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Abstract: L-band passive microwave remote sensing (RS) is an important tool for monitoring global 

soil moisture (SM) and freeze/thaw state. In recent years, progress has been made in its in-depth 

application and development in the Tibetan Plateau (TP) which has a complex natural environment. 

This paper systematically reviews and summarizes the research progress and the main applications 

of L-band passive microwave RS observations and associated SM retrievals on the TP. The progress 

of observing and simulating L-band emission based on ground-, aircraft-based and spaceborne plat-

forms, developing regional-scale SM observation networks, as well as validating satellite-based SM 

products and developing SM retrieval algorithms are reviewed. On this basis, current problems of 

L-band emission simulation and SM retrieval on the TP are outlined, such as the fact that current 

evaluations of SM products are limited to a short-term period, and evaluation and improvement of 

the forward land emission model and SM retrieval algorithm are limited to the site or grid scale. 

Accordingly, relevant suggestions and prospects for addressing the abovementioned existing prob-

lems are finally put forward. For future work, we suggest (i) sorting out the in situ observations and 

conducting long-term trend evaluation and analysis of current L-band SM products, (ii) extending 

current progress made at the site/grid scale to improve the L-band emission simulation and SM 

retrieval algorithms and products for both frozen and thawed ground at the plateau scale, and (iii) 

enhancing the application of L-band satellite-based SM products on the TP by implementing meth-

ods such as data assimilation to improve the understanding of plateau-scale water cycle and energy 

balance. 
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1. Introduction 

As an essential climate variable, soil moisture (SM) is an important state variable for 

quantifying water, energy, and carbon exchange processes in the soil–vegetation–atmos-

phere system [1–4]. It plays an important role in regulating processes such as the parti-

tioning of surface sensible and latent heat flux, surface water budget, and vegetation tran-

spiration [5–8]. This further affects the dynamical and thermal processes in the planetary 

boundary layer, which in turn impacts the atmospheric state and climate change [9]. SM 

is also an important factor affecting the growth of vegetation and an important indicator 

of crop drought, and the effective monitoring of SM can help to accurately implement 

irrigation measures on farmland [10–12]. Due to its important role in the whole Earth sys-

tem, SM information is important for a wide range of applications, including climatic 
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modeling, hydrologic modeling, and agriculture growth and drought monitoring. There-

fore, effective and large-scale monitoring of SM is important for accurate forecasting of 

weather and guidance of farming-related measures in the agricultural sector. 

The Tibetan Plateau (TP), known as the Third Pole of the World, is one of the most 

sensitive areas to global climate change due to its special topographic and climatic char-

acteristics. The thermal and dynamic effects of the TP have a very important impact on 

regulating the weather and climate around the plateau, in Asia, and in the Northern Hem-

isphere [13]. The TP is also known as the Water Tower of Asia, where the Yellow River, 

Yangtze River, and Lancang River originate, and its water retention capacity is inextrica-

bly linked to the maintenance of ecosystems around the plateau and in Asia. SM, as an 

important component of the water cycle, is important for understanding and studying the 

water cycle on the TP [6–8]. In addition, the TP is a typical alpine region with extensive 

permafrost distribution, and the coexistence of ice and unfrozen water in permafrost can 

greatly change the soil's hydraulic and thermal properties, thus affecting the regional wa-

ter and heat exchange and runoff processes [14,15]. Therefore, monitoring SM and freeze–

thaw changes on the TP is of great significance for the in-depth understanding of the plat-

eau moisture cycle and energy balance processes. 

A ground-based observation network consisting of multiple SM observation sites can 

provide accurate and long-term SM observations, but its spatial representativeness is lim-

ited. At present, several regional-scale SM observation networks have been built on the 

TP [16–18]. However, due to the complex climate and topographic characteristics of the 

TP, the SM presents strong spatial heterogeneity, and the regional scale observation net-

works are insufficient to completely characterize the spatial and temporal distribution of 

SM across the whole TP. 

Since the 1970s, the development of satellite observation technology has provided a 

new way to monitor SM on a large scale. At present, the technologies commonly used for 

SM monitoring include visible optical satellites, thermal infrared satellites, and micro-

wave satellites. Research shows that the visible optical remote sensing (RS) and the ther-

mal infrared RS are more frequently influenced by the atmosphere, clouds, and vegetation 

when retrieving the SM, and the detection depth is only within a few millimeters of the 

surface soil. On the contrary, the microwave RS not only has the advantage of all-weather 

and all-day observation capacity but also shows a stronger penetration ability to clouds, 

rain, snow, and vegetation, which is thus more sensitive to the SM dynamics. Therefore, 

microwave RS is often treated as the more suitable method to monitor large-scale and 

long-term SM variations [19,20].  

The commonly used microwave RS bands include L-(1–2 GHz), C-(4–8 GHz), and X-

band (8–12 GHz). Compared to the C- and X-band, the L-band has a longer wavelength 

and stronger penetration ability that is more sensitive to SM changes. Therefore, the L-

band is usually considered the best band for monitoring global surface SM [20]. In recent 

years, several L-band microwave RS satellites have been launched worldwide, such as the 

Soil Moisture and Ocean Salinity (SMOS) satellite of the European Space Agency (ESA) 

[21], as well as NASA’s Aquarius satellite [22] and Soil Moisture Active Passive (SMAP) 

satellite [23]. In addition, the Global Water Cycle Observation (WCOM) satellite program 

proposed by Chinese scientists [24] will be expected to achieve continuous observation of 

L-band microwave RS and to provide higher accuracy and long time series of SM and 

freeze/thaw state datasets. 

Based on satellite observations, researchers around the world have developed a se-

ries of L-band microwave emission models and SM retrieval algorithms, which have gone 

through the process from ground-based validation of theoretical models/algorithms to 

calibration and validation of satellite observations to global operational monitoring of SM 

[20]. For the validation of L-band microwave RS observations and products, numerous 

ground-based and airborne experiments have been conducted in a variety of land condi-

tions and climatic regions around the world, such as the MELBEX III experiment at a Vine-

yard site in Valencia, Spain [25], the SMOS airborne validation experiment in the Jehol 
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and Erfurt river basins, Germany [26], and the SMAPEx [27] and SMAPVEX15 [28] exper-

iments in Australia and the United States, respectively, which have contributed to the 

evaluation and improvement of SMOS and SMAP satellite products [20]. Similar experi-

ments have been conducted in China, such as the Heihe Watershed Allied Telemetry Ex-

perimental Research (HiWATER) [29] in the Heihe River basins and the L-band SM active-

passive thematic experiment in the Luan River basins [30]. In addition, the SMAP satellite 

team has selected several ground-based core validation networks in various vegetation 

types and climate regions across the world to calibrate and validate the performance of its 

products, including the Maqu SM observation network located on the TP [31].  

Complex topographic characteristics, the extensive distribution of lakes, the exist-

ence of frozen ground with distinct seasonal freeze–thaw transitions, and the lack of ac-

curate soil data have posed many challenges to SM retrievals on the TP. In addition, the 

impact of Radio Frequency Interference (RFI), topographic relief, and field of view blend-

ing has led to the poor quality of satellite observations such as SMOS [32]. To further im-

prove SMOS and SMAP satellite products, Zheng et al. [33] set up an L-band microwave 

radiometer, i.e., ELBARA-III, in the Maqu SM observation network, which has collected 

more than five years of consecutive ground-based bright temperature (��
�
) observations 

up to now [34,35]. Currently, many studies have been conducted to evaluate L-band sat-

ellite-based SM products and retrieval algorithms based on several SM observation net-

works on the TP. For example, Dente et al. [36] and Chen et al. [37] evaluated the applica-

bility of SMOS and SMAP SM products on the TP, respectively. Zheng et al. [38,39] eval-

uated and improved the vegetation and surface roughness parameterizations imple-

mented in the current SMAP SM retrieval algorithm and developed a new algorithm for 

retrieving unfrozen (liquid) water content in the frozen ground. These research efforts 

related to product validation and algorithm improvement have further promoted the de-

velopment of L-band microwave RS and the application of L-band satellite products on 

the TP. 

This paper systematically reviews and summarizes the research progress and main 

applications of L-band passive microwave RS and associated SM retrieval algorithms and 

products on the TP in recent years. On this basis, the current problems of L-band emission 

simulation and SM retrieval on the TP are outlined, and relevant suggestions and pro-

spects for addressing the existing problems are finally put forward. Section 2 introduces 

the study area. In Section 3, we introduce the airborne and ground-based L-band micro-

wave passive RS experiments carried out on the TP and the preliminary validation of sat-

ellite-based L-band observations and summarize the research progress in simulating mi-

crowave emission on the TP; Section 4 presents the existing SM observation networks on 

the TP and summarizes the research progress of evaluation and improvement of SM prod-

ucts and retrieval algorithms based on the L-band microwave RS on the TP. On this basis, 

Section 5 summarizes the main problems of SM retrieval research on the TP and provides 

related outlooks. 

2. Study Area 

Known as the Third Pole of the World, the TP is the highest plateau in the world, 

with an average elevation of over 4000 m. The mountain ranges of the TP extend across 

Afghanistan, Pakistan, India, China, Bhutan, Myanmar, and Nepal, and more than 

4,000,000 km2 is mainly composed of high-elevation rugged terrain. It is generally high in 

the northwest and low in the southeast. Grasslands are widely distributed and dominate 

the vegetation type on the TP. The climate is humid in the southeast and arid in the north-

west. In addition, the TP has strong solar insolation and sufficient sunshine, but the over-

all temperature is low, and the diurnal amplitude of temperature is large. The TP is often 

regarded as the Asian water tower since more than 10 of the largest rivers in Asia originate 

from this region, including the Yellow River, the Yangtze River, the Mekong river, the 

Brahmaputra river, and the Indus river, providing freshwater supply for more than a fifth 

of the world’s population. 
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3. Progress of L-Band Microwave Emission Observation and Simulation on the TP 

In recent years, researchers have validated the satellite observations using L-band 

observations collected from airborne and ground-based platforms on the TP and have 

conducted studies related to L-band emission simulation. This section will introduce in 

detail L-band microwave observation experiments on the TP, including airborne and 

ground-based experiments and evaluation of satellite observations, and summarize the 

current forward land emission model adopted by the L-band satellite missions and their 

applications and improvements in the TP. 

3.1. L-band Microwave Emission Observation 

3.1.1. Airborne and Ground-Based Observation Experiments Conducted in the TP 

In order to promote observational studies of L-band microwave emission on the TP, 

airborne and ground-based experiments were carried out in the Heihe River Basin in the 

northeastern part of the TP and the Maqu area in the southeastern part of the Yellow River 

source region, respectively [29,33]. In order to improve the observation capability of hy-

drological and ecological processes at the watershed scale and to establish a leading wa-

tershed observation system around the world, an ecohydrological remote sensing experi-

ment, i.e., Heihe Watershed Allied Telemetry Experimental Research (HiWATER), was 

carried out via combining ground-based, airborne remote sensing, and satellite observa-

tion methods [29,40]. Among them, in order to develop passive microwave RS-based SM 

retrieval products at the watershed scale, several airborne PLMR (Polarimetric L-band 

Multibeam Radiometer) radiometer-based observations were carried out from 29 June to 

2 August 2012 to collect multi-angle dual-polarized ��
�

  data in the middle and upper re-

gions of the Heihe River basin. The flight altitude of the airborne experiment was 0.3–3 

km, corresponding to a ground resolution of 0.1–1 km, and the incidence angles of the 

radiometer were ±7°, ±21.5°, and ±38.5°, respectively, with a center frequency of 1.41 GHz. 

To validate the SMOS and SMAP satellite ��
�

 observations and develop microwave 

emission models as well as SM retrieval algorithms, Zheng et al. [33] deployed an L-band 

microwave radiometer (i.e., ELBARA-III) in the Maqu SM observation network at the be-

ginning of 2016. The radiometer was mounted on a 4.8 m height tower with the antenna 

centered at approximately 6.5 m above the ground, and the antenna beam was generally 

oriented to the south. The ��
�
 observations at both horizontal (TBH) and vertical (TBV) po-

larizations were collected every 30 min in steps of 5° from 40° to 70° scanning angles 

[33,35]. Micro-meteorological observations were also set up near the radiometer to meas-

ure a variety of micro-meteorological elements. In late 2016, a rain gauge and an eddy 

covariance observation system were installed near the radiometer. In addition, vertical 

SM profile observation probes were added in August 2016 to automatically collect SM 

observations at 20 soil depths ranging from 2.5 to 100 cm every 15 min [35]. Based on the 

ELBARA-III microwave radiometer observations, Zheng et al. [33–35,41] conducted sev-

eral studies on the L-band microwave passive RS of soil freeze–thaw transitions, including 

the development of a microwave emission model for frozen ground, a new retrieval algo-

rithm for retrieving unfrozen (liquid) soil water content in frozen ground, and a new find-

ing that the sampling depth of L-band microwave radiometry is about 2.5 cm for both 

frozen and thawed soil conditions. 

3.1.2. Satellite Observations and Accuracy Assessment 

After a long period of development, three satellites carrying L-band microwave radi-

ometers were successfully launched worldwide, including ESA’s SMOS, NASA’s Aquarius, 

and SMAP. The main information about these three satellites is shown in Table 1. 
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Table 1. Basic information of SMOS, Aquarius, and SMAP satellites. 

Satellite 

Missions 

Space 

Agency 

Launched 

Time 
Instruments 

Incidence 

Angle 

Overpass 

Time (d) 

Spatial Reso-

lution (km) 

SMOS ESA 2009.11 L-band Radiometry 0–55° 1–3 35–50 

Aquarius 

NASA 

2011.06 
L-band Radiometry 

and Scatterometer 

28.7°/37.8°

/45.6° 
7 

76 × 94/84 × 

120/96 × 156 

SMAP 2015.01 
L-band Radiometry 

and SAR 
40° 2–3 40 

The SMOS satellite is the world’s first L-band passive microwave RS satellite, and 

one of its main objectives is to provide global surface SM products with an accuracy of 

about 0.04 m3 m−3 [21,42]. The SMOS satellite carries an L-band microwave radiometer 

(1.41 GHz) in a sun-synchronous orbit at a mean altitude of 757 km, providing ascending 

and descending data corresponding to passages through the equator at 6:00 and 18:00 of 

local solar time, respectively. The microwave radiometer uses a Y-shaped antenna that 

provides ��
�
 observations at incidence angles of 0–55°. SM is retrieved using multi-angu-

lar and dual-polarization SMOS ��
�
 observations via inverting the L-MEB model in com-

bination with an iterative inversion algorithm [42]. 

The Aquarius/SAC-D is an ocean observation satellite mission aiming to provide data 

such as monthly ocean surface salinity for the study of ocean circulation, coupling be-

tween global water cycle and climate, and others [22,43]. The observation system consists 

of three dual-polarized L-band radiometers (1.41 GHz) and one fully polarized L-band 

scatterometer (1.26 GHz). The orbit of the Aquarius is a sun-synchronous orbit at 657 km, 

which passes the equator at 6:00 (descending orbit) and 18:00 (ascending orbit) local solar 

time and covers the globe every 7 days. The Aquarius mission was terminated on 8 June 

2015 due to a failure of the power supply and altitude control system. SM is retrieved 

using Aquarius ��
�
 observations at the horizontal polarization using the single channel 

retrieval algorithm [43]. 

The SMAP satellite aims to provide high precision and high resolution of SM and 

freeze/thaw state data on a global scale [23,44]. It carries an L-band microwave radiometer 

(1.41 GHz) and a synthetic aperture radar (SAR) (1.26 GHz) to obtain simultaneous meas-

urements of ��
�
 and backscatter coefficients. The SMAP satellite orbit is in a sun-synchro-

nous orbit at 685 km and passes through the equator at 6:00 (descending orbit) and 18:00 

(ascending orbit) local solar time. On 7 July 2015, the SMAP radar stopped working due 

to a malfunction, and so far, the SMAP radiometer is still working stably. SM is retrieved 

using SMAP ��
�
 observations at vertical polarization using the single channel retrieval 

algorithm [44]. 

To validate the accuracy of satellite-based L-band ��
�

 observations in the TP, the 

SMAP and SMOS ��
�
 observations are compared to the in situ ELBARA-III observations 

in the Maqu SM observation network. Figure 1 show the comparison of SMAP, SMOS, 

and ELBARA-III ��
�
 observations from August 2016 to July 2017 for the evening over-

pass. It can be found that the ��
�
 is significantly correlated with soil dryness and wetness 

and freeze–thaw transitions. For example, the ��
�
 increases during the soil freezing pe-

riod (November to February) and then decreases as the unfrozen (liquid) soil water in-

creases with soil thawing. As shown in the figure, the variations of SMOS and SMAP ��
�
 

observations are generally consistent with the ELBARA-III measured trends, whereby the 

SMAP observations are more consistent with the ELBARA-III observations. The correla-

tion coefficients between SMAP and ELBARA-III ��
�
 observations are greater than 0.87, 

and the RMSE and ubRMSE for the TBV observations are smaller than these of TBH. Good 

performance of SMAP observations was also reported in ref. [39,45]. Compared to the 

performance of SMAP ��
�
 data, the SMOS data show degraded accuracy and larger fluc-

tuating, which may be related to the influence of RFI and the stability of the radiometer 
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[36]. To further investigate the impact of RFI on the SMOS ��
�
 observation, Figure 2 pro-

vide the root-mean-square error (RMSE) computed between the SMOS ��
�
 observations 

and simulations produced by the CMEM model for both descending and ascending over-

passes performed by the authors. From the figure, it can be found that the RMSE for the 

SMOS ��
�
 observation in the TP is as high as 10–20 K, indicating that the SMOS satellite 

may be seriously affected by RFI in the TP. A similar finding was also reported by Dente 

et al. [36]. 

 

 

Figure 1. Time series of SMAP and ELBARA-III measured (a) TBH and (b) TBV, and SMOS and EL-

BARA-III measured (c) TBH and (d) TBV during the evening overpasses between August 2016 and 

July 2017. (a,b) are modified from Zheng et al. [39]. 

 

Figure 2. RMSE computed between the SMOS ��
�

 observations and simulations produced by the 

CMEM model for both (a) ascending and (b) descending overpasses. 

3.2. L-Band Microwave Emission Simulation 

3.2.1. Forward Land Emission Model Adopted by Current Satellite Missions 

The current three L-band satellite missions, i.e., SMAP, SMOS, and Aquarius, all use 

the zero-order forward microwave emission model, i.e., τ-ω model, developed by Mo et 
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al. [46] for TBp simulations. TBp generally consists of three components: (1) direct upwelling 

vegetation emission; (2) downwelling vegetation emission reflected by the soil and atten-

uated by the canopy layer; (3) upwelling soil emission attenuated by the canopy [38,46]. 

The model is expressed as follows: 

��
�

= (1 − ��)(1 − ��)�� + (1 − ��)(1 − ��)������ + (1 − ��)����, (1)

�� = ���(−��/ ���(�)), (2)

where the superscript p represents the polarization (p = V for vertical polarization and p = 

H for horizontal polarization), ωp, γp, and τp are the single scattering albedo, transmittance, 

and optical depth of vegetation, respectively, TC and TG are the effective temperatures of 

vegetation and soil, respectively, rp is the reflectivity of rough surface, and ψ is the satellite 

observation angle. 

Table 2 summarize the main parameterizations used in the current forward land 

emission models for SMOS, Aquarius, and SMAP satellite missions, including the simu-

lation of rough surface reflectivity rp, soil permittivity εs, effective soil temperature TG, 

vegetation temperature TC, single scattering albedo ω, and vegetation optical depth τp. 

Usually, the vegetation single scattering albedo ω is determined by the specific vegetation 

type that is independent of the polarization. For instance, ω = 0 for sparse vegetation and 

ω = 0.06–0.08 for forest in the SMOS mission. For the simulation of vegetation optical depth 

τp, which is a function of the leaf area index (LAI) in the SMOS mission (see Table 2) [20], 

whereby the parameters b′ and b″ depend on the structures of the specific vegetation type. 

For the Aquarius and SMAP missions, the τp is linearly related to the vegetation water 

content (VWC) [47], whereby the VWC is determined by the normalized vegetation dif-

ference index (NDVI) and vegetation type. 

The h-Q-N model is adopted by the three satellite missions to simulate the rough 

surface reflectivity rp as [48,49]: 

�� = �(1 − �)��
� + ���

�
� ���(−ℎ ����(�)), (3)

where ��
� and ��

�
 (p = H, V; q = V, H) are the smooth surface reflectivity, which is related 

to the soil permittivity εs and can be obtained by the Fresnel equation. Parameter h is the 

roughness height parameter, which is related to the type of land cover, e.g., h = 0.1 for 

sparsely vegetated subsurface and h = 0.3 for forested subsurface in the SMOS mission. In 

the Aquarius mission, h is taken as a constant value of 0.1. Parameter Q denotes the po-

larization mixing factor, which is usually assumed as 0 at L-band. Parameter N represents 

the angular effect of observation angle, which is introduced to better account for multi-

angle and dual-polarization measurements. In the SMOS mission, N is related to the po-

larization, while it is taken as a constant value of 2 in both Aquarius and SMAP missions. 

Various soil dielectric constant models have been developed for passive microwave 

remote sensing, such as the Dobson model [50], the Wang and Schmugge model [51], and 

the Mironov model [52]. Currently, the Mironov model [52] is implemented by both SMOS 

and SMAP satellite missions, and the Wang and Schmugge model is adopted for the 

Aquarius satellite mission. However, these models are only applicable to unfrozen soil 

conditions, resulting in the inability of current satellite missions to retrieve the unfrozen 

(liquid) soil water content under frozen soil conditions [38]. 

Table 2. Parameterizations adopted by the SMOS, Aquarius, and SMAP satellite missions for key 

parameters in the forward land emission model. 

Parameters SMOS (L2 and L3) Aquarius(L2) SMAP(L2) 

rp 

h-Q-N model 

h = 0.1 for sparse vegetation, 

and h = 0.3 for forest 
h = 0.1 h = f(IGBP) 

Q = 0; NV = 0, NH = 2 Q = 0; Np = 2 Q = 0; Np = 2 
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εs 
Mironov model [52] 

Wang and 

Schmugge model 

[51] 

Mironov model [52] 

εs = f(SM, TG, % clay) 

TG TG = f(Tsoil_surf, Tsoil_deep) 

 CT = (SM/W0)b0 CT = 0.246 

TC 
Skin temperature from ECMWF 

land surface model 
TC = TG 

ω 
ω = 0 for sparse vegetation, and 

ω = 0.06–0.08 for forest 
ω = 0.05 ω= f(IGBP) 

τp 
τp = b′·LAI + b″ τp = b·VWC, VWC = f(NDVI, IGBP) 

 b = 0.8 b = f(IGBP) 

The estimation of TG is related to the profile soil temperature, which can be estimated 

as [53]: 

�� = �����_���� − ������_���� − �����_�������, (4)

where Tsoil_surf and Tsoil_deep are the soil temperatures at the surface (~5 cm) and deep layers 

(~50 cm), respectively. Currently, the SMOS satellite mission uses the soil temperature 

simulations of the first and third soil layers obtained from the land surface model of the 

European Centre of Medium Range Weather Forecasting (ECMWF) as the Tsoil_surf and 

Tsoil_deep, and both Aquarius and SMAP missions use the soil temperature simulations of 

the first and second layers obtained from NASA GEOS-5 (Goddard Earth Observation 

System Model Version 5) as the Tsoil_surf and Tsoil_deep [20]. In addition, CT is a fitting parame-

ter, which is related to SM and parameters W0 and b0 in the SMOS satellite mission, where 

the standard values of parameters W0 and b0 are taken as 0.3 m3m−3 and 0.3, respectively. 

The value of CT is taken as 0.246 for both Aquarius and SMAP missions [20]. Both Aquar-

ius and SMAP satellite missions assume that the atmosphere, vegetation, and near-surface 

soil are in thermal equilibrium during the satellite overpasses, then the TC is approxi-

mately equal to the TG, while the SMOS mission uses the surface temperature output from 

the ECMWF land surface model as the TC [20]. 

3.2.2. Progress of L-Band Microwave Emission Simulation on the TP 

In the past few years, researchers have used a combination of airborne, ground-

based, and satellite-based L-band microwave observations to evaluate the applicability of 

the widely used τ-ω model and its parameterizations on the TP. Based on this, new pa-

rameterizations for surface roughness, vegetation optical depth, and soil permittivity have 

been developed specifically for the TP conditions, improving microwave emission simu-

lations across different climatic and land conditions of the TP. Zheng et al. [38,54] used 

the SMAP ��
�

 observations to evaluate the applicability of the forward land emission 

model adopted by the SMAP satellite mission to the desert (Ngari SM observation net-

work) and grassland (Maqu SM observation network) conditions. The results showed that 

the default SMAP land emission model tends to underestimate the effect of surface rough-

ness and overestimate the effect of vegetation, resulting in the underestimation of year-

round ��
�

 in the Ngari area. Overestimation of ��
�
 during the warm season and underes-

timation of TBV during the cold season in the Maqu area was also found. Based on this, 

Zheng et al. [38,54] used the surface roughness parameterizations developed by Wigneron 

et al. [55] to improve the underestimation of ��
�
 in both the Ngari and Magu regions. A 

new vegetation parameterization based on simulations produced by a discrete microwave 

radiative transfer model was further developed to reduce the simulation bias in the Maqu 

region. The newly developed surface roughness and vegetation parameterizations were 

adopted by Wu et al. [45] to implement the two-stream microwave emission model devel-

oped by Schwank et al. [56] to simulate the ��
�
 in the TP. In comparison to the τ-ω model, 
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the two-stream microwave emission model presents comparable simulations, which con-

sider multiple scattering and reflection and remove the assumption of a “soft layer” that 

is physically more correct than the τ-ω model [45,56]. In addition, Wu and Zheng [57] 

firstly investigated the impact of surface roughness on multi-angular ��
�
 simulation us-

ing the in situ ELBARA-III ��
�
 observations conducted in the Maqu SM observation net-

work. The results showed that the multi-angular ��
�
 simulation could be improved via 

site-specific calibration of the h-Q-N model, leading to a nonzero value for the parameter 

Q. As such, the noncoherent emission contribution to cross-polarization mixing can be 

accounted for by the h-Q-N model. This indicates that consideration of polarization mix-

ing is necessary for L-band ��
�
 simulation [57]. 

In addition to the currently widely used τ-ω model, researchers have conducted a lot 

of research on L-band microwave emission simulation on the TP based on the physically 

based discrete microwave radiative transfer model developed at the Tor Vergata Univer-

sity of Rome (hereafter “Tor Vergata model”) [33,35,41,52–58]. Wang et al. [58] used the 

Tor Vergata model to simulate the active and passive observation signals of the Aquarius 

mission in the Magu SM observation network. They found that the correlation coefficients 

computed between the simulated ��
�
 and backscatter coefficients produced by the Tor 

Vergata model and the corresponding Aquarius satellite observations are about 0.86 and 

0.68, demonstrating the applicability of the Tor Vergata model in the Magu region. Bai et 

al. [59] simultaneously simulated the SMAP observed ��
�
 and backscatter coefficients us-

ing the calibrated Tor Vergata model considering the sensitive parameters and found that 

the simulation results of the combined active–passive model are in good agreement with 

the SMAP observations. For the ��
�
 simulation under frozen soil conditions, Zheng et al. 

[33] introduced a four-phase dielectric mixing model [60] to the Tor Vergata model. The 

results showed that the developed model simulates the εs and ��
�
 for both frozen and 

thawed soil conditions well, extending the application of the Tor Vergata model on the 

TP. Recently, Zheng et al. [41] used the Tor Vergata model in combination with the four-

phase dielectric mixing model to explore the active and passive microwave characteristics 

of diurnal soil freeze–thaw transitions. The results further confirmed the ability of the im-

proved Tor Vergata model to reproduce diurnal variations of ground-based observed TBp 

and backscatter coefficients as well as to quantify their relationships at different observa-

tion angles and frequencies. To further explore the impact of SM and soil temperature 

(SMST) profile dynamics on the diurnal L-band TBp observation signatures of frozen soil, 

an integrated land emission model was developed by Zheng et al. [35]. The model was 

developed by combining the improved Tor Vergata model with a multilayer soil scatter-

ing model developed based on integrating the Wilheit [61] and the advanced integral 

equation method (AIEM) [62]. The results showed that the Fresnel simulations with a 

sampling depth of 2.5 cm fit best with the multilayer Wilheit results, indicating that the 

diurnal L-band TBp observation signatures of frozen soil are mainly dominated by the 

SMST dynamics at the surface layer. A similar finding was recently reported by Wu et al. 

[63]. 

In summary, two distinguishing features can be drawn related to the L-band micro-

wave emission simulation on the TP. One is that the polarization mixing effect should be 

considered in simulating the L-band ��
�
 observations on the TP. Figure 3 show the angu-

lar dependence of averaged ELBARA-III ��
�
 observations and corresponding simulations 

produced by the h-Q-N model with/without a zero Q value as well as the parameterized 

model developed by Shi et al. [64] based on the IEM simulations. Overestimations are 

noted for the simulations produced by the h-Q-N model with a zero Q value and the pa-

rameterized model, especially at the vertical polarization, which also becomes larger with 

increasing incidence angles. The above deficiency is largely addressed by the calibrated 

h-Q-N model with a nonzero Q value, indicating the necessity to consider the polarization 

mixing effect in L-band emission modeling on the TP. The other feature is that the diurnal 

L-band ��
�
 observation signatures of both frozen and thawed soil conditions are primary 

dominated by the SMST dynamics at the surface layer of around 2.5 cm. Figure 4 show 
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the comparisons between both TBH and TBV simulations produced by the τ-ω model con-

figured either with the multilayer Wilheit [61] model or with the single Fresnel model 

considering three depths of SMST profile at 2.5 (Sim1), 5 (Sim2) and 10 cm (Sim3) for both 

warm (from 7 August to 30 September) and cold (from 1 January to 15 March) periods. 

The Fresnel simulations with input of SMST at 2.5 cm (i.e., Sim1) fit best with the multi-

layer Wilheit simulations at both polarizations for both periods, indicating that the sam-

pling depth of L-band radiometry is close to 2.5 cm for both frozen and thawed soil con-

ditions on the TP. A similar finding was also reported by Zheng et al. [34]. 

 

Figure 3. Angular dependence of ELBARA-III TBp observations and corresponding simulations pro-

duced by the h-Q-N model with/without a zero Q value as well as the parameterized model devel-

oped by Shi et al. [57] based on the IEM simulations. The figure is modified from Wu and Zheng 

[57]. 

 

 

Figure 4. Comparisons of TBH (a,c) and TBV (b,d) simulations produced by the τ-ω model configured 

either with the multilayer Wilheit [12] model or with the single Fresnel model considering three depths 

of SMST profile at 2.5 (Sim1), 5 (Sim2), and 10 cm (Sim3) for (a) cold (from 1 January to 15 March) and 

(b) warm (from 7 August to 30 September) periods. The figure is modified from Wu [63]. 
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4. Progress of SM Observation and Retrieval Using L-Band Passive Microwave  

RS on the TP 

SM retrieval algorithms for L-band microwave RS show certain errors and limitations 

for their applications to the TP. In order to obtain higher accuracy of SM products for the 

TP, further evaluation and improvement of satellite-based SM products and retrieval al-

gorithms are necessary. Among them, in situ data collected by multiple SM observation 

networks established on the TP are the key basis for the evaluation of L-band SM products 

and the improvement of retrieval algorithms. In this section, the details of SM observation 

networks in the TP and the research progress of validating the L-band SM products and 

improving the corresponding retrieval algorithms are reviewed. 

4.1. SM Observation Networks on the TP 

Due to the high spatial variability of SM and the large error in using a single station 

observation to represent the true value of regional-scale SM, several regional-scale SM 

observation networks have been established on the TP, including the upper Heihe River 

Basin, Maqu, Naqu, Pali, and Ngari observation networks [16–18,40,65–68] (Figure 5). 

Dense SM observation stations are distributed within these networks to provide SM data 

of different soil layers. In addition, by means of soil sampling and laboratory measure-

ments, these observation networks also provide information on soil texture and organic 

carbon content across the observation stations. Table 3 summarize the basic information 

of the five SM observation networks on the TP, such as the number of stations deployed, 

climate type, land cover type, the temporal resolution of observation, and observation 

depth for each network. A brief description of the five observation networks is provided 

below. 

 

Figure 5. Locations of (a) upper Heihe River Basin, (b) Maqu, (c) Naqu, (d) Pali, and (e) Ngari SM 

observations networks and corresponding deployed SM observation stations on the TP. 
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Table 3. Basic information of SM observation networks on the TP. 

Network 
Establish 

Time 

Station 

Number 
Climate 

Land 

Cover 

Temporal 

Resolution 

Observation 

Depth (cm) 
Reference 

upper Heihe 

River Basin 
2012 40 

Humid Alpine 

Meadow 

5 min 4, 10, 20 [66] 

Maqu 2008 20 + 6 * 15 min 
5, 10, 20, 40, 

80 
[16,17] 

Naqu 2010 56 
Semi-

Arid 
30 min 5, 10, 20, 40 [18,37] 

Pali 2015 25 
Alpine 

Steppe 

Ngari 2010 20 + 5 * Arid Desert 15 min 
5, 10, 20, 40, 

60 
[16,17] 

The number with * indicates the newly established stations. 

The Heihe River is the second largest inland river in China, and a variety of land 

cover types such as oasis, desert, and grassland are distributed across the river basin [29]. 

The upper reaches of the Heihe River basin have an average elevation of 4869 m, which 

belong to a humid climate with precipitation mainly falling from May to September. The 

area is widely covered by permafrost and seasonally frozen ground, and the main land 

cover is alpine meadows [66]. In 2012, 40 wireless SM observation stations were set up 

within the framework of the HiWATER experiment [29]. At each station, sensors were 

installed at soil depths of 4, 10, and 20 cm to collect SM data every 5 min. The relevant 

data were published on the website of the HiWATER experiment (http://westdc.west-

gis.ac.cn/data/df372e4a-7da8-4c9d-8479-75cafb44007f (accessed on 22 August 2022)). 

The Maqu SM observation network [16,17] is located in the source area of the Yellow 

River in the northeastern part of the TP, with altitudes ranging from 3400 to 3800 m. The 

climate type is characterized as cold and humid with rainy summers and cold, dry win-

ters. The average annual temperature is about 1.2 °C, and the annual precipitation is about 

600 mm. The main land cover type is alpine meadows. In 2008, 20 observations were orig-

inally installed, which a covered area of about 40 × 80 km2. In 2014, six new stations were 

installed due to the damage to several old monitoring sites caused by local people or ani-

mals [16]. Decagon 5TM ECH2O probes were used to measure SM at depths of 5, 10, 20, 

40, and 80 cm with a temporal resolution of 15 min. The relevant data were published by 

the National Tibetan Plateau Data Center (http://www.tpdc.ac.cn/en/data/d323f0b2-dada-

4ed5-aa00-57564da788d2/ (accessed on 22 August 2022)). 

The Naqu SM observation network [18,37] is located in the central part of the TP with 

an average altitude of 4650 m. The climate type is characterized as cold and semi-arid, and 

the main land cover type is alpine meadows with low vegetation coverage. The soil in-

cludes high soil organic carbon content. The mean annual precipitation in the Naqu region 

is around 500 mm, and 75% of the precipitation is concentrated between May and October 

due to the impact of South Asian monsoons. There are 56 stations established in the ob-

servation network, with 38, 22, and 9 stations distributed in the spatial grids of 1.0°, 0.3°, 

and 0.1°, respectively, to provide an observational basis for the study of SM upscaling and 

downscaling. The stations are also equipped with Decagon 5TM ECH2O probes at obser-

vation depths of 5, 10, 20, and 40 cm with a temporal resolution of 30 min. The relevant 

data were published by the National Tibetan Plateau Data Center 

(https://www.tpdc.ac.cn/en/data/ef949bb0-26d4-4cb6-acc2-3385413b91ee/ (accessed on 22 

August 2022)). 

The Pali SM observation network [37] is located in the southern part of the TP that is 

near the northern slope of the Himalayas, with an average altitude of 4486 m. The climate 

type is characterized as semi-arid, and the main land cover types are sparse grassland and 

bare soil. The average annual precipitation in the Pali region is less than 400 mm, and 
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about 85% of the precipitation is concentrated between May and October due to the im-

pact of South Asian monsoons. The Pali SM observation network consists of 25 stations 

with Decagon 5TM ECH2O probes installed at depths of 5, 10, 20, and 40 cm to collect SM 

data at a temporal resolution of 30 min. The relevant data were published by the National 

Tibetan Plateau Data Center (https://www.tpdc.ac.cn/en/data/ef949bb0-26d4-4cb6-acc2-

3385413b91ee/ (accessed on 22 August 2022)). 

The Ngari SM observation network [16,17] is located in the western part of the TP 

with an average elevation of 4869 m. The climate is characterized as cold and arid, and the 

land cover is bare soil and desert. Twenty SM observation stations were established in 

June 2010 in the Ngari area, of which four stations were set up in the desert area, and the 

rest were located near the city of Shiquanhe. In 2016, five new stations were installed due 

to the damage to several old monitoring sites caused by local people or animals [16]. Each 

station was equipped with Decagon 5TM ECH2O probes at depths of 5, 10, 20, 40, and 60 

cm to collect SM observations with a temporal resolution of 15 min. The relevant data 

were published by the National Tibetan Plateau Data Center 

(http://www.tpdc.ac.cn/en/data/d323f0b2-dada-4ed5-aa00-57564da788d2/ (accessed on 22 

August 2022)). 

4.2. Validation of SM products retrieved from the L-band passive RS on the TP 

Due to the impact of different instruments, operational modes, and retrieval algo-

rithms adopted by the three different L-band satellite missions (i.e., SMOS, Aquarius and 

SMAP, see Tables 1 and 2), the performances of SM products retrieved using the TBp ob-

servations collected from these three satellites present distinct characteristics for different 

climate and land cover conditions on the TP. Therefore, it is necessary to validate the per-

formance of these satellite-based SM products on the TP using SM measurements col-

lected from the five in situ SM observation networks (see Figure 5 and Table 3). Table 4 

summarize the error statistics for the validations of L-band satellite-based SM products 

performed on the TP in recent years, which mainly include correlation coefficient (R), bias, 

and RMSE. 

For SMOS SM products, Su et al. [17] firstly made a preliminary evaluation of L2 SM 

products using measurements collected from the Maqu network and found that the cor-

relation coefficient can reach 0.72 and the RMSE is about 0.09 m3 m−3. Zhao et al. [69] fur-

ther evaluated their performances using measurements collected from the Naqu network 

and found that the L2 and L3 SM products show greater uncertainty at the SMOS original 

grid (15, 25 km), and the correlation coefficient between SM products and observations 

can be improved through averaging the values of SM products to the spatial resolution of 

100 km. Zeng et al. [70] thoroughly evaluated the performance of L3 SM products using 

SM measurements collected from both the Maqu and Naqu networks and found that 

SMOS products show large noise and bias, especially at the descending overpass. They 

further pointed out that the presence of RFI can be an important factor causing bias. In 

addition, it was found that the performance of SMOS products in the Naqu network is 

better than that of the Maqu network covered by denser vegetation. A similar finding was 

also reported by Chen et al. [37], who found that the L3 SM product performs well in the 

Naqu network with correlation coefficients of about 0.67 and 0.73 for the ascending and 

descending overpasses, respectively. Recently, Liu et al. [71] thoroughly evaluated the 

performance of multiple satellite-based SM products using data from the five in situ SM 

observation networks for the first time. They found that the SMOS-IC products were af-

fected by RFI with a slight underestimation. Liu et al. [72] further evaluated the perfor-

mance of SMOS-IC products using the three-corned hat method and also found that it is 

strongly influenced by the presence of RFI. In general, SMOS SM products can reflect SM 

conditions across the TP to some extent, but the performance is inconsistent in different 

areas of the TP. In addition, there is a slight dry bias in most areas, and the uncertainty of 

SM products is high due to the influence of RFI presence. 



Remote Sens. 2022, 14, 4191 14 of 22 
 

 

Relatively less work has been carried out to validate the SM products of the Aquarius 

satellite mission. Li et al. [73] used data from the Naqu network to evaluate the Aquarius 

L3 SM product and found that the correlation coefficient could reach 0.77 with an RMSE 

of about 0.08 m3 m−3. It was also shown that the Aquarius SM product could generally 

reflect the spatial and temporal variations of SM. It is worth noting that the revisit period 

of the Aquarius satellite is 7 days, resulting in a limited number of SM retrievals within 

the study time frame. 

Regarding SMAP SM products, Chen et al. [37] evaluated the performance of L3 pas-

sive SM products using data from both Naqu and Pali networks and found that the prod-

ucts could capture the amplitude and temporal variation of SM observations well. Liu et 

al. [71] thoroughly evaluated the L3 passive SM products using data from the five in situ 

SM observation networks on the TP and found that the SMAP product correlates well 

with SM observations with smaller RMSE and bias in comparison to other products. They 

also showed that the SMAP product shows higher accuracy in relatively sparsely vege-

tated areas. A similar finding was also reported by Zeng et al. [74]. Li et al. [75] further 

evaluated the performance of both L3 original and enhanced passive SM products using 

data from the Naqu and Magu networks and found that both products capture the tem-

poral variability and spatial distribution characteristics of SM observations with strong 

correlation. They also showed that the enhanced product presents a higher correlation 

and provides more details of SM variability. Ma et al. [76] thoroughly evaluated the per-

formance of passive, active, and combined active–passive SM products with resolutions 

of 3, 9, and 36 km using data from the upper and middle reaches of the Heihe River basin. 

They found that SMAP products are able to capture spatial and temporal variability of 

SM observations and typical precipitation events in most of the study areas, with passive 

SM products performing best. In addition, it was found that SMAP SM products perform 

better in bare soil areas than the vegetated areas. In general, SMAP SM products can better 

reflect the spatial and temporal variations of SM in multiple observation network areas of 

the TP with relatively high accuracy in comparison to other products. 

Table 4. Summary of error statistics for the validations of L-band satellite-based SM products per-

formed on the TP. 

Satellite 
SM  

Product 

Spatial Reso-

lution 

SM Net-

work 

Error Statistics * 
Reference 

R Bias (m3 m−3) RMSE (m3 m−3) 

SMOS 

L2_SM 25 km Maqu 0.72 - 0.09 Su et al. [17] 

L2_SM 15 km 
Naqu 

0.41 a/0.41 d −0.02 a/0.00 d - 
Zhao et al. [69] 

L3_SM 25 km 0.26 a/0.17 d −0.06 a/0.03 d - 

L3_SM 25 km 
Maqu 0.24 a/0.20 d −0.03 a/0.25 d 0.14 a/0.37 d 

Zeng et al. [70] 
Naqu 0.54 a/0.43 d −0.07 a/0.00 d 0.10 a/0.14 d 

L3_SM 25 km 
Naqu 0.67 a/0.73 d −0.02 a/−0.01 d 0.07 a/0.06 d 

Chen et al. [37] 
Pali 0.31 a/0.37 d −0.02 a/−0.04 d 0.09 a/0.08 d 

SMOS-IC 25 km 

Heihe 0.18 a/0.30 d −0.04 a/−0.12 d 0.12 a/0.14 d 

Liu et al. [71] 

Naqu 0.43 a/0.47 d −0.13 a/−0.05 d 0.18 a/0.14 d 

Pali 0.60 a/0.52 d −0.06 a/−0.03 d 0.07 a/0.09 d 

Maqu 0.49 a/0.64 d −0.01 a/−0.07 d 0.08 a/0.11 d 

Ngari 0.12 a/0.10 d −0.02 a/0.00 d 0.09 a/0.12 d 

Aquarius L3_SM 1° Naqu 0.77 −0.07 0.08 Li et al. [73] 

SMAP 

L3_SM_P 36 km 
Naqu 0.87 d −0.03 d 0.06 d 

Chen et al. [37] 
Pali 0.67 d −0.03 d 0.04 d 

L3_SM_P 36 km 

Heihe 0.64 a/0.78 d −0.11 a/−0.10 d 0.11 a/0.11 d 

Liu et al. [71] 
Naqu 0.84 a/0.82 d −0.00 a/−0.02 d 0.08 a/0.07 d 

Pali 0.67 a/0.62 d −0.03 a/−0.05 d 0.05 a/0.06 d 

Maqu 0.72 a/0.81 d −0.07 a/−0.07 d 0.09 a/0.08 d 
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Ngari 0.57 a/0.34 d −0.04 a/−0.05 d 0.05 a/0.05 d 

L3_SM_P_E 9 km 
Naqu 0.88 0.00 0.06 

Li et al. [75] 
Maqu 0.65 0.11 0.13 

L3_SM_P 36 km 
Naqu 0.88 0.00 0.06 

Maqu 0.64 0.12 0.13 

L3_SM_P 36 km 

Maqu 0.55 d 0.07 d 0.12 d 

Zeng et al. [74] Naqu 0.78 d −0.01 d 0.06 d 

Pali 0.73 d −0.05 d 0.06 d 

L2_SM_A 3 km 

Heihe 

0.21~0.78 −0.12~0.09 0.03~0.17 

Ma et al. [76] L2_SM_P 36 km 0.55~0.78 −0.00~0.09 0.03~0.09 

L2_SM_AP 9 km 0.39~0.81 −0.20~0.03 0.04~0.81 

* The superscripts a and d represent the SM products retrieved using the TBp observations collected 

during the ascending and descending overpasses. 

Three distinct features can be drawn from the summary of validating the three L-

band SM products on the TP (see Table 4): (1) the applicability of the three satellite-based 

SM products varies in different climatic and land cover regions, while in most cases they 

can capture the amplitude and temporal changes of SM observations; (2) through com-

prehensive analysis, it is found that the SMAP satellite products perform the best, and the 

SMOS retrieval results have large deviation and relatively high uncertainty due to the 

presence of RFI; (3) different vegetation cover types show different degrees of influence 

on the satellite-based soil moisture retrievals, and generally speaking, the accuracy of the 

products in bare soil areas is better than that in vegetation cover areas. 

4.3. Improvement and Development of SM Retrieval Algorithms Using the L-Band Passive  

RS on the TP 

Based on the τ-ω model, researchers have developed many SM retrieval algorithms 

for the L-band passive microwave RS, including the iterative inversion algorithm based 

on the L-MEB forward model [42], Single Channel Algorithm (SCA) [44], Dual Channel 

Algorithm (DCA) [44], and Land Parameter Retrieval Model (LPRM) [77]. The SMOS sat-

ellite uses the iterative inversion algorithm based on the L-MEB forward model as the 

default algorithm. This method takes into account a priori information on the retrieved 

parameters and minimizes the cost function by a generalized least squares iterative algo-

rithm to retrieve both SM and τ [42]. Currently, the default algorithms implemented by 

the Aquarius and SMAP satellite missions are based on the SCA using the TBH (i.e., SCA-

H) and TBV (i.e., SCA-V) observations, respectively. The SCA firstly converts the TBp obser-

vation into emissivity using the effective soil temperature and then removes the impact of 

vegetation and surface roughness based on certain parameterizations to obtain soil emis-

sivity, which finally uses the Fresnel equation in combination with a soil dielectric con-

stant model to obtain SM [20,44]. In general, the errors of satellite-based SM products are 

mainly sourced from adopted forward land emission models and input parameters 

[20,71,74]. Our review of the progress of L-band microwave emission simulation on the 

TP (see Section 3.2) reveals that the forward land emission models adopted by current L-

band satellite missions still show deficiencies in their applications to the TP, such as un-

derestimation of effective soil temperature and surface roughness effects, overestimation 

of vegetation effects, and the inapplicability of the adopted dielectric constant models for 

frozen soil conditions [33,35,45,54,57], etc. Based on this, researchers have improved the 

relevant parameterizations adopted in the current SM retrieval algorithm, as well as de-

veloped a new SM retrieval algorithm to obtain high accuracy of SM retrievals for the TP 

environment. 

For instance, current commonly used soil dielectric constant models (e.g., Dobson 

model [50], Wang and Schmugge model [51], and Mironov model [52]) are unable to sim-

ulate the dielectric constant of frozen soils, leading to the failure of retrieving unfrozen 
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(liquid) water content for frozen ground based on current L-band satellite missions. Zheng 

et al. [38,39] validated the applicability of the four-phase dielectric mixing model for esti-

mating the soil permittivity of frozen ground on the TP, which divides the components of 

wet soil into the air, ice, matrix, and liquid water and is able to simulate the dielectric 

constants of soils under both frozen and thawed conditions [56]. Later on, Zheng et al. [35] 

compared the performance of three dielectric mixing models that are suitable for both 

frozen and thawed soil conditions on the TP, i.e., the four-phase dielectric mixing model 

and another two models developed by Zhang et al. [78] and Mironov [79]. The results 

showed that the four-phase dielectric mixing model is more suitable for the TP condition. 

On this basis, Zheng et al. [38,54] further improved the underestimation of the surface 

roughness effect in the SMAP SM retrieval algorithm by adopting a new surface rough-

ness parameterization, thus improving the accuracy of SM retrievals in desert areas (e.g., 

Ngari network) and in vegetated areas during the freezing period (e.g., Maqu network) 

on the TP. Furthermore, Zheng et al. [38,39] introduced a new vegetation parameteriza-

tion and found that the SM retrieval in the Maqu network can be further improved with 

ubRMSE reduced by more than 40 %. Recently, Wu et al. [45] introduced the four-phase 

dielectric mixing model and the new parameterizations of surface roughness and vegeta-

tion developed by Zheng et al. [38,39] to the two-stream microwave emission model that 

is physically more correct than the τ-ω model [56]. The improved two-stream microwave 

emission model was further adopted to replace the τ-ω model adopted by the SMAP de-

fault SM retrieval algorithm to improve the SM retrievals on the TP. Figure 6 show the 

time series of θliq measurements and retrievals obtained by the SCA-V and DCA based on 

the improved two-stream microwave emission model using the SMAP TBp measurements 

during the descending and ascending overpasses for the period from August 2016 to July 

2017. The SMAP SM products are also shown for comparison purposes, which are only 

available for the warm season due to the fact that the Mironov model [52] adopted by the 

current SMAP SM retrieval algorithm (see Table 2) is only suitable for thawed soil condi-

tions. On the contrary, the SCA-V and DCA developed based on the improved two-stream 

microwave emission model with the implementation of a four-phase dielectric mixing 

model are able to retrieve unfrozen (liquid) water content θliq under both frozen and 

thawed soil conditions. The two methods are generally comparable to each other and are 

better than the SMAP product, whereby the latter tends to underestimate the θliq. There-

fore, usage of the improved two-stream microwave emission model configured with the 

four-phase dielectric mixing model to replace the τ-ω model implemented by the current 

SMAP SM retrieval algorithm has improved the accuracy of SM retrievals and extended 

the retrieval algorithm to the frozen ground that widely covers the TP. In summary, three 

distinct features can be drawn from the abovementioned efforts made to improve the ac-

curacy of SM retrievals on the TP using the algorithms implemented by current L-band 

satellite missions. First, a new soil dielectric mixing model was introduced and validated 

to fill the gap in retrieving unfrozen water content in frozen soil. Second, surface rough-

ness and vegetation parameterizations embedded with default algorithms of current sat-

ellite missions were updated for the TP environment, which leads to better SM retrievals. 

Third, a more physical-based forward land emission model was implemented to release 

the assumptions made by the current widely used τ-ω model, providing the potential to 

retrieve SM from more complex land conditions. 
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Figure 6. Time series of θliq measurements and retrievals obtained by the SCA-V and DCA based on 

the improved two-stream (2S) microwave emission model using the SMAP TBp measurements dur-

ing the (a) descending and (b) ascending overpasses. The values derived from the SMAP SM prod-

ucts are also shown. The figure is modified from Wu [45]. 

In addition to improving the default retrieval algorithms implemented by current 

satellite missions, researchers also improved the current SM retrieval accuracy by devel-

oping new retrieval algorithms. Wang et al. [58,80] developed a new SM retrieval algo-

rithm based on the physical-based Tor Vergata model to retrieve SM in the Maqu network 

based on the combination of Aquarius active and passive observations. The obtained SM 

retrievals were found to be able to reflect SM variations in the study area, providing a new 

way for the simultaneous use of active and passive observations to retrieve SM. Recently, 

Zeng et al. [81] developed a physical-based SM Index (SMI), which was shown to be able 

to reproduce measured θliq dynamics for both frozen and thawed conditions in the Naqu 

and Pali networks. The developed SMI shows great potential to produce better θliq retriev-

als on the TP based on the SMAP ��
�

 measurements. 

5. Conclusions 

L-band passive microwave RS observation is an important tool for monitoring global 

SM and its freeze/thaw state, which can provide large-scale and long time series SM prod-

ucts for the TP in a complex natural environment. In recent years, researchers conducted 

ground-based and airborne L-band microwave radiometry observation experiments and 

established regional-scale in situ SM observation networks on the TP. In addition, a lot of 

work has been carried out to evaluate and improve the accuracy of current forward land 

emission models and SM retrieval algorithms to further improve the applicability of L-

band satellite-based SM products to the TP condition. Progress related to L-band micro-

wave emission modeling on the TP have highlighted the necessity to consider the impact 

of polarization mixing. For the first time, it was reported that the diurnal ��
�
 observation 

signatures of both frozen and thawed soil conditions are primarily dominated by SMST 

dynamics at the surface layer around 2.5 cm. To further address the deficiencies in retriev-

ing SM on the TP, such as lack of product under frozen ground, new parameterizations of 

soil permittivity, surface roughness, and vegetation are developed or introduced, which 

largely improve the accuracy of current SM retrievals. Moreover, to overcome the defi-

ciency of the current widely used τ-ω model, more physical-based models such as the Tor 

Vergata model and the two-stream emission model are validated and implemented to de-

velop new algorithms to better retrieve SM on the TP. 

In short, progress has been made via the abovementioned efforts, which greatly pro-

motes the in-depth application and development of L-band passive microwave RS tech-

nology in the TP. However, there are still many problems in the current research. For ex-

ample, most work focuses on evaluating the accuracy of satellite-based SM products for a 

short-term period (e.g., less than 5 years), while the evaluation and improvement of the 

forward land emission model and SM retrieval algorithm are limited to the site or grid 

scale. There is still a lack of evaluating and improving both the land emission model and 



Remote Sens. 2022, 14, 4191 18 of 22 
 

 

SM retrieval algorithms/products at the whole plateau scale, and the operational monitor-

ing of unfrozen (liquid) water content in frozen ground is still missing. In view of the 

above research problems, in order to further enhance and expand the application of L-

band passive microwave RS technology in the TP, the following research should be 

strengthened in the future. 

Firstly, SMOS and SMAP satellite missions have provided long time series SM prod-

ucts for more than 12 and 7 years, respectively, while current work is mainly focused on 

evaluating the performance of these products for selected limited years. It is still unknown 

how accurate these products can capture the long-term trend of SM variations on the TP. 

Therefore, additional work is still needed to carry out long-term trend evaluation and 

analysis, whereby the long-term in situ SM dataset recently released by Zhang et al. [16] 

can be used as the ground reference for such assessment. 

Secondly, to carry out the evaluation of the microwave emission model at the plateau 

scale. Specifically, to further validate and improve the parameterizations of the soil die-

lectric constant model, surface roughness and vegetation optical thickness are developed 

at the site or grid-scale for their applications to the whole plateau and to enhance the ac-

curacy of microwave emission simulation at the plateau scale. 

Thirdly, large amounts of research have been carried out to improve SM retrieval 

algorithms and products at the plateau scale based on the improved plateau-scale land 

emission model in combination with SM retrieval algorithms improved or newly devel-

oped at the site or grid scale. In addition, work has also been conducted to improve and 

develop SM products for a complete time series of consecutive years (including freezing 

periods) based on the L-band passive microwave RS observation via implementation of 

the four-phase dielectric mixing model that is applicable to both frozen and thawed soil 

conditions on the TP. 

Finally, research has been conducted to further enhance the application of L-band sat-

ellite-based SM products on the TP, to assimilate satellite-based SM products or TBp obser-

vations to improve the simulation accuracy of plateau-scale water cycle and energy balance, 

and to evaluate and improve satellite-based precipitation products based on improved SM 

products. In addition, further work can be conducted to monitor drought changes and veg-

etation growth response to wet and dry transitions based on SM products, further expand-

ing the application of L-band passive microwave RS products in the TP. 

Author Contributions: Conceptualization, X.W. and J.W.; writing—original draft preparation, 

X.W.; writing—review and editing, J.W.; supervision, J.W.; funding acquisition, X.W. and J.W. All 

authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (grant 

numbers 42030509, 41971308 and 41901317). 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. WMO, IOC, UNEP, and ICSU. Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC. 

GCOS-138, WMO-TD-1523. 2010. 180p. Available online: https://library.wmo.int/doc_num.php?explnum_id=3851 (accessed on 

25 August 2022). 

2. Koster, R.D.; Dirmeyer, P.A.; Guo, Z.; Bonan, G.; Chan, E.; Cox, P.; Gordon, C.T.; Kanae, S.; Kowalczyk, E.; Lawrence, D.; et al. 

Regions of Strong Coupling Between Soil Moisture and Precipitation. Science 2004, 305, 1138–1140. https://doi.org/10.1126/sci-

ence.1100217. 

3. Dorigo, W.; Himmelbauer, I.; Aberer, D.; Schremmer, L.; Petrakovic, I.; Zappa, L.; Preimesberger, W.; Xaver, A.; Annor, F.; Ardö, 

J.; et al. The International Soil Moisture Network: Serving Earth system science for over a decade. Hydrol. Earth Syst. Sci. 2021, 

25, 5749–5804. https://doi.org/10.5194/hess-25-5749-2021. 

4. Green, J.K.; Seneviratne, S.I.; Berg, A.M.; Findell, K.L.; Hagemann, S.; Lawrence, D.M.; Gentine, P. Large influence of soil mois-

ture on long-term terrestrial carbon uptake. Nature 2019, 565, 476–479. https://doi.org/10.1038/s41586-018-0848-x. 



Remote Sens. 2022, 14, 4191 19 of 22 
 

 

5. Helbig, M.; Waddington, J.M.; Alekseychik, P.; Amiro, B.D.; Aurela, M.; Barr, A.G.; Black, T.A.; Blanken, P.D.; Carey, S.K.; Chen, 

J.; et al. Increasing contribution of peatlands to boreal evapotranspiration in a warming climate. Nat. Clim. Chang. 2020, 10, 555–

560. https://doi.org/10.1038/s41558-020-0763-7. 

6. Zheng, D.; Van der Velde, R.; Su, Z.; Wen, J.; Wang, X.; Booij, M.J.; Hoekstra, A.Y.; Lv, S.; Zhang, Y.; Ek, M.B. Impacts of Noah 

model physics on catchment-scale runoff simulations. J. Geophys. Res. Atmos. 2016, 121, 807–832. 

https://doi.org/10.1002/2015jd023695. 

7. Zheng, D.; Van Der Velde, R.; Su, Z.; Wang, X.; Wen, J.; Booij, M.J.; Hoekstra, A.; Chen, Y. Augmentations to the Noah Model 

Physics for Application to the Yellow River Source Area. Part I: Soil Water Flow. J. Hydrometeorol. 2015, 16, 2659–2676. 

https://doi.org/10.1175/jhm-d-14-0198.1. 

8. Zheng, D.; van der Velde, R.; Su, Z.; Wen, J.; Booij, M.J.; Hoekstra, A.Y.; Wang, X. Under-canopy turbulence and root water 

uptake of a Tibetan meadow ecosystem modeled by Noah-MP. Water Resour. Res. 2015, 51, 5735–5755. 

9. Pendergrass, A.G.; Meehl, G.A.; Pulwarty, R.; Hobbins, M.; Hoell, A.; AghaKouchak, A.; Bonfils, C.J.W.; Gallant, A.J.E.; Ho-

erling, M.; Hoffmann, D.; et al. Flash droughts present a new challenge for subseasonal-to-seasonal prediction. Nat. Clim. Chang. 

2020, 10, 191–199. https://doi.org/10.1038/s41558-020-0709-0. 

10. Brocca, L.; Tarpanelli, A.; Filippucci, P.; Dorigo, W.; Zaussinger, F.; Gruber, A.; Fernández-Prieto, D. How much water is used 

for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 2018, 

73, 752–766. https://doi.org/10.1016/j.jag.2018.08.023. 

11. Rigden, A.J.; Mueller, N.D.; Holbrook, N.M.; Pillai, N.; Huybers, P. Combined influence of soil moisture and atmospheric evap-

orative demand is important for accurately predicting US maize yields. Nature Food 2020, 1, 127–133. 

12. Zhang, K.; Li, X.; Zheng, D.; Zhang, L.; Zhu, G. Estimation of Global Irrigation Water Use by the Integration of Multiple Satellite 

Observations. Water Resour. Res. 2022, 58, e2021WR030031. https://doi.org/10.1029/2021wr030031. 

13. Wu, G.; Duan, A.; Liu, Y.; Mao, J.; Ren, R.; Bao, Q.; He, B.; Liu, B.; Hu, W. Tibetan Plateau climate dynamics: Recent research 

progress and outlook. Natl. Sci. Rev. 2014, 2, 100–116. https://doi.org/10.1093/nsr/nwu045. 

14. Zheng, D.; van der Velde, R.; Su, Z.; Wen, J.; Wang, X.; Yang, K. Impact of soil freeze-thaw mechanism on the runoff dynamics 

of two Tibetan rivers. J. Hydrol. 2018, 563, 382–394. https://doi.org/10.1016/j.jhydrol.2018.06.024. 

15. Zheng, D.; Van Der Velde, R.; Su, Z.; Wen, J.; Wang, X.; Yang, K. Evaluation of Noah Frozen Soil Parameterization for Applica-

tion to a Tibetan Meadow Ecosystem. J. Hydrometeorol. 2017, 18, 1749–1763. https://doi.org/10.1175/jhm-d-16-0199.1. 

16. Zhang, P.; Zheng, D.; van der Velde, R.; Wen, J.; Zeng, Y.; Wang, X.; Wang, Z.; Chen, J.; Su, Z. Status of the Tibetan Plateau 

observatory (Tibet-Obs) and a 10-year (2009–2019) surface soil moisture dataset. Earth Syst. Sci. Data 2021, 13, 3075–3102. 

https://doi.org/10.5194/essd-13-3075-2021. 

17. Su, Z.; Wen, J.; Dente, L.; van der Velde, R.; Wang, L.; Ma, Y.; Yang, K.; Hu, Z. The Tibetan Plateau observatory of plateau scale 

soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. 

Hydrol. Earth Syst. Sci. 2011, 15, 2303–2316. https://doi.org/10.5194/hess-15-2303-2011. 

18. Yang, K.; Qin, J.; Zhao, L.; Chen, Y.; Tang, W.; Han, M.; Lazhu; Chen, Z.; Lv, N.; Ding, B.; et al. A Multiscale Soil Moisture and 

Freeze–Thaw Monitoring Network on the Third Pole. Bull. Am. Meteorol. Soc. 2013, 94, 1907–1916. https://doi.org/10.1175/bams-

d-12-00203.1. 

19. Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing 

of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. https://doi.org/10.1029/2018rg000618. 

20. Wigneron, J.-P.; Jackson, T.; O'Neill, P.; De Lannoy, G.; de Rosnay, P.; Walker, J.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, 

J.; et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band 

SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 2017, 192, 238–262. 

https://doi.org/10.1016/j.rse.2017.01.024. 

21. Kerr, Y.H.; Waldteufel, P.; Wigneron, J.P.; Martinuzzi, J.; Font, J.; Berger, M. Soil moisture retrieval from space: The Soil Moisture 

and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1729–1735. https://doi.org/10.1109/36.942551. 

22. Lagerloef, G.; Colomb, F.R.; Le Vine, D.; Wentz, F.; Yueh, S.; Ruf, C.; Lilly, J.; Gunn, J.; Chao, Y.; Decharon, A.; et al. The Aquar-

ius/SAC-D Mission: Designed to Meet the Salinity Remote-Sensing Challenge. Oceanography 2008, 21, 68–81. 

https://doi.org/10.5670/oceanog.2008.68. 

23. Entekhabi, D.; Njoku, E.G.; O’Neill, P.E.; Kellogg, K.H.; Crow, W.T.; Edelstein, W.N.; Entin, J.K.; Goodman, S.D.; Jackson, T.J.; 

Johnson, J.; et al. The Soil Moisture Active Passive (SMAP) Mission. Proc. IEEE 2010, 98, 704–716. 

https://doi.org/10.1109/JPROC.2010.2043918. 

24. Shi, J.; Dong, X.; Zhao, T.; Du, J.; Jiang, L.; Du, Y.; Liu, H.; Wang, Z.; Ji, D.; Xiong, C. WCOM: The science scenario and objectives 

of a global water cycle observation mission. In Proceedings of the IEEE International Geoscience and Remote Sensing Sympo-

sium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3646–3649. https://doi.org/10.1109/igarss.2014.6947273. 

25. Schwank, M.; Wigneron, J.-P.; Lopez-Baeza, E.; Volksch, I.; Matzler, C.; Kerr, Y.H. L-Band Radiative Properties of Vine Vegeta-

tion at the MELBEX III SMOS Cal/Val Site. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1587–1601. 

https://doi.org/10.1109/tgrs.2012.2184126. 

26. Montzka, C.; Bogena, H.R.; Weihermuller, L.; Jonard, F.; Bouzinac, C.; Kainulainen, J.; Balling, J.E.; Loew, A.; Dall'Amico, J.T.; 

Rouhe, E.; et al. Brightness Temperature and Soil Moisture Validation at Different Scales During the SMOS Validation Cam-

paign in the Rur and Erft Catchments, Germany. IEEE Trans. Geosci. Remote Sens. 2012, 51, 1728–1743. 

https://doi.org/10.1109/tgrs.2012.2206031. 



Remote Sens. 2022, 14, 4191 20 of 22 
 

 

27. Panciera, R.; Walker, J.P.; Jackson, T.J.; Gray, D.A.; Tanase, M.A.; Ryu, D.; Monerris, A.; Yardley, H.; Rudiger, C.; Wu, X.; et al. 

The Soil Moisture Active Passive Experiments (SMAPEx): Toward Soil Moisture Retrieval from the SMAP Mission. IEEE Trans. 

Geosci. Remote Sens. 2013, 52, 490–507. https://doi.org/10.1109/tgrs.2013.2241774. 

28. Colliander, A.; Cosh, M.H.; Misra, S.; Jackson, T.J.; Crow, W.; Chan, S.; Bindlish, R.; Chae, C.; Collins, C.H.; Yueh, S.H. Validation 

and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15). Remote Sens. Environ. 

2017, 196, 101–112. https://doi.org/10.1016/j.rse.2017.04.022. 

29. Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe Watershed Allied Telemetry 

Experimental Research (HiWATER): Scientific Objectives and Experimental Design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. 

https://doi.org/10.1175/bams-d-12-00154.1. 

30. Zhao, T.; Shi, J.; Lv, L.; Xu, H.; Chen, D.; Cui, Q.; Jackson, T.J.; Yan, G.; Jia, L.; Chen, L.; et al. Soil moisture experiment in the 

Luan River supporting new satellite mission opportunities. Remote Sens. Environ. 2020, 240, 111680. 

https://doi.org/10.1016/j.rse.2020.111680. 

31. Colliander, A.; Jackson, T.J.; Bindlish, R.; Chan, S.; Das, N.; Kim, S.B.; Cosh, M.H.; Dunbar, R.S.; Dang, L.; Pashaian, L.; et al. 

Validation of SMAP surface soil moisture products with core validation sites. Remote Sens. Environ. 2017, 191, 215–231. 

https://doi.org/10.1016/j.rse.2017.01.021. 

32. Zhao, T.; Shi, J.; Bindlish, R.; Jackson, T.; Kerr, Y.; Cui, Q.; Li, Y.; Che, T. Refinement of SMOS multi-angular brightness temper-

ature and its analysis over reference targets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 589–603. 

https://doi.org/10.1109/igarss.2013.6721089. 

33. Zheng, D.; Wang, X.; Van Der Velde, R.; Zeng, Y.; Wen, J.; Wang, Z.; Schwank, M.; Ferrazzoli, P.; Su, Z. L-Band Microwave 

Emission of Soil Freeze–Thaw Process in the Third Pole Environment. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5324–5338. 

https://doi.org/10.1109/tgrs.2017.2705248. 

34. Zheng, D.; Li, X.; Wang, X.; Wang, Z.; Wen, J.; van der Velde, R.; Schwank, M.; Su, Z. Sampling depth of L-band radiometer 

measurements of soil moisture and freeze-thaw dynamics on the Tibetan Plateau. Remote Sens. Environ. 2019, 226, 16–25. 

https://doi.org/10.1016/j.rse.2019.03.029. 

35. Zheng, D.; Li, X.; Zhao, T.; Wen, J.; van der Velde, R.; Schwank, M.; Wang, X.; Wang, Z.; Su, Z. Impact of Soil Permittivity and 

Temperature Profile on L-Band Microwave Emission of Frozen Soil. IEEE Trans. Geosci. Remote Sens. 2020, 59, 4080–4093. 

https://doi.org/10.1109/tgrs.2020.3024971. 

36. Dente, L.; Su, Z.; Wen, J. Validation of SMOS Soil Moisture Products over the Maqu and Twente Regions. Sensors 2012, 12, 9965–

9986. https://doi.org/10.3390/s120809965. 

37. Chen, Y.; Yang, K.; Qin, J.; Cui, Q.; Lu, H.; La, Z.; Han, M.; Tang, W. Evaluation of SMAP, SMOS, and AMSR2 soil moisture 

retrievals against observations from two networks on the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 5780–5792. 

https://doi.org/10.1002/2016jd026388. 

38. Zheng, D.; Wang, X.; van der Velde, R.; Ferrazzoli, P.; Wen, J.; Wang, Z.; Schwank, M.; Colliander, A.; Bindlish, R.; Su, Z. Impact 

of surface roughness, vegetation opacity and soil permittivity on L-band microwave emission and soil moisture retrieval in the 

third pole environment. Remote Sens. Environ. 2018, 209, 633–647. https://doi.org/10.1016/j.rse.2018.03.011. 

39. Zheng, D.; Wang, X.; van der Velde, R.; Schwank, M.; Ferrazzoli, P.; Wen, J.; Wang, Z.; Colliander, A.; Bindlish, R.; Su, Z. As-

sessment of Soil Moisture SMAP Retrievals and ELBARA-III Measurements in a Tibetan Meadow Ecosystem. IEEE Geosci. Re-

mote Sens. Lett. 2019, 16, 1407–1411. https://doi.org/10.1109/lgrs.2019.2897786. 

40. Li, X.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Wang, W.; Hu, X.; Xu, Z.; Wen, J.; et al. A multiscale dataset for understanding 

complex eco-hydrological processes in a heterogeneous oasis system. Sci. Data 2017, 4, 170083. 

https://doi.org/10.1038/sdata.2017.83. 

41. Zheng, D.; Li, X.; Wen, J.; Hofste, J.G.; van der Velde, R.; Wang, X.; Wang, Z.; Bai, X.; Schwank, M.; Su, Z. Active and Passive 

Microwave Signatures of Diurnal Soil Freeze-Thaw Transitions on the Tibetan Plateau. IEEE Trans. Geosci. Remote Sens. 2021, 

60, 4301814. https://doi.org/10.1109/tgrs.2021.3092411. 

42. Kerr, Y.H.; Waldteufel, P.; Richaume, P.; Wigneron, J.P.; Ferrazzoli, P.; Mahmoodi, A.; Al Bitar, A.; Cabot, F.; Gruhier, C.; Juglea, 

S.E.; et al. The SMOS Soil Moisture Retrieval Algorithm. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1384–1403. 

https://doi.org/10.1109/tgrs.2012.2184548. 

43. Bindlish, R.; Jackson, T.; Cosh, M.; Zhao, T.; O’Neill, P. Global Soil Moisture from the Aquarius/SAC-D Satellite: Description 

and Initial Assessment. IEEE Geosci. Remote Sens. Lett. 2015, 12, 923–927. https://doi.org/10.1109/lgrs.2014.2364151. 

44. O’Neill, P.; Chan, S.; Njoku, E.; Jackson, T.; Bindlish, R. Algorithm Theoretical Basis Document (ATBD): Level 2 & 3 Soil Mois-

ture (Passive) Data Products [J/OL]. 2015. Initial Release, v.3, 1 October. Available online: http://smap.jpl.nasa.gov/sci-

ence/dataproducts/ATBD/ (accessed on 25 August 2022). 

45. Wu, X. Implementation of Two-Stream Emission Model for L-Band Retrievals on the Tibetan Plateau. Remote Sens. 2022, 14, 494. 

https://doi.org/10.3390/rs14030494. 

46. Mo, T.; Choudhury, B.J.; Schmugge, T.J.; Wang, J.R.; Jackson, T.J. A model for microwave emission from vegetation-covered 

fields. J. Geophys. Res. Earth Surf. 1982, 87, 11229–11237. https://doi.org/10.1029/jc087ic13p11229. 

47. Jackson, T.; Schmugge, T. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 1991, 36, 203–212. 

https://doi.org/10.1016/0034-4257(91)90057-d. 

48. Wang, J.R.; Choudhury, B.J. Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency. J. Geophys. Res. Earth 

Surf. 1981, 86, 5277–5282. https://doi.org/10.1029/jc086ic06p05277. 



Remote Sens. 2022, 14, 4191 21 of 22 
 

 

49. Wigneron, J.-P.; Laguerre, L.; Kerr, Y. A simple parameterization of the L-band microwave emission from rough agricultural 

soils. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1697–1707. https://doi.org/10.1109/36.942548. 

50. Dobson, M.C.; Ulaby, F.T.; Hallikainen, M.T.; El-Rayes, M.A. Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mix-

ing Models. IEEE Trans. Geosci. Remote Sens. 1985, 23, 35–46. https://doi.org/10.1109/tgrs.1985.289498. 

51. Wang, J.R.; Schmugge, T.J. An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content. 

IEEE Trans. Geosci. Remote Sens. 1980, GE-18, 288–295. https://doi.org/10.1109/tgrs.1980.350304. 

52. Mironov, V.L.; Kosolapova, L.G.; Fomin, S.V. Physically and Mineralogically Based Spectroscopic Dielectric Model for Moist 

Soils. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 2059–2070. https://doi.org/10.1109/tgrs.2008.2011631. 

53. Choudhury, B.J.; Schmugge, T.J.; Mo, T. A parameterization of effective soil temperature for microwave emission. J. Geophys. 

Res. Earth Surf. 1982, 87, 1301–1304. https://doi.org/10.1029/jc087ic02p01301. 

54. Zheng, D.; Van Der Velde, R.; Wen, J.; Wang, X.; Ferrazzoli, P.; Schwank, M.; Colliander, A.; Bindlish, R.; Su, Z. Assessment of 

the SMAP Soil Emission Model and Soil Moisture Retrieval Algorithms for a Tibetan Desert Ecosystem. IEEE Trans. Geosci. 

Remote Sens. 2018, 56, 3786–3799. https://doi.org/10.1109/tgrs.2018.2811318. 

55. Wigneron, J.P.; Chanzy, A.; Kerr, Y.; Shi, J.C.; Cano, A.; Rosnay, P.D.; Escorihuela, M.J.; Mironov, V.; Demontoux, F.; Grant, J. 

Improved Parameterization of the Soil Emission in L-MEB. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1177–1189. 

https://doi.org/10.1109/tgrs.2010.2075935. 

56. Schwank, M.; Naderpour, R.; Mätzler, C. “Tau-Omega”- and Two-Stream Emission Models Used for Passive L-Band Retrievals: 

Application to Close-Range Measurements over a Forest. Remote. Sens. 2018, 10, 1868. 

57. Wu, X.; Zheng, D. Surface Roughness Effect on L-Band Multiangular Brightness Temperature Modeling and Soil Liquid Water 

Retrieval of Frozen Soil. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1615–1619. 

58. Wang, Q.; van der Velde, R.; Su, Z. Use of a discrete electromagnetic model for simulating Aquarius L-band active/passive 

observations and soil moisture retrieval. Remote Sens. Environ. 2018, 205, 434–452. https://doi.org/10.1016/j.rse.2017.10.044. 

59. Bai, X.; Zeng, J.; Chen, K.-S.; Li, Z.; Zeng, Y.; Wen, J.; Wang, X.; Dong, X.; Su, Z. Parameter Optimization of a Discrete Scattering 

Model by Integration of Global Sensitivity Analysis Using SMAP Active and Passive Observations. IEEE Trans. Geosci. Remote 

Sens. 2018, 57, 1084–1099. https://doi.org/10.1109/tgrs.2018.2864689. 

60. Schwank, M.; Stahli, M.; Wydler, H.; Leuenberger, J.; Matzler, C.; Fluhler, H. Microwave L-band emission of freezing soil. IEEE 

Trans. Geosci. Remote Sens. 2004, 42, 1252–1261. https://doi.org/10.1109/tgrs.2004.825592. 

61. Wilheit, T.T. Radiative Transfer in a Plane Stratified Dielectric. IEEE Trans. Geosci. Electron. 1978, 16, 138–143. 

https://doi.org/10.1109/tge.1978.294577. 

62. Chen, K.S.; Wu, T.D.; Tsang, L.; Li, Q.; Shi, J.; Fung, A.K. Emission of rough surfaces calculated by the integral equation method 

with comparison to three-dimensional moment method simulation. IEEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. 

63. Wu, X. Implementation of Wilheit Model for Predicting L-Band Microwave Emission in the Third Pole Environment. IEEE 

Geosci. Remote Sens. Lett. 2021, 19, 4500505. https://doi.org/10.1109/lgrs.2021.3074400. 

64. Shi, J.; Chen, K.S.; Li, Q.; Jackson, T.J.; O’Neill, P.E.; Tsang, L. A parameterized surface reflectivity model and estimation of bare 

surface soil moisture with L-band radiometer. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2674–2686. 

65. Jin, R.; Li, X.; Yan, B.; Li, X.; Luo, W.; Ma, M.; Guo, J.; Kang, J.; Zhu, Z.; Zhao, S. A Nested Ecohydrological Wireless Sensor 

Network for Capturing the Surface Heterogeneity in the Midstream Areas of the Heihe River Basin, China. IEEE Geosci. Remote 

Sens. Lett. 2014, 11, 2015–2019. https://doi.org/10.1109/lgrs.2014.2319085. 

66. Kang, J.; Jin, R.; Li, X.; Zhang, Y. Mapping High Spatiotemporal-Resolution Soil Moisture by Upscaling Sparse Ground-Based 

Observations Using a Bayesian Linear Regression Method for Comparison with Microwave Remotely Sensed Soil Moisture 

Products. Remote Sens. 2021, 13, 228. https://doi.org/10.3390/rs13020228. 

67. Zhang, P.; Zheng, D.; van der Velde, R.; Wen, J.; Ma, Y.; Zeng, Y.; Wang, X.; Wang, Z.; Chen, J.; Su, Z. A dataset of 10-year 

regional-scale soil moisture and soil temperature measurements at multiple depths on the Tibetan Plateau. Earth Syst. Sci. Data 

Discuss. 2022. https://doi.org/10.5194/essd-2022-225. 

68. Dente, L.; Vekerdy, Z.; Wen, J.; Su, Z. Maqu network for validation of satellite-derived soil moisture products. Int. J. Appl. Earth 

Obs. Geoinf. ITC J. 2012, 17, 55–65. https://doi.org/10.1016/j.jag.2011.11.004. 

69. Zhao, L.; Yang, K.; Qin, J.; Chen, Y.; Tang, W.; Lu, H.; Yang, Z.-L. The scale-dependence of SMOS soil moisture accuracy and its 

improvement through land data assimilation in the central Tibetan Plateau. Remote Sens. Environ. 2014, 152, 345–355. 

https://doi.org/10.1016/j.rse.2014.07.005. 

70. Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the 

Tibetan Plateau using in-situ observations. Remote Sens. Environ. 2015, 163, 91–110. https://doi.org/10.1016/j.rse.2015.03.008. 

71. Liu, J.; Chai, L.; Lu, Z.; Liu, S.; Qu, Y.; Geng, D.; Song, Y.; Guan, Y.; Guo, Z.; Wang, J.; et al. Evaluation of SMAP, SMOS-IC, 

FY3B, JAXA, and LPRM Soil Moisture Products over the Qinghai-Tibet Plateau and Its Surrounding Areas. Remote Sens. 2019, 

11, 792. https://doi.org/10.3390/rs11070792. 

72. Liu, J.; Chai, L.; Dong, J.; Zheng, D.; Wigneron, J.-P.; Liu, S.; Zhou, J.; Xu, T.; Yang, S.; Song, Y.; et al. Uncertainty analysis of 

eleven multisource soil moisture products in the third pole environment based on the three-corned hat method. Remote Sens. 

Environ. 2021, 255, 112225. https://doi.org/10.1016/j.rse.2020.112225. 

73. Li, D.; Zhao, T.; Shi, J.; Bindlish, R.; Jackson, T.J.; Peng, B.; An, M.; Han, B. First Evaluation of Aquarius Soil Moisture Products 

UsingIn SituObservations and GLDAS Model Simulations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 5511–5525. 

https://doi.org/10.1109/jstars.2015.2452955. 



Remote Sens. 2022, 14, 4191 22 of 22 
 

 

74. Zeng, J.; Shi, P.; Chen, K.-S.; Ma, H.; Bi, H.; Cui, C. Assessment and Error Analysis of Satellite Soil Moisture Products Over the 

Third Pole. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4405418. https://doi.org/10.1109/tgrs.2021.3116078. 

75. Li, C.; Lu, H.; Yang, K.; Han, M.; Wright, J.S.; Chen, Y.; Yu, L.; Xu, S.; Huang, X.; Gong, W. The Evaluation of SMAP Enhanced 

Soil Moisture Products Using High-Resolution Model Simulations and In-Situ Observations on the Tibetan Plateau. Remote Sens. 

2018, 10, 535. https://doi.org/10.3390/rs10040535. 

76. Ma, C.; Li, X.; Wei, L.; Wang, W. Multi-Scale Validation of SMAP Soil Moisture Products over Cold and Arid Regions in North-

western China Using Distributed Ground Observation Data. Remote Sens. 2017, 9, 327. https://doi.org/10.3390/rs9040327. 

77. Owe, M.; de Jeu, R.; Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the micro-

wave polarization difference index. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1643–1654. https://doi.org/10.1109/36.942542. 

78. Zhang, L.; Zhao, T.; Jiang, L.; Zhao, S. Estimate of phase transition water content in Freeze–Thaw process using microwave 

radi-ometer. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4248–4255. 

79. Mironov, V.L.; Kosolapova, L.G.; Lukin, Y.I.; Karavaysky, A.Y.; Molostov, I.P. Temperature- and texture-dependent dielectric 

model for frozen and thawed mineral soils at a frequency of 1.4GHz. Remote Sens. Environ. 2017, 200, 240–249. 

80. Wang, Q.; van der Velde, R.; Ferrazzoli, P.; Chen, X.; Bai, X.; Su, Z. Mapping soil moisture across the Tibetan Plateau plains 

using Aquarius active and passive L-band microwave observations. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2019, 77, 108–118. 

https://doi.org/10.1016/j.jag.2019.01.005. 

81. Zeng, J.; Chen, K.S.; Cui, C.; Bai, X. A Physically Based Soil Moisture Index from Passive Microwave Brightness Temperatures 

for Soil Moisture Variation Monitoring. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2782–2795. 

 

 


