoI of device n in the time slot t. According to the communication
model, if the UAV is flying, devices can not upload their tasks to the UAV as ηn(t) = 0,
then we have Zn(t + 1) = Zn(t) + Ts as the information at the BS is one slot older. In
contrast, when the UAV is hovering in an access point and device n is active, i.e., m(t) =
0, ηn(t) = 1, the BS successfully receives a task from device n. Then, the AoI is degraded
to Zn(t) + Ts − ∆n(t), where ∆n(t) is the time interval of two successive computing tasks
generated by device n. Thus, the evolution of the AoI of device n is

Zn(t + 1) = Zn(t) + Ts − ηn(t)∆n(t)(1−m(t)). (15)

Accordingly, the long-term average AoI of device n is given by

Z̄n =
1
T

T

∑
t=1

Zn(t). (16)
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3.6. Problem Formulation

In a UAV-assisted MEC network, we focus on the performance metrics of the energy
consumption of the UAV and the achieved average AoIs of devices. Thus, our goal is
to minimize the energy consumption of the UAV simultaneously and the averaged AoI
by optimizing the service path of the UAV, and it can be formulated as the following
optimization problem

min
x0(t),y0(t)

1
T

T−1

∑
t=0

N

∑
n=1

ω1Zn(t) +
1
T

T−1

∑
t=0

ω2etotal(t)

s.t. (1)− (16), E(t) ≥ 0,

(17)

where the first and second terms of the objective function are related to the averaged
AoIs of devices and the averaged energy consumption of the UAV, and ω1, ω2 is the
corresponding weighted coefficient. Noting that (17) is not only a non-convex optimization
problem due to the non-convexity of the Equations (6) and (12), but also a long-term
multi-slots optimization scheduling problem. Both factors increase the difficulty of solving
the problem.

4. Deep Reinforcement Learning Dased Freshness-Aware Path Planning

The formulated problem (17) is to design the service trajectory of the UAV, which is
like the sequenced decision-making issue. As the DRL framework is suitable to address
such kind of decision-making issue. Thus, in this section, we explore the DRL framework
to realize the intelligent and freshness-aware path planning of the UAV.

4.1. Reinforcement Learning Reformulation

Traditional tabular reinforcement learning, in which the tables are used to represent
the states and the Q value of each state-action pair. In fact, the optimization problems
formulated from the practical scenarios are complicated due to a huge number of states,
such that the tabular reinforcement learning method is difficult to solve it. During the
past years, reinforcement learning has made a significant breakthrough by exploiting a
DNN to optimize decision-making, namely DRL. With the benefit of DNN, we can directly
generate and approximate Q values instead of recording them in a table, which leads to a
large decrease in computation complexity. Neural networks are usually employed to adapt
to complex unknown functions in learning tasks [47], and they can handle complex input
characteristics. In [48], the DRL framework is explored to train the CNN network, such
that the online strategies are proposed to play computer games. Similarly, the original path
planning optimization problem can be reformulated based on the DRL.

In a reinforcement learning framework, an agent continuously interacts with a com-
plex and unknown environment, adjusts its policy, and learns to become an adaptive
decision maker. In this paper, the UAV is an agent to explore the unknown external
environment [49,50]. In the following parts, we firstly present the state space, action space,
and reward function of the path planning optimization problem.

4.1.1. State Space

In time slot t, the UAV is either flying or hovering in an access point, namely m(t) = 1
or m(t) = 0. When the UAV is hovering and serving some devices in a time slot, it is
necessary to decide the next hovering access point based on the environment state and its
strategy. The environment states include the status of mobile devices, communication links,
and the UAV. On the one hand, the environment states includes the current positions of
devices (xn(t), yn(t)) and the coordinates of last time slot of UAV (x0(t− 1), y0(t− 1)), the
channel fading of the communication link from the UAV to the BS l(t), and the energy level
of the UAV E(t). On the other hand, to guarantee fresh information delivery, the AoI of
mobile devices Zn(t) is also taken into account as an important state. Accordingly, the state
is described as
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St =
{

(xn(t), yn(t)), (x0(t− 1), y0(t− 1)), l(t), Zn(t), E(t)
}

, (18)

and S is the feasible space of states, namely St ∈ S , ∀t.

4.1.2. Action Space

In fact, the action of the UAV is to decide the next hovering access point to serve
mobile devices based on the current environment state and its strategy. To simplify the
analysis and reduce the complexity, we consider the finite and fixed access points, and the
UAV needs to choose one of them to collect tasks of devices in the coverage to achieve the
maximum long-term reward. Thus, the action space can be expressed as

At = {at | at = (x0(t), y0(t))}. (19)

In time slot t, the UAV moves to the fixed access point (x0(t), y0(t)). After that, the
UAV collects the information of the devices within the service area of the access point, then
forwards them to the BS and updates the AoIs of devices at the same time.

4.1.3. Reward Function

In this paper, we focus on simultaneously minimizing the AoI of devices and energy
consumption of the UAV, such that the system rewards takes both factors into account. In
time slot t, the system reward is given by

rt+1 = −ω1Z(t)−ω2etotal(t). (20)

Accordingly, the long-term expected reward Gt is the sum of discounted rewards in
the following time slots and is written as

Gt =
∞

∑
k=0

γkrt+k+1, (21)

where γ ∈ [0, 1] is the discount rate that evaluates the importance of present and future returns.

4.2. Double Deep Q Learning Network

To maximize the long-term expected reward Gt, it is necessary to find an optimal
strategy π∗, which indicates the probabilities mapping from any state of S to an action
of A. In general, the state-action value function, namely Q function, Q(s, a), is exploited
to evaluate the quality of taking action a with a given state s. Given the strategy π, the Q
function is defined as

Qπ(s, a) = Eπ [Gt | St = s, At = a], (22)

where Gt is defined in (21). Once the Q function Qπ(s, a) is derived, it is easy to determine
the optimal strategy. While it is usually difficult for the Q function due to the complex envi-
ronment with massive states and actions. By exploiting reinforcement learning, the agent
can approximate Q(s, a) through iterative interactions with the surrounding environment.
Through experiments and feedback, the agent obtains some data samples in the form of
(st, at, st+1, rt), which is continuously derived based on the iterative interactions. Given
these updated samples, the agent conducts the training procedure to approximate the Q
function and then adapts its strategy. With deep Q learning, the Q function is presented
by θ parameterized DQN, i.e., Qπ(s, a; θ), which can greatly relieve the complexity due to
massive states and actions.

In this paper, we apply a deep Q learning algorithm with an empirical replay to
explore the unknown environment. To achieve the maximum long-term reward, the agent
adjusts its strategies based on the feedback of the system reward by trying different actions
and then strengthening the corresponding actions until the best results are achieved.
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In deep Q learning, the DQN is used to approximate the Q function Q(s, a; θ), where θ
represents the network weight. In [51], DQN uses two-depth neural networks to approxi-
mate the Q value. One is the prediction network,where the input is the current state action
pair (st, at) and the output is the predicted value, that is QDQN

p (st, at; θ). Another one is the
target network, where the input is the next state and the output is the maximum Q value of
the next state-action pair. The target value of DQN is given by

QDQN
t

(
st, at; θ−

)
= rt + γ max

a
Q
(
st+1, a, θ−

)
. (23)

Although DQN can quickly make the Q value approach to the possible optimal value,
it may occur that the update of the parameters is too late and cause overestimation, which
means the obtained training model suffers a big deviation, and leads to the final strategy
is not optimal, but sub-optimal [51]. To solve it, the DDQN algorithm eliminates the
overestimation issue by decoupling the selection of the target Q value action and the
calculation of the target Q value. The difference with DQN is that the target value in DDQN
is defined as

QDDQN
t

(
st, at; θ−

)
= rt + γQ(st+1, arg max

a
Q(st+1, a; θ); θ−). (24)

4.3. Training Process

In this subsection, we present the detail of the training procedure. In the DRL frame-
work, we take the UAV as an agent to explore the unknown external environment. As
shown in Figure 3, the Q function Q(s, a|θ) is characterized by DNN parameter θ. The agent
interacts with the environment and learns path planning strategy constantly. At time slot t,
the agent takes action at at the current environment state st. After that, the agent receives a
feedback reward rt and the environment evolves to the next state st+1 with some probability.
Therefore, the training samples are generated in the time slot t as o(t) = (st, at, st+1, rt).
This procedure continues until the environment sends the termination state. The generated
training samples are stored in the relay memory O(t) = {o(t−O + 1), . . . . . . , o(t)}, where
O is the buffer length. In each episode, a small batch of empirical K is randomly extracted
from memory and updated with a variant θ based on the stochastic gradient descent (SGD)
method, which is named as an empirical replay. According to this manner, the parameters
in the evaluation network are trained by minimizing the following loss function

L(θ) = E
[
(Ωt −Q(st, at; θ))2

]
, (25)

where the Ωt is the target value, and the target network can be estimated as follows:

Ωt =

{
rt, if st+1 is terminal

rt + γQ(st+1, arg maxa Q(st+1, a; θ); θ−), otherwise
(26)

In above expression, st+1 is the terminal state in which the residual energy of the UAV
is lower than the threshold.
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Figure 3. Training process.

Then, we propose a DDQN-based method to find the strategy in which ε-greedy
exploration strategy is used to balance the proportion of exploration and development
in the training process. With ε-greedy exploration strategy, the agent randomly selects
actions with the probability of ε. Otherwise, the action with the maximum estimated
value is selected with probability 1− ε. A small batch of K experience is extracted from
the playback memory to update the weight of the evaluation network θ. By substitut-
ing K experience, we can calculate the loss function as L(θ) = 1

K ∑K
k=1(Ωk −Q(sk, ak; θ))2.

The weight is updated by θ = θ +∇θ L(θ). The gradient can be calculated as ∇θ L(θ) =
2
K ∑K

k=1(Ωk −Q(sk, ak; θ)∇θQ(sk, ak; θ)). Note that each episode ends when the UAV bat-
tery is exhausted, and then the new episode begins until the total number of episodes
equals the threshold of episodes Kmax.

The goal of DRL is to continuously adjust the network parameters and learn the path
planning policy π∗ (a mapping from the state in its space S to the probability of selecting
each action among the action space A) according to the continuous interaction between the
agent and the environment in Figure 3, to maximize the long-term expected reward Gt (i.e.,
Equation (21)). Algorithm 1 summarizes the training process to find the convergent policy
π∗. The initialize procedure is in Line 1 to set the initial energy, the Q-network parameter.
Line 2 indicates the episode of the whole training process. Line 3, gives the initialize
procedure of the episode. Then, in Line 5, the agent (UAV) selects an action at based on
the current state st, and Line 6 and 7 are associated with two different selection strategies.
In Line 8, the action is executed, the agent obtains a reward rt, and the environment is
transited to another state st+1. The current interaction sample is then stored in the memory
Q in Line 9. From line 10 to line 14, the agent extract K mini-batch samples from the
memory, and update/refine its policy based on a deep neural network. After multiple
episode training processing, the above algorithm can finally derive a converged policy
π∗. The training procedure is offline, and then the strategy π∗ is to instruct the UAV to
approach the maximum long-term reward during online testing.
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Algorithm 1 DDQN-based freshness-aware path planning

1: Initialize: The relay memory O(0) = 0, the initial energy E(0) = E0, deep Q-network
weight θ− = θ, γ, and ε.

2: for episode j = 1, 2, . . . . . . , Kmax do
3: Set the time slot index t = 0, and generate the initial state s0; Generate the initial

position of the UAV and devices.
4: while E(t) > 0 do
5: Take an action at with a given state st, based on ε-greedy policy:
6: Case i: Randomly select an action with the probability ε.
7: Case ii: Select action: arg max Q(st+1, a).
8: Obtain a reward rt, and then the state is transited to st+1;
9: Store the tuple sample (st, at, rt, st+1) into the memory O;

10: if O is full then
11: Randomly extract K mini-batch samples from memory O;
12: Compute the loss function L(θ)
13: After a fixed interval,update θ− as θ−=θ
14: end if
15: Update the energy status of the UAV as E(t + 1) = E(t)− etotal(t) and t = t + 1.
16: end while
17: end for
18: Output: Policy π∗

5. Experiments and Results

In this section, we evaluate the achieved performance of the proposed DDQN-based
freshness-aware path planning scheme for UAV-assisted edge computing networks through
the Monte-Carlo simulation. Unless otherwise stated, the simulation parameters are pre-
sented in Table 2. In the DDQN framework, we exploit a four-layer fully-connected
neural network that consists of one input layer, two hidden layers, and one output layer.
The number of neurons in the hidden layers are 120 and 80, respectively, and the Relu
function, f (x) = max(0, x), is used as the activation function of all hidden layers. Mean-
while, the network parameter θ is updated by an Adam optimizer with a learning rate of
0.00001. To explore the environment, we set ε = 0.1, the experience playback buffer size
is |Bm| = 2.5× 105. To compare the performance of different algorithms, the average test
results are taken from 20 numerical simulations, each of which contains 100,000 steps.

Table 2. Simulation parameters.

Symbol Notations Parameter

Number of access points M = 9
Initial energy of UAV E0 = 5× 104 J
Flying speed of UAV V = 25 m/s
Reference Path loss ρ0 = −50 dB
Hovering power consumption Ph = 100 W
Flying power consumption Pf = 150 W
Relay forwarding time tu = 0.5 s
System bandwidth B = 3 MHz
Noise power spectral density N0 = 4.0× 10−12 W/Hz
Communication time of the UAV Ts = 1 s
Maximum angle from UAV and the edge of its coverage area α = π/6
Probability of task generation p = 0.6

In Figure 4, the achieved AoI of the proposed DRL-based freshness-aware path plan-
ning scheme is compared with that of the random scheme, where three kinds of deep
reinforcement algorithms are investigated, including DQN, DDQN, Dueling DQN. As a
variant of DQN, Dueling DQN decomposes the Q function Q(s, a) into the value function
V(s) and the advantage function A(s, a) [52]. The random path planning scheme selects
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the access point in a random manner. By varying the number of devices N from 10 to 60,
we observe that the sum AoI of all devices under the DRL-based path planning schemes is
much better than that of the random path planning scheme. With the benefit of structure
improvement of DQN, DDQN, and Dueling DQN performs better, where the DDQN is
best. It is shown that DDQN can compensate for the overestimation of Q value of DQN.
Therefore, Figure 4 proves the superiority of the DDQN-based path planning of the ε-greedy
strategy in this scenario.
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Figure 4. Achieved AoI of proposed path planning scheme with a different number of mobile devices,
and v = 2 m/s, H = 15 m.

Figure 5 evaluates the effect of learning rate on the convergence of reward, where
N = 30 and the learning rate β are set to 0.01, 0.00001, 0.000001, respectively. As is shown,
the convergence of the DDQN-based path planning can be guaranteed. When β = 0.01,
there exists a reward loss, which is because the adjustment range of the neural network
parameter is too large. The system reward in the cases of β = 0.00001 and β = 0.000001
are almost the same. While, the scheme converges much faster in the case of β = 0.00001,
such that we set the learning rate β = 0.00001 in the following parts. After the neural
network outputs different Q values, what kind of strategy to choose the action of the current
state will directly affect the reward. As shown in Figure 6, we compare three selection
strategies, including the ε-greedy strategy of ε = 0.1 and ε = 0.3, the GreeyQ strategy, and
the BoltzmannQ strategy. GreeyQ strategy is a greedy strategy to choose the maximum Q
value all the time. BoltzmannQ strategy establishes a probability law according to Q value
and returns a random selection behavior according to this law. We can observe that the
average reward of ε-greedy strategy of ε = 0.1 is better than ε-greedy strategy of ε = 0.3 and
GreeyQ strategy, while the average reward of BoltzmannQ strategy is the smallest. As the
GreeyQ policy is a deterministic strategy, that is, the probability of the UAV is only 1 at
the next fixed access point that maximizes the action value function, and the probability
of selecting other fixed access points is 0. But this will make the UAV only rely on past
experience to determine its own service path and lose the ability to continue to explore and
develop. Therefore, for the agent of this system, it is more reasonable to maintain a certain
probability of utilization and exploration.
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Figure 5. Effect of learning rate on the convergence performance of reward.
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Figure 6. In the case of v = 2 m/s, H = 15 m, the impact of different selection strategies on
system reward.

We can see from Figure 7 that for idle mobile device queues, different task arrival
probabilities have a certain impact on the update of the device’s AoI. We consider the
impact of different task generation probability p on the average AoI when N = 10, 20,
30, 40, and 60, respectively. When the probability of task arrival is 0.1, the average AoI
is maximum. When the probability of task arrival is 0.3, 0.6, the average AoI decline
accordingly. However, when the probability of task arrival is 0.9, it is not much different
from the probability of task arrival of 0.6. At a relatively small probability p, fewer devices
are required for the task. At this time, the UAV does not need to collect more data packets to
the BS for unloading processing, which should result in a greatly reduced device freshness.
When the generation probability of device queue tasks is relatively high, the UAV needs
to arrive at the target point in time to process the data packet. After completing the task
unloading, the AoI of the devices can be reduced in time. However, the data processing
capacity and scope of UAVs is limited; even if many devices on the ground have service
requirements, the system can not be completely timely processing. Therefore, when the
larger task arrival probability p, the AoI of devices may not reduce significantly.
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Figure 7. In the case of v = 2 m/s H = 15 m, the impact of different task generation probability p on
average AoI.

As can be observed from Figure 8, the higher the speed, the bigger the average AoI.
The average AoI is the smallest when the position of the mobile device is fixed (v = 0 m/s).
This is due to the slower the location of the mobile device changes, and the ε-greedy
exploration strategy of the DRL algorithm makes it easier to learn the optimization strategy,
which makes it easier for the UAV to quickly collect the task data of the device and forward
it to the nearby BS in time. Therefore, when the speed of the mobile device slows down,
the average AoI of the mobile device is reduced. Next, we assume that the battery power
of the UAV is sufficient for a period of service work and consider the same number of
steps in each episode. Figure 9 shows that the higher the speed of the UAV, the smaller
the corresponding average AoI. This is because, in the process of working, UAVs sacrifice
greater energy consumption to reduce flight time, timely processing of devices’ data, and
maintain information freshness.
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Figure 8. The impact of different speeds of mobile devices on average AoI.

The service path trajectory of the UAV is presented in Figure 10 for a 60 m × 60 m
communication area, with v = 2 m/s, H = 15 m and M = 4. The numbers 1 to 8 in the
figure are the serial numbers of the devices. The time slot is t = 3, 5, 8, 11, and it can be
observed that the UAV with limited energy can process task data from N mobile devices in
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the scene through the route of C→B→D→B. We can observe that in each time slot, UAVs
do not necessarily stay at the original access point or fly at the nearest access point but are
likely to fly to distant access points to process other mobile device data. In the environment
state of t = 3, the UAV is in area C. Although there are more mobile devices with service
requirements in area D, the UAV preferentially selects the nearby area B as the mobile
devices with device numbers 2 and 3 for data processing in the next time slot. Under
the framework of the reinforcement learning algorithm, UAV pays attention to long-term
system benefits rather than short-term limited feedback. Finally, the evolution of AoI of
User1 and User2 in an episode is presented. As shown in Figure 11, we can observe that
the AoI of devices increases with fly time and communication time slot. Only when the
UAV accesses the corresponding fixed access point and assists the BS in unloading does the
AoI decreases accordingly. Therefore, the path planning of the UAV affects the update of
the specific devices’ AoI.
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Figure 9. The impact of different speeds of the UAV on average AoI.
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Figure 10. Service path of the UAV with four steps.
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6. Discussion

The intelligent and freshness-aware path planning for an UAV-aasisted MEC network
has been studied in this paper. In the future, the resource management and path planning
for the UAV-assisted MEC networks under practical propagation scenarios can be further
studied, such as combing LoS and NLoS links and imperfect or no channel state information
(CSI). Meanwhile, some emerging techniques can be incorporated. For example, the
intelligent reflecting surface (IRS) technique can reconfigure the wireless propagation
environment to achieve a flexible and efficient communication network. Non-orthogonal
multiple access technique shows the benefits of improving the spectral efficiency and
network connectivity. Physical layer security technique can be exploited to realize an
energy-efficient and secure communication network. Furthermore, more complicated
network scenarios need to be investigated, e.g., multi-UAV or multi-cell communication
networks or large-scale UAV-assisted communication networks with massive IoT devices.

7. Conclusions

In this paper, we have studied a UAV-assisted MEC network with device mobility,
where UAVs with limited energy can assist mobile devices in offloading their tasks to the BS.
UAV brought a wide range of flexible services, leading to path planning problems. Our goal
was to minimize AoIs of mobile devices and the energy consumption of UAV work. We
applied the DDQN algorithm to plan the service path of the UAV intelligently. Simulation
results have validated the effectiveness of the proposed freshness-aware path planning
scheme and the effects of the moving speed of devices and the UAV on the achieved AoI.
Finally, we have given the process of AoI evolution and the service trajectory of the UAV.
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