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Abstract: Thermal infrared (TIR) satellite imagery collected by multispectral scanners is important
to map land surface temperature on a global scale. However, the TIR spectral bands are typically
available in coarser spatial resolution than other multispectral bands of shorter wavelengths. There-
fore, the spatial resolution of the derived land surface temperature (LST) is limited to around 100 m.
This constrains the applications of such thermal satellite sensors in which finer detail of LST spatial
pattern is relevant, especially in an urban environment where the land cover structure is complex.
Among the missions deployed on the Earth’s orbit, NASA’s TIRS sensor onboard Landsat 8 and
Landsat 9, and ASTER onboard Terra provide the highest spatial resolution of the thermal band. On
the other hand, ESA’s Sentinel-2 multispectral imagery is collected at a higher spatial resolution of
10 m with a 5-day temporal resolution, but scanning in the TIR band is not available. This study
makes use of the known relationship between LST and land cover metrics, such as the normalized
difference vegetation index (NDVI), built-up index (NDBI), and water index (NDWI). We define a
multiple linear regression model based on the spectral indices and LST derived from Landsat 8 data
to inform the same model in which the equivalent spectral indices derived from Sentinel-2 are used to
predict LST at 10 m resolution. Results of this approach are demonstrated in a case study for Košice
city, Slovakia, where the multiple linear model based on Landsat 8 data achieved an R2 of 0.642. The
correlation between the observed Landsat 8 LST and predicted LST from Sentinel-2 aggregated to the
same resolution as the observed LST was high (r = 0.91). Despite the imperfections of the downscaling
model, the derived LST at 10 m resolution provides a better perception of the LST field that can
be easily associated with land cover features present in urban environment. The LST downscaling
approach was implemented into Google Earth Engine. It provides a user-friendly online application
that can be used for any city or urban region for generating a more realistic spatial pattern of LST
than can be directly observed by contemporary Earth observation satellites. The tool aids in urban
decision making and planning on how to mitigate overheating of cities to improve the life quality of
their citizens.

Keywords: land surface temperature; downscaling; Landsat 8; Sentinel-2; urban heat island; Google
Earth Engine

1. Introduction

The thermal pattern on the surface of the Earth is an essential variable for under-
standing climate and biochemical processes. Satellite Earth observation of land surface
temperature (LST) has become an important source of information for studying contempo-
rary climate change and associated overheating of the urban landscape. The phenomenon
is known as urban heat island (UHI) and it occurs in cities where air temperature tends to

Remote Sens. 2022, 14, 4076. https://doi.org/10.3390/rs14164076 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14164076
https://doi.org/10.3390/rs14164076
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-8011-446X
https://orcid.org/0000-0002-0075-4991
https://orcid.org/0000-0001-9738-938X
https://doi.org/10.3390/rs14164076
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14164076?type=check_update&version=2


Remote Sens. 2022, 14, 4076 2 of 21

be higher than in the surrounding semiurban or rural areas [1,2]. UHIs have fundamental
impacts on regional climate [3], water and air quality, vegetation growth, and species
richness [4,5]. These factors, in turn, affect human health and well-being as more than half
of the world population now lives in urban areas [6]. Global warming may potentially lead
to increased morbidity and mortality, energy consumption, and economic changes [7,8].

Despite the fact that UHI originates in the atmosphere, the air temperature is strongly
controlled by the spatial pattern of LST. Although the studies of UHI based on measurement
of air temperature provide an accurate picture of thermal gradients, these are often limited
by the number of monitoring stations to relatively small areas [9], thus such measurements
of atmospheric UHI are usually insufficient in capturing fine-scale spatial variation of air
temperature [10,11]. In contrast, the surface UHI (SUHI) [10] describes the changes in
temperature on the surface and strongly correlates with the material type and orientation
of the surface to the incident solar energy. SUHI is primarily measured by satellite thermal
remote sensing. Consistent and continuous observations of the Earth’s surface allows for
studying the urban thermal environment at various spatial scales (urban regions, cities)
and temporal scales (diurnal, seasonal).

For more than fifty years, satellite remote sensing has enabled mapping the LST over
large spatial extents from continental to global scales. However, physical and technical
constraints limited the thermal infrared sensing (TIR) to coarser spatial resolution than
other multispectral bands of the same satellite sensor, i.e., visible and near-infrared (VNIR).
This is a relatively coarse spatial resolution of TIR datasets; typically, the ground sampling
distance of Earth observation TIR sensors ranges from 1000 m (e.g., Meteosat, AVHRR,
MODIS) to 100 m (Sentinel-3, ASTER, Landsat 8 and 9 TIRS). While the latter resolve the
difference of urban–rural LST on the regional level, they are not sufficient to capture local
interactions of LST within cities in relation to the land cover heterogeneity [12]. Higher
spatial resolution of thermal sensing is needed to resolve urban features (streets, roads,
buildings) to study microclimate and human comfort in urban areas [13]. Many land
monitoring applications require LST estimates over large spatial extents (30–300 km) and
at fine spatial resolutions (30–10 m or less). Airborne or UAV surveys enable thermal
mapping at much higher spatial resolution, below submeter level, and bring the possibility
of planning surveys when conditions are optimal to meet [14] the project requirements.
However, airborne platforms are more suitable for relatively small areas in which LST does
not change significantly during data acquisition [15]. Thus, LST can be captured in fine
spatial detail for a small area or in a coarse resolution for the entire region.

This constraint has been addressed by sharpening the TIR satellite imagery to a
higher spatial resolution. These sharpening techniques are often termed as downscaling
or disaggregation methods in previous publications. Numerous techniques have been
developed in recent years to downscale the TIR imagery or LST datasets based on the
statistical relationship between TIR and higher resolution VNIR spectral bands. Zhan et al.
(2013) reviewed disaggregation methods of remotely sensed land surface temperature [16].
Zhan et al. (2013) followed the methodology of Strahler et al. [17] and divided DLST into
two subbranches, including thermal sharpening (TSP) and temperature unmixing (TUM).
The main difference is that TSP is used to obtain the LST of smaller resolution cells, while
TUM aims at obtaining the LSTs of the existing elements within coarse resolution cells.

Several researchers have approached LST downscaling over vegetated or natural
landscapes using the relationship between LST and vegetation indices, e.g., normalized
difference vegetation index (NDVI), fractional vegetation cover (FVC), via linear or non-
linear regression techniques, and the results were reported to be reasonably accurate.
Kustas et al. [18] developed the TsHARP algorithm, disTrad (disaggregation of radiometric
temperature) method based on a quadratic relationship between NDVI and LST that has
been widely used in several studies. However, urban areas contain greater heterogeneity
in land cover and the behavior of the LST pattern varies across the surface. Therefore,
NDVI cannot explain all LST variations in urban regions, so various authors have further
refined TsHARP using fractional vegetation cover rather than NDVI to sharpen LST [19–22].
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In addition to vegetation, the spatial pattern of the LST is also affected by other factors
(e.g., type of land cover, soil moisture, geographic location) motivating improvement in
thermal sharpening accuracy by integrating other datasets, e.g., land use data [23–25],
albedo [13], emissivity [26–28], soil moisture [29], and digital elevation model (DEM) data
into the sharpening process [30]. These studies suggest that the inclusion of predictors
other than NDVI and vegetation cover has the potential to improve sharpening accuracy in
complex landscapes.

To date, Landsat 8 (L8) or Landsat 9 (L9) provides thermal imagery with a 16-day
revisit period in the highest resolution freely available for research of landscape and urban
planning. The LST data are derived at 30 m resolution and freely available online. The
Sentinel-2 (S2) mission provides multispectral imagery at 10 m resolution with a 5-day
data collection frequency, however, without a thermal band. Integration between L8 or L9
and S2/MSI data provides a global average revisit of approximately 3 days, which allows
for continuous monitoring of land cover and development of application data products at
medium spatial resolution [31]. The S2 data can also be used to downscale L8/L9 LST to
10 m spatial resolution [32].

This paper aims to make use of the spectral bands of S2 to sharpen the LST derived
from L8 thermal sensing. To our knowledge, this idea has not been explored much in
published research. Other kinds of data had been involved but not the S2 (e.g., [14,18,21]).
Sánchez et al. (2020) [32] used S2 data to downscale MODIS data of 1000 m resolution to
10 m resolution. MODIS has the advantage of daily coverage, but thermal data with such
a large cell size are not particularly applicable in urban landscapes where the land cover
is diverse on a fine-scale. Pu and Bonafoni (2021) [33] argue that the difference between
the downscaled LST and LST measured at the same (high) resolution is scale-dependent,
i.e., subject to a scaling effect. Therefore, larger-cell LST data, such as the MODIS, are
not suitable for urban studies with complex land cover structures over small areas. Our
research contributes to this aspect by focusing on the determination of LST in an urban
environment for which L8 LST of 30 m cell size is more relevant but can be improved by
fusing with S2 data. Li et al. (2022) [34] conducted a similar study by using Gaofeng-6 (Gf-6)
imagery to downscale the L8 to 8 m. Despite the high spatial and spectral resolution of the
Gf-6 data, this imagery is not easily publicly available as the ESA S2 data are worldwide.
This fact makes S2 more suitable on a global scale to be applied to determine the urban
land surface temperature at 10 m resolution.

Our downscaling approach adopts a standard, well-known and simple approach of
multiple linear regression to increase the spatial resolution of land surface temperature
(LST) derived from L8 imagery. The method was originally proposed by Kustas et al.
(2003) [18] exploiting the inverse relationship of NDVI and LST. Bonafoni et al. (2016) [14]
modified it for downscaling Landsat-5 TM thermal data with airborne thermal data for
urban landscape using three predictor spectral indices: normalized difference vegetation
index (NDVI), normalized difference built-up index (NDBI), and normalized difference
water index (NDWI). For the simplicity and robustness of this approach, we implemented
the downscaling method in Google Earth Engine to increase the ease of use and global
availability to other users via the Internet. The tool enables decision makers in cities to
generate temperature maps of the urban surface for a particular day, given the periodicity
of L8/L9, S2, and the level of cloudiness.

2. Materials and Methods
2.1. Study Area

The presented approach of downscaling L8 LST is demonstrated in the study area of
the Košice city, located in eastern Slovakia, Central Europe. According to the Urban Atlas
2012 of the Copernicus Land Monitoring Service [35], the area comprises the historical city
center with dense continuous urban fabric surrounded by industrial and commercial units,
green urban areas, asphalt roads, the main railway station, and a part of the Hornád River
that flows in the east (Figure 1).
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Figure 1. Location of the study area and the field sites of surface temperature measurements used to
validate the results of LST downscaling. The background maps are © Copernicus Land Monitoring
Service (Urban Atlas 2012) with funding by the European Union [35]; natural color orthoimage
acquired on 9 August 2016 by Photomap.

The total area of the city is approximately 244 km2 with total population of almost
240,000 inhabitants [36]. Agricultural land occupies 37.6%. Forest areas are highly repre-
sented, accounting for 30.8%, built-up areas occupy 19%, water areas 1.2%, and other areas
11.4% of the city area [37]. The local climate is mild and continental, strongly seasonal,
with warm and humid summers and severe winters, without long dry periods; the Köppen
Climate Classification subtype is “Dfb” [38]. The average annual temperature is around
11 ◦C, slowly increasing in the last decade, with less rainfall and, at the same time, measur-
ing a greater amount of sunshine per year [37]. The average monthly temperature varies
between 19 and 20 ◦C in July and −3 and −4 ◦C in January [39].

2.2. Data Sources

The workflow of the presented research makes use of multispectral satellite im-
agery continuously collected by two Earth observation missions, the Landsat mission
by NASA [40] and the Sentinel mission by ESA [41]. Three separate cloud-free multispec-
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tral products acquired over the Košice area on 23 August 2018 were employed: Landsat
8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) (2 products) and MSI
instrument onboard S2 satellite (one product).

Two spaceborne multispectral imagery datasets of the Landsat 8 OLI/TIRS sensors
from 23 August 2018, 09:19:59 UTM were downloaded using the USGS EarthExplorer web
service (https://earthexplorer.usgs.gov) (accessed on 17 May 2019) [42]. The Landsat 8 Col-
lection 1 Level-2 Surface Reflectance product “LC08_L2SP_186026_20180823_20200831_02_T1”
was used to derive selected spectral indices in 30 m spatial resolution and Landsat 8 Col-
lection 1 Level-1 product “LC08_L1TP_186026_20180823_20180829_01_T1” was used to
compute atmospherically corrected LST using the adapted methodology of inverting the
radiative transfer equation. The Landsat 8 OLI/TIRS sensors are composed of eleven bands,
nine of them in the visible and near-infrared (B1–B9), and two bands in the thermal infrared
(TIRS) region, with a spectral range of 10.60–12.51 µm (B10–B11). Landsat 8 OLI/TIRS has
a native spatial resolution of 30 m for the eight reflective bands (B1–B7, B9), 15 m for the
panchromatic band (B8), and 100 m for the thermal bands (B10–B11).

The Sentinel-2 MSI Level-2A multispectral imagery product, also from 23 August 2018
“S2B_MSIL2A_20180823T094029_N0208_R036_T34UEV_20180823T122014” (tile 34UEV,
acquisition time 9:40:29 UTM), was downloaded via the Copernicus Open Access Hub
(https://scihub.copernicus.eu/dhus/) (accessed on 17 May 2019) to derive spectral indices
in 10 m spatial resolution [43]. The Sentinel-2 Level-2A outputs are based on the Level-1B
data and they are provided to users as atmospherically corrected to bottom-of-atmosphere
(BOA) reflectance products.

The original data supplied as projected in the WGS84/UTM zone 34N cartographic
system. Calculations were performed in ArcGIS 10.8.

To validate the results of LST downscaling, we used field measurements of kinetic
surface temperature that originated within the study by Hofierka et al. [44]. The authors
used the Pt1000TG7/E temperature probe with a data logger by Comet for automatic
recording of the kinetic surface temperature at 6 locations shown in Figure 1. The device
measurement accuracy is 0.15 ◦C and the measurement interval was set to 30 s from 4:00
to 17:00 UTC time on 25 June 2020. We selected measurements performed in six open-
sky locations within the study area to represent various types of environmental settings
(e.g., roofs, parking lots, walkways, parks).

2.3. Downscaling Approach

Landsat 8’s thermal infrared sensor (TIRS) allows for direct mapping of surface thermal
radiance at moderate spatial resolution, i.e., at the native 100 m ground sampling distance,
which is resampled to 30 m by the United States Geological Survey (USGS). Landsat
Collection 1 products generated from L8 are distributed at a 30 m raster cell size. The
thermal radiance can be converted to LST. However, given the coarse spatial resolution and
long revisit period of this satellite, the resolution is not sufficient for routine LST calculation
of urban areas with diverse land cover controlling the distribution of heat in cities. S2
provides multispectral image data in the visible and near-infrared wavelengths at 10 m
cell size, used for computing various spectral indices. These bands capture the complexity
of urban land cover in finer detail and provide a higher resolution alternative to those
generated by L8 or 9. However, S2 does not record the TIR radiance of the land surface.
Figure 2 presents the procedure of defining the multiple linear model of the three spectral
indices and LST derived from L8 data adopted from [14]. This model is used to predict LST
in a grid of 10 m cell size with spectral indices derived from S2 data as inputs.

https://earthexplorer.usgs.gov
https://scihub.copernicus.eu/dhus/
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Figure 2. Workflow for downscaling the Landsat 8 LST with Sentinel-2 spectral indices and linear
regression model.

The flowchart in Figure 2 shows the main steps that can be described in detail as follows:

a. Determination of land cover indices—NDVI, NDWI, and NDBI

Three indices NDVI [45], NDBI [46], and NDWI [47] were selected and derived from
images of the L8 satellite (surface reflectance product) at a spatial resolution of 30 m, and
also from images of the S2 satellite at a resolution of 10 m (except NDWI that was resampled
from 20 to 10 m) [48–50]. Green, red, near-infrared, and shortwave infrared 1 bands of
30 m spatial resolution from the Landsat 8 OLI sensor, and the S2 MSI bands (green, red,
near-infrared bands of 10 m spatial resolution and shortwave infrared 1 bands of 20 m
spatial resolution) were used in determining the three land cover indices: NDVI, NDBI, and
NDWI, as shown in Table 1. The thermal infrared band 11 with 100 m spatial resolution in
L8 TIRS sensor was used for calculating the LST. For convenience in the LST downscaling
calculation, L8 TIRS data (100 m resolution) were resampled into 30 m using the nearest
neighbor method by simple raster data aggregation to coincide with L8 OLI data (30 m
resolution). Subsequently, the three indices (NDVI, NDWI, and NDBI) with 30 m resolution
were then estimated from the 30 m OLI images (Figure 3). The final available output is the
downscaled LST of 30 m resolution.

Table 1. Land cover indices used for LST downscaling.

Acronym Description Formulation Adapted Formulation
for Landsat 8 Bands

Adapted Formulation
for Sentinel-2 Bands Reference

NDVI Normalized difference
vegetation index

(NIR − Red)/
(NIR + Red) (B5 − B4)/(B5 + B4) (B8 − B4)/(B8 + B4) [45,48]

NDBI Normalized difference
built-up index

(SWIR − NIR)/
(SWIR + NIR) (B6 − B5)/(B6 + B5) (B11 − B8)/(B11 + B8) [46,49]

NDWI Normalized difference
water index

(Green − NIR)/
(Green + NIR) (B3 − B5)/(B3 + B5) (B3 − B8)/(B3 + B8) [47,50]
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to 10 m).

b. Calculating LST from Landsat 8 data

The LST was retrieved from L8 OLI/TIRS data by inverting the radiative transfer
equation according to:

L(sens,λ) = [ελ Bλ (Ts) + (1 − ελ) Ld] τλ + Lu (1)

where L(sens,λ) is the at-sensor spectral radiance of band 10 (W.m−2.sr−1.µm−1), ελ is the
land surface emissivity, Bλ (Ts) is Planck’s law/radiance of blackbody (W.m−2.sr−1.µm−1)
where Ts is the real LST (K), Ld is the downwelling atmospheric radiance, τλ is the total
atmospheric transmission for the thermal infrared radiation recorded by band 10, and
Lu is the upwelling atmospheric radiance. By assuming a Lambertian surface and by
inversion of Planck’s law from Equation (1), and knowing the surface emissivity and
atmospheric parameters Bλ (Ts), τλ, Ld, and Lu, it is possible to find LST [51]. The atmo-
spheric correction parameters were calculated using an online web-based tool of NASA
(http://atmcorr.gsfc.nasa.gov) (accessed on 5 June 2019) developed by Barsi et al. [52] that
takes the National Centers for Environmental Prediction modeled atmospheric profiles
as inputs to the MODTRAN radiative transfer code for a given site and date [53]. The
following input parameters were used in our case: latitude = 48.717◦, longitude = 21.259◦,
UTM time = 9:20, altitude = 230 m a.s.l., temperature = 27.7 ◦C, air pressure = 990.9 hPa
(mbar), and relative humidity = 40%. The weather parameters were extracted from the
database of the OGIMET service (www.ogimet.com) (accessed on 5 June 2019) for 23 August
2018 at 9:00 UTM for Košice-airport. The resulting values for the atmospheric correction
were interpolated to the set location as follows: τ = 0.78, Lu = 1.82 W·m−2·sr−1·µm−1,

http://atmcorr.gsfc.nasa.gov
www.ogimet.com
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and Ld = 3.00 W·m−2·sr−1·µm−1. Land surface emissivity ελ, was estimated using the
threshold method based on NDVI according to Zhang [54].

The meteorological station Košice-airport is the only one in the city that provides
official temperature data at hourly intervals. The air temperature at 9:20 was linearly
interpolated from recordings at 9:00 and 10:00 UTC, 27.2 ◦C and 28.9 ◦C, respectively. The
increase in air temperature between the S2 and L8 observations from 9:19:59 to 9:40:29 was
not greater than 1.7 ◦C. Assuming the linear increase in air temperature, the change during
the 20 min time lag was 0.56 ◦C. There are other weather stations, e.g., personal weather
stations (PWS), on the territory of the city of Košice that provide more detailed temperature
data, such as the meteorological station E3925 (48.72, 21.24), which is located in the city
center and is also part of the Meteorological Assimilation Data Ingest System (MADIS).
Temperature data from these PWS stations are available at https://www.pwsweather.com/
(accessed on 28 July 2022) [55]. A similar increase in air temperature (0.5 ◦C) as noted
above is found based on data from this weather station between 9:24–9:39 UTC time (27.8–
28.3 ◦C). This analysis suggests that the air temperature was not stable between the two
moments of L8 and S2 imagery acquisitions, but we consider it to be insignificant, below
the radiometric resolution of the L8 data and without significant strength to affect the
results of the presented research.

c. Defining the model between LST and land cover indices

In the next stage of this work, it was important to define the statistical model between
the spectral indices and the calculated LST derived from the L8 data. The freely available
statistical software R (The R Project for Statistical Computing) [56] was used for this purpose
to establish a multiple linear regression model according to the study of Bonafoni et al. [14],
which dealt with downscaling Landsat land surface temperature retrieved from Landsat
Thematic Mapper (TM) using a high-resolution aerial image over the urban area of Florence.
The proposed downscaling approach is based on fitting a linear relation using three spectral
indices (NDVI, NDBI, NDWI) derived from L8, acting together as predictors with LST as
the predicted variable. All input raster layers were in 30 m resolution. Then, the equation
for the LST calculation from L8 imagery was derived using the output coefficients (a0 − a3)
to calculate the LST30m in ArcMap software using Map Algebra—Raster Calculator:

LST30m = a0 + a1 × NDVI30m + a2 × NDBI30m + a3 × NDWI30m (2)

LST10m at the finer 10 m resolution is predicted by applying the model, Equation (2),
where the input spectral indices from L8 are replaced with the spectral indices derived
from S2 data (in 10 m spatial resolution). The following model was used:

LST10m = a0 + a1 × NDVI10m + a2 × NDBI10m + a3 × NDWI10m + ∆LST10m (3)

where coefficients (a0 − a3) from Equation (2) are applied and NDVI10m, NDBI10m, and
NDWI10m are the spectral indices derived from S2 at 10 m resolution. The final LST10m
contains regression residuals ∆LST10m added back to the downscaled map. In this way,
the original, coarse-temperature field is recovered through reaggregation, and the spatial
variability [21] of the LST that depends on factors other than the predictors employed is
taken into account [18]. The grid of regression residuals is first calculated by subtracting
the observed LSTobs from the modeled LST30m at 30 resolution (from Equation (2)):

∆LST30m = LST30m − LSTobs (4)

∆LST30m is then resampled to ∆LST10m as a 10 m cell-size grid by convolution with a
Gaussian kernel of 30 m size in ArcMap [18].

The resulting LST10m layer was validated against surface temperature measurements.
Additionally, a linear model of LSTobs and LST10m was inspected.

https://www.pwsweather.com/
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2.4. Implementation in the Google Earth Engine

Google Earth Engine (GEE) provides a powerful cloud computing platform and access
to an extensive catalogue of petabytes of satellite imagery with capabilities for performing
global scale analysis, allowing efficient geospatial analyses [57]. GEE provides access and
processing of data from public or their private catalogues to any user, thus accelerating
scientific advancements. We used this platform to implement a slightly modified version
of the downscaling algorithm described in Section 2.3 to enable other users to generate
LST products with higher spatial resolution for their area of interest based on L8 TIR and
S2 imagery.

The production chain was fully coded in JavaScript using the Code Editor Platform
in GEE. We used the atmospherically corrected Landsat 8 Collection 2 Level 2 Surface
Reflectance dataset (Landsat 8 SR) “LANDSAT/LC08/C02/T1_L2” and Sentinel-2 MSI
Level-2A dataset “COPERNICUS/S2_SR” (Sentinel-2A). The selection of the Collection 2
dataset was led by the fact that NASA cut of the supply chain for Collection 1 data and
all the NASA data were reprocessed to Collection 2. Moreover, L9 data are available in
Collection 2. The algorithm is fed with data with less than 5% cloud cover (the user can
adjust this value as described below). Another difference in the GEE application comparing
to the methodology applied in this work is the use of 3 × 3 convolutional Gaussian kernel
for image filtering and the subsequent bicubic interpolation to 10 m resolution. Figure 4
illustrates the processing chain for generating downscaled LSTs in 10 m spatial resolution.

In the first step, the developed GEE application requires 5 different input parameters:
start and end date (to select the desired time frame), Landsat collection (to select whether
to use the L8 or L9 image collection), and maximum cloud cover allowed for the image
tiles and the region of interest (ROI). The default ROI setting is focused on Košice city.
However, the user can change the location where the analysis is performed. The ROI is
created using the Geometry Tools in the GEE, which allow users to move or delete and then
delineate their own new geometric features, such as polygons, to be applied in the analyses.
After defining the input parameters, the user can click on “Generate L8/9 and Sentinel-2
Image Collections” button to generate available image IDs. Based on this information,
the list of L8/9 and S2 imagery IDs that meet the entry criteria are displayed under the
button in the right panel. The users can select two image IDs from the resulting list—one
ID for the L8/9collection and one for the S2 L2A—and enter their exact ID to the newly
displayed text fields. Several Landsat 8/9 and S2 imagery may be available in a given
time window; therefore, we recommend selecting data sets that were acquired on the same
day. If images for L8/9 and S2 collections are not available on the same acquisition day,
we recommend choosing the datasets by the closest acquisition time to account for similar
spectral characteristics of the derived spectral indices from both satellites. After defining
the image IDs on which to perform the analyses, these images are then used to calculate
the NDVI, NDBI, and NDWI spectral indices for the L8/9 and S2 imagery.

The LST is then calculated at 30 m resolution using the L8/9 B10 surface temperature in
degrees Celsius. The three spectral indices of L8/9 are then used to calculate the coefficients
of the multiple linear regression model between these indices and the LST band. Next, these
regression coefficients are used to calculate the downscaled LST using S2 NDVI, NDBI, and
NDWI spectral indices in 10 m resolution. The regression residuals are then calculated,
resampled to 10 m using the bicubic interpolation, and filtered using Gaussian convolution
with a window size of 3 × 3 pixels (30 × 30 m). The resulting regression residuals are
added back to the downscaled LST to achieve the final result. The user can visualize the
following 6 images: Landsat 8/9 and S2 natural color images (RGB), original L8/9 LST in
30 m, downscaled LST to 10 m spatial resolution with and without assuming residuals, and
Landsat 8/9 LST regression residuals.
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3. Results
3.1. Linear Model of Spectral Indices and LST Derived from Landsat 8 Data

The model for LST prediction was defined based on three predictors and ordinary
least squares linear regression similarly to [18]. First, the bivariate relationship between L8
LST and each of the predictors was defined (NDVI, NDBI and NDWI, and LST) (Figure 5).
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Figure 5. Scatter plots showing correlations between spectral indices and LST derived from Landsat
8 satellite.

Figure 5 shows a relation between pairs of variables separately. The scatter plots show
that in the study area of Košice, there is a relatively strong relationship between the spectral
indices and LST: negative for NDVI and positive for NDBI and NDWI. The coefficient of
determination (R2) is 0.63, 0.503, 0.564, respectively. The coefficient of determination shows
that there is a significant degree of correlation. Owing to the high density of dots, they
are displayed as probability density function (PDF) values. Minor deviations occur in the
correlation between LST and NDVI, and between LST and NDWI. This can be caused by
the use of atmospheric corrections and the derivation of surface emissivity values according
to the methodology described in [58], where these values were determined according to
NDVI and were classified.

To define the relationship of all three spectral indices as an independent variable with
LST (all variables in 30 m resolution), a linear regression model with three independent
variables was created using the command (lm.output.lst < lm (lst ~ ndvi + ndbi + ndwi,
temp.df). The equation for LST from L8 was derived from the output (see Figure 5):

LST30m = 38.476 − 12.929 × NDVI30m + 2.416 × NDBI30m − 5.310 NDWI30m (5)

The coefficient of determination (R2) when using all three indices as independent
variables is higher (R2 = 0.642, p-value < 0.0001) than the values of R2 for indices with
LST30m in bivariate linear regression. The coefficients in Equation (5) were further used in
the prediction of LST10m from S2 spectral indices.

Figure 6 shows a partial regression plot (i.e., added-variable plot). The graphs display
the relationship between the independent variable on the x-axis while holding all other
variables constant. It is an indication of the true relationship between variables in the
multiple regression model of Equation (5).
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3.2. Downscaled LST Using Sentinel-2 Data

LST10m was derived by applying the Equation (3), which uses the coefficients in
Equation (5). The procedure was performed in the ArcMap software environment using
the Raster Calculator tool with the indices from S2 in 10 m spatial resolution:

LST10m = 38.476 − 12.929 × NDVI10m + 2.416 × NDBI10m − 5.310 × NDWI10m + ∆LST10m (6)

Figure 7 shows the LST maps and residuals of the regression model Equation (2).
The spatial pattern of the original LSTobs (Figure 7A) is clearly improved (Figure 7B) even
before adding the residuals (Figure 7C). The final LST10m (Figure 7D) contains the regression
residuals. The difference of LST distribution can be clearly associated with particular land
cover materials differing in temperature. A detailed view of the historical city center is
shown in Figure 8.

Figure 7 shows the highest values within the densely built-up historical center of the
city with sharply distinguishable main roads and building blocks. Urban greenery such as
parks and smaller or narrower green areas in the city, and industrial areas with vegetation
are clearly visible as islands of lower LST. On the other hand, building blocks, roads, and
railways are distinguishable as hotter surfaces. Such a sharpened map of LST has a higher
interpretative value for public, urban planners, or researchers than the original LSTobs map.

Ideally, the LSTobs image (Figures 7A and 9A) and the downscaled (sharpened) LST10m
image aggregated to the coarse native TIR resolution of 30 m (Figure 9B) should be identical,
i.e., there is no bias (residuals) between the original and the aggregated prediction. As the
derived model of LST30m is not perfect, the underlying model prediction is inaccurate and
generates residuals (Figure 7C). The available spectral bands and the generated three indices
are missing all the information needed to perfectly reconstruct the LST at a finer resolution.
Therefore, to enforce energy conservation within the sharpening process, residuals between
predicted and observed LST fields at the coarse resolution are redistributed over the
sharpened LST maps (Figure 9B) [59]. The residual analysis helps to evaluate the model
performance. Figure 9C shows the relation between LSTobs and the LST10m aggregated
to 30 m resolution. High coefficient of determination R2 of 0.829 (p < 0.0001) indicates
a very good, though imperfect, reconstruction of the original LST observed by L8 with
Pearson’s correlation of 0.91. Additionally, other published thermal sharpening techniques
redistribute the LST residuals to ensure energy conservation in the sharpened imagery
(i.e., ensure that the downscaled LST map aggregates to the original coarser resolution
LST values). Very high or low residuals are observed at places where predictors act most
strongly as most limiting the LST ranges. Alternatively, the residuals tend to increase in
these areas because the underlying predictor values are more extreme. Positive residuals
in Figure 7C indicate that the recorded temperatures were higher than the predicted
temperatures and are represented by the warmer hues of the image, while the cooler hues
represent overestimation of the observed LST by the model.
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Figure 7. LST derived for the study area in Figure 1 (A) from Landsat 8 TIRS data at 30 m resolution;
(B) as downscaled LST at 10 m resolution; (C) shows regression residuals derived from Equation (4)
at 30 m grid; (D) downscaled LST at 10 m resolution with residuals; (C) convolved to 10 m grid and
added back to (B).
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Figure 8. (A) Detailed view of LST derived from Landsat 8 satellite at 30 m resolution (LST30m);
(B) downscaled LST at 10 m resolution (LST10m), over the 3D model of Košice city center (source of
3D model of Košice: © Institute of Geography, Košice).
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Figure 9. LST derived for the study area in Košice located on Figure 1 (A) from Landsat 8 LST data at
30 m resolution (L8-LST 30 m); (B) downscaled LST at 30 m resolution with residuals (S2-LST 30 m);
(C) corresponding scatter plot for L8-LST 30 m and S2-LST 30 m with residuals.

3.3. Online Application for LST Downscaling Based on the Google Earth Engine

The production chain was completely coded in JavaScript using the GEE Code Editor
Platform, and a GEE application was developed to easily reproduce the LST downscaling
process for different dates and areas for researchers and general public. The GEE application
is available at:

• https://danielp.users.earthengine.app/view/lst-downscaling (accessed on 28 July 2022).

and the source code of the application is available from the GitHub repository:

• https://github.com/palubad/LST-downscaling-to-10m-GEE (accessed on 28 July 2022).

While Equations (5) and (6) are valid for the area of the case study in Košice, the
GEE implementation calculates multiple linear regression models specific for the region
of interest defined by the user. The user can change the ROI for any place in the world.
For a meaningful result, the ROI should not be too large; we recommend a maximum of
1000 km2. Additionally, instead of creating a new ROI, it is possible to move with the
predefined ROI and area for random sampling included in the script simply by clicking
and dragging by mouse. The user can visualize the following six images: downscaled
LST to 10 m spatial resolution with and without assuming residuals—“LST 10 m (with
residuals)”, “LST 10 m (no residuals)”, original L8/9 LST in 30 m (“Landsat 8/9 LST”), L8/9
LST regression residuals (“Landsat 8/9 LST regression residuals”), L8/9 and S2 natural
color images (RGB) (“Sentinel-2 RGB”, “Landsat 8/9 RGB”). There is also the option to
generate charts of spectral indices vs. Landsat LST.

Figure 10 shows an example of downscaled LST layer generated by the LST production
chain in Section 2.3; the data were acquired on 23 August 2018 for the area of Uzhgorod

https://danielp.users.earthengine.app/view/lst-downscaling
https://github.com/palubad/LST-downscaling-to-10m-GEE
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city, Ukraine. The highest LST values are visible in the built-up areas; on the contrary, the
lowest LST values indicate forests, urban green areas, such as city parks, river, and fields.
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resolution, over the city of Uzhgorod, Ukraine, in Google Earth Engine.

3.4. Validation of Downscaled LST with In Situ Surface Temperature Data

Because Košice city currently lacks an adequate number of weather-station data,
validation of downscaled LST results was performed using the Comet Pt1000TG7/E tem-
perature probe measurements at six sites in the city to represent different types of land cover
(Table 2). We selected 25 June 2020 to manually measure LST in the city center, as this day
was similar in atmospheric characteristics (temperature = 23.2 ◦C, relative humidity = 40%)
to the day of the satellite imagery acquisition 23 August 2018 (temperature = 27.2 ◦C,
relative humidity = 40%).

Table 2. List of the terrain stations distributed around the core of Košice city with their surface
temperature measured by data logger (Tdat) compared to the corresponding LST pixel of that same
location—30 m pixel of the L8-derived LSTobs and downscaled 10 m pixel of LST10m.

Location Altitude
a.s.l. (m) Lat N Lon E Tdat LSTobs LST10m

LST30m −
∆Tdat

LST10m −
∆Tdat

1 roof 211 48◦43′44′′ 21◦15′01′′ 44.3 36.72 36.67 −7.58 −7.63

2 parking
lot 210 48◦43′12′′ 21◦15′06′′ 32.8 35.38 36.47 2.58 3.67

3 roof 210 48◦43′11′′ 21◦15′11′′ 43.9 36.78 38.11 −7.12 −5.79
4 walkway 214 48◦43′22′′ 21◦15′24′′ 37.6 37.31 37.81 −0.29 0.21
5 park 208 48◦43′27′′ 21◦15′51′′ 33.3 32.21 32.59 −1.09 −0.71

6 parking
lot 208 48◦43′42′′ 21◦15′27′′ 34.5 35.69 35.48 1.19 0.98

Bias (mean
error) 2.05 1.55

RMSE 4.43 4.22
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However, comparing the downscaled results to high-resolution observed information
would highlight systematic biases and limitations of the results. Planning a manual mea-
surement that is synchronous with the flight of both L8 and S2 satellites simultaneously
over our territory, and at the same time so that there is no haze or clouds over the terri-
tory, is also personnel and implementation demanding. During the measurements made
by manual data loggers in the summer of 2020, there was a small cloud cover over the
city at the time of satellite scanning, which prevented the use of the results captured by
these satellites to derive LST10m after downscaling; the images were partially covered by
cloudiness, which could introduce an error into any LST10m derived from these images
after downscaling, thus affecting the resulting values.

The validation was performed, but due to low clouds over the area and the effort not
to bring the error into the derived final temperature LST10m after downscaling, we decided
to compare our manually recorded information from temperature data loggers with LST10m
into downscaling derived from cloudless images L8 and S2, which was a day with a similar
temperature profile and atmospheric characteristics at the time of satellite scanning as the
day on which the recording was performed manually by temperature recorders.

The summary in Table 2 indicates a systematic underestimation (bias) of the surface
kinetic temperature Tdat measured in situ and the observed LSTobs or downscaled LST10m,
by −2.05 ◦C and −1.55 ◦C, respectively. The closer match of the predicted LST10m with the
reference data is indicated also by a lower RMSE of 4.22 ◦C as opposed to 4.43 ◦C for LSTobs,
as might be expected at measuring points that are more homogeneous in the immediate
vicinity of the type of land cover, (i.e., where it does not occur in the vicinity another type of
surface). As an example, we can mention LST measured in a pedestrian zone in the historic
core of the city (station no. 4), which is paved with cobblestone, where the difference in
surface temperature was recorded approximately in the middle of this pedestrian zone,
i.e., with a predominance of one type of land cover. The difference between the value of
the surface temperature measured by the manual temperature logger (Tdat) and the value
of the corresponding LST10m cell after downscaling for the same locality was in this case
the lowest among the measured values of selected localities (less than −0.21 ◦C). A similar
example can be the city park (station no. 5), where the difference between the values of the
surface temperature Tdat and LST10m was less than −0.7 ◦C (see Table 2). On the contrary,
the highest difference (−7.63 ◦C) between the values of Tdat and LST10m can be observed
at station no. 1, which represents the roof. The difference among the reference point data
and predicted or observed LST can be attributed to the different spatial supports of these
data. While the in-situ measurement recorded temperature at a point level the L8 and S2
acquire LST over an area where a strong aggregation effect exists. The LST of qualitatively
different surfaces (e.g. concrete surface of the parking lot, roofs of surrounding buildings)
is comprised in the resulting cell LST10m in 10 m resolution generating an average LST
value. On the other hand, the differences become smaller in case the same surface material
is comprised within the entire cell, both for L8 and S2, and it is also measured in-situ on
the same material. Therefore, Stations 4 and 5 (Table 2) corresponded most closely with the
L8 observed and the S2 predicted LST. The stations 1-3 had the largest LST difference for
the cells comprising mixture of surface materials.

The results confirm that even the use of resolved surface properties, such as spectral
indices from S2 in 10 m resolution, to derive LST cannot improve the original L8 satellite
capability to resolve some thermal details. This is consistent with previous findings,
e.g., [14]. Nevertheless, the custom downscaling procedure provides an additional value by
improving the spatial resolution with respect to the L8 USGS image and other regressive
downscaling techniques.

The validation measurements are not optimal as they are not taken on the same day as
the L8 satellite data used in this study. However, we opted for a Landsat scene and weather
conditions that were very close to the day of the field measurements, 25 June 2020. In fact,
the advantage of the field data used is that they were recorded at the same time moment
for each of the six locations and at the time of L8 passing over the city. Another means of
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validation would require higher resolution airborne thermal imagery, which would require
calibration or a repeated field campaign of land surface temperature measurement.

4. Discussion
4.1. Application of the Downscaling Method

The previous section illustrates the performance of the proposed framework for LST
downscaling using freely available L8 and S2 satellite data that can be applied in many
fields for the following reasons: (1) Precise estimation of LST at local scales—with the
regression and proposed downscaling method we can downscale the coarse LST to a
fine resolution that corresponds to the resolution of the VNIR data. Visual comparison
and validation results show that downscaling results are highly similar to the actual LST,
which indicates that the downscaling method is satisfactory. The proposed downscaling
framework can provide high spatiotemporal LSTs for wide-ranging environmental analyses
related to urban heat island effect, climate change, and drought. (2) High compatibility of
other datasets—although only L8 and S2 imagery was demonstrated in this study, other
remote sensing products with different spatial resolution and texture structures can be
potentially adapted for the framework (e.g., freely available optical and thermal data
from the new L9 mission can be used to derive LST, which can be treated similarly as
in the L8 LST case). (3) Freely available GEE online application and source code for LST
downscaling—the downscaling approach is available through the GEE platform, thus
each downscaled LST product can be obtained with a set of coefficients related to scaling
factors as byproducts, so that users are able to investigate the relation between derived
LST and predictors from L8/9. The code that drives the application can be updated, which
allows the application to be kept up-to-date. The source code is available from the GitHub
repository. Therefore, a custom selection of predictors in the multiple regression scheme
can improve the downscaling accuracy of a specific area. The application is freely available
for everyone. For the console solution, it is necessary to log into a GEE account.

4.2. Limitations

A variety of methods and different approaches in existing literature reflect the diversity
of the goals and resources of each downscaling assessment. Thus, there is no single best
downscaling approach; each has its own advantages and drawbacks, and varies with data
resources, requirements, and application purpose. There are also a few limitations that
arise from our downscaling results that should be taken into account when implementing
the downscaling method. First, optical and thermal remote sensing have the advantage
of providing land surface metrics at higher spatial resolution, but are often affected by
cloud cover. Specifically, the downscaling method used in this study is designed for ideal
(almost) clear-sky conditions (cloud cover less than 5% of the image) and the selected L8
and S2 images have the same acquisition date. Given that the same acquisition date by
both satellites is rather rare, and due to the lack of appropriate images without cloud cover,
the images used for downscaling can have different acquisition dates, but then generation
of errors may come from the spectral differences due to the different acquisition dates of L8
and S2 images. Additionally, when the pixels of the LSTs are polluted by clouds, they will
not be dealt with by the downscaling method correctly [60]. Second, even using S2 spectral
indices in 10 m resolution to derive LST in higher spatial resolution cannot improve the
original L8 satellite capability to resolve some thermal details. This finding is in agreement
with other studies, e.g., [14]. In our case, the LST of narrow water bodies, such as canals
or rivers, tends to be overestimated by the regression model. The reason is in the spectral
response of various (usually hotter) surface materials captured within a single cell at coarse
resolution (Figure 7A,D). For example, the Hornád River in the east of the Košice study
area shows incorrect, higher temperatures of water and its surroundings than the actual
LST. This incorrect prediction can cause the watercourse to be confused with road or rail
communication. However, we tested other areas with large water bodies where the LST
was predicted more realistically, which can be confirmed in the online GEE application.
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4.3. Future Research

Currently, there are still no effective ways for evaluating downscaled LST outputs.
Normally, LST products are validated directly against in situ measurements. However, the
spatial representativeness of the point-scale in situ measurements is not ideal for evaluation
of the coarse remotely sensed products [29]. Validation of the results themselves after
downscaling (and also on older data) is often omitted, given that comparing the results
after downscaling with the observed high-resolution information would highlight system-
atic errors and limitations of results [61]. Given the derived LST10m in 10 m resolution, this
work takes into account such limitations, which result from the highest possible achievable
resolution using these satellite data, and nevertheless considers the achieved resolution
from satellites to be the best possible to meet the conditions for using free, easily download-
able satellite data. Thus, more validation strategies for downscaled LST data need more
explorations, due to the lack of corresponding in situ measurements at the satellite transit
time [29]. Thermal radiometers operating in continuous mode at the measurement sites
could also be used for LST validation in the future, which would ensure more robust data
for validation. Second, the subject of further research could also be the use of other spectral
indices that have not been tested in this work. Lastly, the applicability and uncertainty of
the downscaling method should be investigated in more detail for other heterogeneous
areas with different climatic characteristics.

5. Conclusions

The main objective of this study was to develop a straightforward approach to increase
(downscale) the spatial resolution of LST maps derived from L8 LST data and implement
the procedure into an online application based on Google Earth Engine for free public access.
The downscaling approach was based on a multiple linear model of LST and three spectral
indices: NDVI, NDBI, and NDWI derived from Landsat 8 data. The parameters of this
model were used to predict LST at 10 m spatial resolution using the spectral indices derived
from Sentinel-2 bands of 10 m cell size. The applicability of the approach is demonstrated
on the case study of Košice city, Slovakia, where surface temperature in situ measurements
were available for validation.

In this work, a very good correlation was found between the spectral indices and the
surface temperature of LST30m, which were derived from multispectral images of the L8
satellite, and subsequently used to predict LST10m in higher spatial resolution using S2
satellite data. The relationship was applied to satellite data acquired on 23 August 2018,
from L8 satellites with a spatial resolution of 30 m and S2 with a resolution of 10 m, for the
study area that included part of the city of Košice.

The value of the coefficient of determination for the relationship of the three indices
together (NDVI30m, NDBI30m, and NDWI30m) and LST was 0.642. The coefficients of
determination for the relationship of L8 LST30m with the indices alone were lower, so a
combination of all three acting together as one independent variable was used to predict
LST10m. The result, i.e., LST10m in 10 m resolution, cannot be validated and compared with
ground measurements or aerial thermal images, as in [14], which used thermal data from
the Landsat 7 satellite and reached high correlation (0.95) in comparison with aerial thermal
images. As a method of validating the result, LST30m from L8 was resampled to a spatial
resolution of 10 m and the raster of the predicted LST10m was subtracted from the given
raster (Figure 7).

The result can also be compared with an orthophotomap, on which built-up areas,
traffic roads, and green areas are distinguishable, and the temperature distribution in
the urban environment can be determined accordingly. In our case, the result could be
affected by the application of atmospheric corrections, in addition to a small data refinement
effect. Evaluation of the impact of these effects would require either a high-density in situ
temperature measurement or airborne thermal spectrometry.
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The higher-resolution-derived LST matches the complex structure of the urban envi-
ronment and is capable of characterizing more accurately land cover types and elements
for the spatial modeling of the urban heat island effect using a GIS approach.

The implementation of the downscaling procedure within the GEE platform enables
other specialist users, city managers, urban planners, or public to freely access and generate
LST maps for their area of interest. Despite this, the downscaling model does not generate
LST perfectly matching the actual LST; instead, the method and tool generate a realistic
pattern of LST at higher resolution than directly observed by any EO satellites. We argue
that the downscaled LST maps can be used “per se” for further interpretation, decision
making, and planning on how to mitigate overheating of cities to improve the life quality
of their citizens.
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