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Abstract: The newly developed near-space vehicle has the characteristics of high speed and strong
maneuverability, being able to perform vertical skips and a wide range of lateral maneuvers. Tracking
this kind of target with ground-based radars is difficult because of the limited detection range caused
by the curvature of the Earth. Compared with ground-based radars, satellite tracking platforms
equipped with Synthetic Aperture Radars (SARs) have a wide detection range, and can keep the
targets in custody, making them a promising approach to tracking near-space vehicles continuously.
However, this approach may not work well, due to the unknown maneuvers of the non-cooperative
target, and the limited computing power of the satellites. To enhance tracking stability and accuracy,
and to lower the computational burden, we have proposed a Fast Distributed Multiple-Model
(FDMM) nonlinearity estimation algorithm for satellites, which adopts a novel distributed multiple-
model fusion framework. This approach first requires each satellite to perform local filtering based
on its own single model, and the corresponding fusion factor derived by the Wasserstein distance
is solved for each local estimate; then, after diffusing the local estimates, each satellite performs
multiple-model fusion on the received estimates, based on the minimum weighted Kullback–Leibler
divergence; finally, each satellite updates its state estimation according to the consensus protocol. Two
simulation experiments revealed that the proposed FDMM algorithm outperformed the other four
tracking algorithms: the consensus-based distributed multiple-model UKF; the improved consensus-
based distributed multiple-model STUKF; the consensus-based strong-tracking adaptive CKF; and
the interactive multiple-model adaptive UKF; the FDMM algorithm had high tracking precision and
low computational complexity, showing its effectiveness for satellites tracking the near-space target.

Keywords: non-cooperative target tracking; distributed multiple-model; adaptive filter; Wasser-
stein distance

1. Introduction

Target tracking has been extensively researched and widely used in areas such as situ-
ational awareness, precision navigation, and marine surveillance [1,2]. However, accurate
non-cooperative target tracking remains challenging, due to the unknown maneuvers of
the targets. Recently, newly developed high-speed near-space vehicles have been widely
investigated [3–5]. Non-cooperative near-space vehicles can perform diverse maneuvering
modes, including vertical skips and a wide range of lateral maneuvers, posing higher
requirements for tracking technology.

Generally, observation platforms can be separated into two main categories in target
tracking: ground-based radar [3,6] and satellites [7]. Although ground-based radars are
widely used in target tracking, they cannot guarantee the near-space target to be in custody,
due to the limited detection range caused by the curvature of the Earth. In contrast,
satellites have the advantage of a wide detection range, and thus they are feasible for
tracking near-space targets. Spaceborne Synthetic Aperture Radar (SAR) systems have
large imaging coverage, and can provide high-quality measurements, which are suitable as
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detection devices for satellite tracking systems [8–10]. The techniques of satellite tracking
systems whose objects are mainly space orbital targets have been researched in recent
years [11–13], while few studies have been conducted for near-space targets. Unlike the
tracking of space orbital targets, there are two main issues in tracking near-space targets:
(1) the maneuvers of the target are unknown and diverse, and thus a high-precision and
stable tracking algorithm is required; (2) the computing power of satellites is limited; hence,
an algorithm with low computational complexity is demanded. It has been necessary,
therefore, to develop a tracking algorithm with high tracking accuracy, strong stability, and
high computational efficiency for satellites tracking non-cooperative near-space targets.

The frameworks of multiple satellites tracking algorithms can generally be divided
into ‘centralized’ and ‘distributed’. In centralized tracking algorithms [14,15], a central
satellite is required to communicate with the remaining satellites, i.e., to receive and process
data from them. Centralized tracking algorithms therefore usually impose a substantial
computational burden on the central satellite. Moreover, the centralized framework relies
heavily on the central satellite, meaning that the tracking system will break down once
the central satellite fails. In contrast, in the distributed framework, no central node is
needed [16], and the computing tasks of the entire network can be allocated to each satellite,
which significantly speeds up the computing efficiency of the tracking system. Each satellite
only exchanges data with adjacent satellites [15]. Even if one satellite fails, the tracking
system, as a whole, will not break down. Due to this high computing efficiency and high
resistance to satellite faults, the distributed framework is therefore more appealing.

To improve tracking precision, numerous motion models have been developed in
recent years, to more accurately describe the state transition of the target, such as the
Constant Velocity (CV) model, the Constant Acceleration (CA) model, and the Singer
model [17]. However, a single model may not work well when the target maneuvers.
Various Multiple-Model (MM) methods have been proposed, to resist maneuvering uncer-
tainty by using combinations of multiple models [1,2,18,19]. Unlike the mechanism in MM
methods, where each elemental filter works individually, an Interactive Multiple Model
(IMM) can adaptively track maneuvering targets via the efficient interaction of each filter,
which assigns weights to each sub-model according to the model likelihood and mode
probability at each moment [20–22]. MM methods are usually designed for centralized
frameworks, and cannot be directly applied to distributed tracking.

In distributed tracking algorithms, consensus-based algorithms are widely
used [15,16,23–29]. This enables state estimations or measurements from each node to at-
tain the same value, through a consensus protocol, and guarantees global convergence [16].
To deal with the target maneuver, a Consensus-based Distributed Multiple Model UKF
(CDMM-UKF) algorithm has been proposed, based on the IMM in [23]. However, when
the model set mismatches the target motion, the competition between sub-models cannot
be ignored. In addition, each satellite needs to run multiple filters in every filtering period,
and to exchange data frequently to reach a consensus, which also creates a considerable
communication and computational burden. The Strong Tracking Filter (STF) is suitable for
dealing with model mismatches [6,24,30–33]. The STF can reduce the impact caused by the
motion model error, by enlarging the predicted state covariance based on the innovation
sequence orthogonal principle [30]. To eliminate the effect of the dynamics model error, a
Consensus-based Strong Tracking Adaptive Cubature Kalman Filtering (CSTACKF) algo-
rithm has been proposed in [24]. This distributed algorithm combines the advantages of
consensus and adaptive filter, to resist maneuver uncertainty. However, as the CSTACKF
algorithm adopts a single motion model, the tracking stability of the CSTACKF algorithm
cannot be guaranteed when tracking non-cooperative targets with intense maneuvers.

To improve the stability and precision of satellite tracking systems, the aim of this
paper was to develop a new distributed algorithm based on the MM approach and STF.
To further cope with the computational burden brought about by the MM, a novel dis-
tributed MM framework was put forward for the algorithm, to reduce the computation
complexity for each satellite. The proposed algorithm was termed the Fast Distributed
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Multiple-Model (FDMM) algorithm. The main idea of the FDMM algorithm is as follows:
firstly, each satellite performs a local estimation, based on its single motion model and an
adaptive CKF algorithm; then, the corresponding fusion factor derived by the Wasserstein
distance is solved for each local estimate; secondly, after diffusing the local estimations,
each satellite performs multiple-model fusion on the received estimations, based on the
minimum weighted Kullback–Leibler (KL) divergence. Finally, each satellite updates its
state estimation according to the consensus protocol. The contributions of this study are
summarized as follows:

(1) A novel distributed multiple-model fusion framework was proposed, to lower the
computational burden for the satellites. Unlike the mechanism in a distributed
MM [23,25], where each satellite needs to process multiple filters in the local es-
timation process, each satellite in the FDMM algorithm only needs to process one
filter, based on one motion model in the local filtering process.

(2) The Wasserstein distance with triangular inequality and symmetry is applied, to
derive weight factors for each sub-model, to deal with the sub-model competition
problem in MM.

The remainder of this paper is organized as follows: Section 2 presents the related
works on the fading factor and topology; Section 3 gives the problem formulation; in
Section 4, the proposed FDMM tracking algorithm is introduced in detail; the effectiveness
and advantages of the FDMM algorithm are demonstrated in two simulation experiments
in Section 5; finally, Section 6 concludes our study.

2. Related Works
2.1. Fading Factor

The STF is appealing, for tracking non-cooperative maneuvering targets. The core
part of the STF is the fading factor, α0, which can reduce the impact caused by the motion
model error. When a dynamics model mismatch occurs, the value of the fading factor, α0,
is enlarged, and the prediction covariance matrix, Pk|k−1, is also enlarged by α0, in real
time. This process reduces the contribution of the dynamics model, and improves the
adaptability of the tracking algorithm to motion-modeling uncertainty [30].

Based on the mutual orthogonality between innovation sequences, the fading factor,
α0, can be expressed as Equation (1):

α0 =
tr[C0,k − Rk]

tr[Pzz − Rk]
(1)

where C0,k denotes the covariance of the innovation vector, quantifying the dynamics error;
this is usually estimated according to Equation (2):

C0,k =

{
νkνT

k k = 1
λC0,k−1+νkνT

k
1+λ k > 1

(2)

where νk is the innovation, and λ is the forgetting factor, determined to be 0.95.

2.2. Topology

The communication topology of the satellites at time k can be represented by a graph,
Gk = (V, E), where vertexes V = {s1, s2, . . . , sn} are the set of all satellites, and edges
E ⊆ V × V present the communication connection between the satellites. The set of
adjacent satellites of the satellite si is expressed as Ai.
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At time k, the communication protocol between satellite si and its adjacent satellite,
sj ∈ Ai, is set as the Metropolis matrix, Wij [12], as shown in Equation (3):

Wij =


1

1+max{Ai ,Aj} ,
(
sj ∈ Ai

)
1− ∑

si ,sm∈Ai

Wim, (i = j)

0, (others)

(3)

where i, j, m are indices of satellites.

3. Problem Formulation
3.1. Tracking Formulation

The dynamics and observation functions of the maneuvering target-tracking process
are modeled as follows:

Xk+1 = f (Xk) + wk (4)

Zk+1 = h(Xk+1) + εk+1 (5)

where Xk ∈ Rn and Zk ∈ Rm are the state vector and measurement vector of the maneuver-
ing target at time k, respectively; f (·) is the state transition function; wk is the process noise;
and h(·) and εk are the measurement function and the measurement noise, respectively.

3.2. Measurement Model

Satellites operating in low orbits are applied to detect the target. As shown in Figure 1,
a single satellite can provide two measurements of the target through processing SAR
images, consisting of the azimuth, φ, and the elevation angle, θ. The detecting coordinate
system is paralleled to the Earth-Centered Inertial (ECI) [34].
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For satellite si, the measurement model at time k is described as Equation (6):
φi

k = arctan
(

y−yi
x−xi

)
+ εi,1

k

θi
k = arctan

(
z−zi√

(x−xi)
2+(y−yi)

2

)
+ εi,2

k

(6)

where the position of satellite, si, and the target in ECI are (xi, yi, zi) and (x, y, z), respec-
tively; εi,1

k and εi,2
k are noises in the corresponding measurement channels.

If zi
k =

[
φi

k, θi
k
]T , εi

k =
[
εi,1

k , εi,2
k

]T
, Equation (6) can be further compacted into a

measurement model of the standard form in Equation (7):

zi
k = hi

k(Xk) + εi
k (7)
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where hi
k(·) is the measurement function of satellite si. The measurement noise, εi

k, is
modeled with the zero-mean Gaussian noise

(
εi

k ∼ N
(
εi

k; 0,Ri
k
))

. The schematic diagram
of multiple satellites tracking the target is shown in Figure 2.
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4. Fast Distributed Multiple-Model Nonlinearity Estimation Algorithm

The traditional distributed multiple-model algorithms in [23,25] cannot track a non-
cooperative highly maneuvering target stably, and impose a substantial computational
burden on each satellite. Therefore, to reduce the computational burden and improve the
tracking accuracy of the satellites, the Fast Distributed Multiple-Model (FDMM) nonlin-
earity estimation algorithm, combined with the adaptive Cubature Kalman filter, is put
forward in this section.

In the FDMM algorithm, a novel distributed multi-model fusion framework is adopted
to assign the computational tasks of MM filtering to each satellite. Unlike the framework
in [23,25], where each node performs multiple filtering based on multiple-motion models,
the FDMM algorithm allows each satellite to perform local filtering based only on a single
but different motion model. After local filtering, the local estimates of each satellite are
diffused to adjacent satellites, and then multiple-model fusion is performed on the obtained
results in each satellite.

To deal with the motion model mismatches engendered by the non-cooperative target,
the adaptive CKF algorithm, based on the fading factor for local filtering, is first introduced
below. Next, the newly proposed fusion factor and the multiple-model fusion framework
based on weighted KL divergence are introduced, to fuse each satellite’s obtained local
estimation results.

4.1. Strong-Tracking Cubature Kalman Filter

Based on the fading factor, α0, shown in Equation (1), the strong-tracking CKF can be
achieved by the following steps:

1. Compute the cubature points at time k− 1:

Pk−1|k−1 = Sk−1ST
k−1 (8)

X a
k−1|k−1 = Xk−1|k−1 + Sk−1ξa, a = 1, 2, . . . , 2n (9)

ωa =
1

2n
(10)
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where Sk−1 is the Cholesky factor of Pi
k−1|k−1; n denotes the dimension of the state

Xk−1|k−1; and ωa represents weighted coefficients of the ξa; the ξa being the a-th
column of the following matrix:

√
n 0 · · · 0 −

√
n 0 · · · 0

0
√

n · · · 0 0 −
√

n · · · 0
...

...
. . . 0

...
...

. . .
...

0 0 · · ·
√

n 0 0 · · · −
√

n


n×2n

(11)

2. Time update:
X a

k|k−1 = FX a
k−1|k−1 (12)

X̂k|k−1 =
2n

∑
a=1

ωaX a
k|k−1 (13)

P̂k|k−1 =
2n

∑
a=1

ωa

(
X a

k|k−1 − X̂k|k−1

)(
X a

k|k−1 − X̂k|k−1

)T
+ Q (14)

P̂k|k−1 = Sk|k−1ST
k|k−1 (15)

X̂ a
k|k−1 = X̂k|k−1 + Sk|k−1ξa, a = 1, 2, . . . , 2n (16)

Ẑa
k|k−1 = Hk

(
X̂ a

k|k−1

)
(17)

Ẑk|k−1 =
2n

∑
a=1

ωaẐa
k|k−1 (18)

νk = Zk − Ẑk|k−1 (19)

where, νk refers to the corresponding innovation sequence.
3. Fading factor update:

C0,k =

{
νkνk

T , k = 1
λC0,k−1+νkνk

T

1+λ , k > 1
(20)

αk =

{
α0, α0 > 1
1, α0 ≤ 1

(21)

α0 =
tr[C0,k − Rk]

tr
[

∑2n
a=1 ωa

(
Ẑa

k|k−1 − Ẑk|k−1

)(
Ẑa

k|k−1 − Ẑk|k−1

)T
] (22)

P̂k|k−1 = αk

[
2n

∑
a=1

ωa

(
X̂ a

k|k−1 − X̂k|k−1

)(
X̂ a

k|k−1 − X̂k|k−1

)T
]
+ Q (23)

Pxz =
2n

∑
a=1

ωa

(
X̂ a

k|k−1 − X̂k|k−1

)(
Ẑa

k|k−1 − Ẑk|k−1

)T
(24)

Pzz =
2n

∑
a=1

ωa

(
Ẑa

k|k−1 − Ẑk|k−1

)(
Ẑa

k|k−1 − Ẑk|k−1

)T
+ R (25)

4. Measurement update:
Kk = PxzPzz

−1 (26)

Xk|k = X̂k|k−1 + Kk

(
Zk − Ẑk|k−1

)
(27)

Pk|k = P̂k|k−1 −KkPzzKT
k (28)
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4.2. Fusion Factor Derived from the Wasserstein Distance

As the detailed motion characteristics of the non-cooperative target cannot be obtained,
a single model cannot work well when the target maneuvers. Considering that conventional
distributed MM methods engender a substantial computational burden, we have proposed
a new distributed multiple-model mechanism to cope with the target maneuvers, and
to reduce the computational burden. Each satellite first performs local filtering based
on a single but different motion model, then performs multiple-model fusion on the
data obtained from adjacent satellites. By allocating the computing tasks of the MM
filtering process to each satellite, the computational efficiency of the tracking system is
significantly improved.

The distance function and fusion factor are introduced in this section. They are the
core parameters for performing the fusion of distributed multiple-model estimations in the
FDMM algorithm.

4.2.1. Distance Function

Before performing multiple-model fusion, it is necessary to evaluate the similarity
of the current model to the actual motion mode of the target. In the traditional multiple-
model algorithm, the model likelihood function, Li

k, represents the Gaussian probability of
classifying the current mode of the target to the i-th model based on the measurement Zk,
and Li

k is solved as shown in Equation (29):

Li
k =

1√
det(2πS)

exp [−1
2

νTS−1ν] (29)

where ν is the innovation, and S is the variance of the innovation.
In the proposed distributed algorithm, the measurements used by each satellite are

different. Each satellite has different measurement errors. It is not appropriate to still use the
model likelihood function, based on the respective measurements, to calculate the Gaussian
probability of the model. Therefore, we introduced the Wasserstein distance [35,36], to
evaluate the distance between the using model and the current motion mode.

Definition 1. The pth Wasserstein distance between two probability measures is defined as Equation
(30) [35].

Wp(P1, P2)
p = in fE

[
d(X, Y)p] (30)

where E[·] denotes the expected value, the infimum being taken over all joint distributions of the
random variables, X and Y, with marginals P1 and P2, respectively [35].

When p ≥ 1, the pth Wasserstein distance has the following properties: symmetry and
triangle inequality [35,36]. The properties of Wasserstein distance make it a good metric for
evaluating the similarity between the used model and the target mode.

Specifically, for two Gaussian distributions, we can solve for their Wasserstein distance
by Equation (31):

dist = W2(N (µ; µ1, Σ1),N (µ; µ2, Σ2))

dist2 =‖ µ1 − µ2 ‖2
2 +Tr

(
Σ1 + Σ2 − 2

(
Σ

1
2
1 Σ2Σ

1
2
1

) 1
2
)

(31)

The measurement Zi
k that satellite si obtains at time k can be expressed as Equation (32):

Zi
k = Zi,truth

k + εi
k, εi

k ∼ N
(

ε; 0, Ri
k

)
(32)

where Zi,truth
k represents the ideal measurement that does not contain noise.
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The predicted measurement, Ẑi
k|k−1, can be obtained according to Equation (18) at

the satellite si, and Ẑi
k|k−1 follows a Gaussian distribution, i.e., Ẑi

k|k−1 ∼ N
(

Z; Ẑi
k|k−1, Pzz

)
.

Therefore, the similarity between the using model and the current motion mode can be
quantified by the Wasserstein distance between the predicted measurement, Ẑi

k|k−1, of local

filtering, and the ideal measurement, Zi,truth
k , where Zi,truth

k ∼ N
(
Z; Zi

k, Ri
k
)
.

According to Equation (31), we can compute the Wasserstein distance, Di
k, between

the using model and the current motion mode as Equation (33):

(Di
k)

2
=‖ Ẑi

k|k−1 − Zi
k ‖

2
2 +Tr

Pi
zz + Ri

k − 2
((

Pi
zz

) 1
2 Ri

k

(
Pi

zz

) 1
2
) 1

2

 (33)

4.2.2. Fusion Factor

After local filtering, the local estimates of each satellite are diffused to adjacent satellites.
Before performing multiple-model fusion on the data, it is necessary to assign weights to
the data from each satellite. The Wasserstein distance, Di

k, based on Equation (33), describes
the distance between the model and the target motion mode. The smaller Di

k is, the closer
the i-th model is to the target mode. In this paper, according to the characteristics of Di

k,
the fusion factor βi

k was introduced, to evaluate the similarity of each local estimate in the
FDMM algorithm.

Definition 2. Assuming that the Wasserstein distance between the i-th motion model and the
current motion mode at time k is Di

k, the fusion factor, βi
k, in the FDMM algorithm is defined as

Equation (34).

βi
k =

1
Di

k
(34)

The local estimates and the fusion factor of each satellite are simultaneously diffused
to their adjacent satellites. According to the corresponding fusion factor, βi

k, the weight of
each estimation obtained at the satellite si can be calculated by Equation (22):

λ
i,li
k =

β
li
k

∑li∈{si ,Ai} β
li
k

(35)

where λ
i,li
k refers to the weight of the estimation from the adjacent satellite, sli at the satellite

si, so ∑li∈{si ,Ai} λ
i,li
k = 1.

4.3. Multiple-Model Fusion Based on Weighted KL Divergence

After each satellite receives the local estimates and the corresponding fusion factor,
the multiple-model fusion is performed. This section takes the satellite si as an example, to
introduce how each satellite performs multiple-model fusion on the received data. Firstly,
the satellite si obtains the local estimation

{
X̂ j,Local

k|k , P̂j,Local
k|k

}
, j ∈ Aj and corresponding

fusion factor β
j
k from the adjacent satellites. Secondly, based on the weighted sum min-

imization of the information entropy, a probability density function (PDF) is found, as
the multiple-model fusion results that minimize the difference between the PDFs of the
received estimations.

In order to solve the problem of multiple-state estimation fusion, combined with
reference [37,38], the definition of weighted KL divergence is introduced.
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Definition 3. Given N PDFs pi(x) ∈ P , and relative weights λi satisfying Equation (36),

N

∑
i=1

λi = 1, λi ≥ 0 (36)

their weighted KL average (KLA) is defined by Equation (37):

p(x) = arg inf
p∈P

N

∑
i=1

λiDKL(p ‖ pi) (37)

Lemma 1. The weighted KLA defined in Equation (37) is given by Equation (38):

p(x) =
∏N

i=1
[
pi(x)

]λi∫
∏N

i=1
[
pi(x)

]λi dx
(38)

Lemma 2. If all the PDFs pi(x) take the Gaussian PDF form, their weights λi satisfying Equation
(36), their weighted KLA in Equation (38) takes the form of Equation (39):

p(x) = N
(
x; x, P

)
(39)

then the mean x and the covariance P can be computed from Equations (40) and (41):

P−1
=

N

∑
i=1

λiP−1
i (40)

P−1x =
N

∑
i=1

λiP−1
i x̂i (41)

The proof of Lemmas 1 and 2 can be found in [37].
After filtering, each satellite si can obtain the local state estimation X̂li ,Local

k|k —where

li ∈ {si, Ai}—the covariance P̂li ,Local
k|k , and the corresponding fusion factor, β

j
k, through com-

munication. Then, we can obtain the weight of each estimate, λli according to Equation (35).

Because each local estimate is a Gaussian distribution, with mean X̂li ,Local
k|k and variance

P̂li ,Local
k|k , we can approximate all obtained local estimates, N

(
X; X̂li ,Local

k|k , P̂li ,Local
k|k

)
, using

a Gaussian distribution N
(

X; Xi
k|k, Pi

k|k

)
at satellite si, based on lemma 1 and lemma 2.

Then, we can get the multiple-model fusion results, XI
k|k, Pi

k|k, from Equations (42) and (43),
based on Weighted KL Divergence:

Xi
k|k =

(
Pi

k|k

)
∑

li∈{si ,Ai}
λli

(
P̂li,Local

k|k

)−1
X̂li,Local

k|k (42)

(
Pi

k|k

)−1
= ∑

li∈{si ,Ai}
λli

(
P̂li,Local

k|k

)−1
(43)

4.4. Fusion Framework

In the FDMM algorithm, a novel distributed multiple-model fusion framework is
proposed, to reduce the computational burden of the tracking system by allocating tasks
to each satellite. The fusion framework is introduced below. Each satellite performs local
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estimations, based on its own single-motion model. The motion model selecting rules that
determine which satellite adopts which motion model are also discussed in this section.

4.4.1. Fusion Framework

The operation flow of satellite si, from time k − 1 to time k, adopting the FDMM
algorithm, is shown in Figure 3. Firstly, each satellite runs a different single-motion model,
combined with the STCKF algorithm—based on the augmentation measurements from
the adjacent satellites—and calculates the fusion factor, βi

k, derived from the Wasserstein
distance. Then, the local estimates, X̂i,Local

k|k , P̂i,Local
k|k , and βi

k are exchanged with the adjacent
satellites via the topology net. Then, multiple-model fusion is performed, based on the
weighted KL divergence for the received state estimates

{
X̂i,Local

k|k , P̂i,Local
k|k , βi

k

}
, i ∈ {si, Ai}

from different motion models. Finally, each satellite updates its state estimation according
to the consensus protocol.
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4.4.2. Motion Model Selecting Rules

When deciding which motion model to choose for which satellite, the following two
aspects are mainly considered. Firstly, construct a suitable model set, which contains the
motion models that will be used. The set needs to describe the maneuvers of the target as
much as possible. The CV model describes targets without maneuverability, and the CA is
modeled for targets with constant acceleration in each sampling interval. The Singer models
with different parameters (the maneuvering frequency, α, and the acceleration variance,
σ2) could represent the targets with different maneuvering capabilities [17]. Considering
the characteristics of the models, the CA model, the CV model, and the Singer model were
chosen as the element of the model set in this paper, to deal with the maneuvers of the
non-cooperative target.

Secondly, the topology of satellites is a significant constraint to be aware of, when
assigning the motion model to the satellite. In the FDMM algorithm, after the local filter-
ing, each satellite performs multiple-model fusion on the received estimations solved by
adjacent satellites. Therefore, the motion models used by adjacent satellites can affect this
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satellite’s multiple-model fusion results. If the neighbors of one satellite, and that satellite
itself, all adopt the CV model, the multiple-model fusion results for that satellite will be
at their worst when the target maneuvers. In addition, if the neighbors of one satellite,
and that satellite itself, all adopt the CA model, the multiple-model fusion results of that
satellite will also be poor when the target starts moving at a constant speed. Therefore,
when assigning the motion model to each satellite, it is necessary to ensure that at least
two models exist in each satellite and in its neighbors. One model is used to model the
weak maneuvering or non-maneuvering situation of the target—such as the CV or the
Singer with α→ ∞ —and the other is used to model the situation where the target performs
maneuvers, such as the Singer with α→ 0 or CA. Furthermore, after the multiple model
fusion process, each satellite will update its state estimation according to the consensus
protocol. In the consensus update process, each satellite can affect the outcome of the
tracking system. Therefore, the satellite tracking system should use the motion models
from the model set, as much as possible.

4.5. Implementation Steps of FDMM Algorithm

The FDMM algorithm applying to the satellite si, from time k− 1 to time k, is shown
in Algorithm 1.

Algorithm 1 Fast Distributed Multiple-Model (FDMM) Nonlinearity Estimation

Step 1. Local STCKF Filtering and Solving the fusion factor:

I. Time update:

X̂i
k|k−1 =

2n
∑

a=1
ωaX a,i

k|k−1

P̂i
k|k−1 =

2n
∑

a=1
ωa

(
X a,i

k|k−1 − X̂i
k|k−1

)(
X a,i

k|k−1 − X̂i
k|k−1

)T
+ Qi

k

II. Receive the measurements from adjacent satellites Ai, then perform measurement

augmentation:
(

zi
k,Ri

k

)
→
(

Zi
k, Ri

k

)
.

III. Compute the fading factor, α0, utilizing Equations (21) and (22), then reformulate the
predicted state covariance, P̂i

k|k−1, as Equation (23) shows.

IV. Local filtering update:

X̂i,local
k|k = X̂i

k|k−1 + Kk

(
Zi

k − Ẑi
k|k−1

)
P̂i,local

k|k = P̂i
k|k−1 −KkPi

zzKT
k

V. Compute the fusion factor βi
k of the local estimation:

(Di
k)

2
=‖ νi

k ‖
2
2 +Tr

Pi
zz + Ri

k − 2
((

Pi
zz

) 1
2 Ri

k

(
Pi

zz

) 1
2
) 1

2


βi

k = 1
Di

k

Step 2. Multiple-Model Estimation Fusion based on Weighted KL Divergence:

I. Send
{

X̂i,local
k|k , P̂i,local

k|k , βi
k

}
to the adjacent satellites Ai, and receive {X̂li ,local

k|k , P̂li ,local
k|k , βli

k}
from adjacent satellites Ai.

II. Compute the fusion weight
{

λi,li
k

}
of received local estimations, li ∈ {i, Ai}:

λi,li
k =

β
li
k

∑li∈{i,Ai} β
li
k

III. Multiple-Model fusion:

Xi
k|k =

(
Pi

k|k
)

∑
li∈{i,Ai}

λi,li
k

(
P̂li ,Local

k|k

)−1
X̂li ,Local

k|k(
Pi

k|k
)−1

= ∑
li∈{i,Ai}

λi,li
k

(
P̂li ,Local

k|k

)−1
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Step 3. State Update:

I. Initialization:

Xi
k|k[0] = Xi

k|k, Pi
k|k[0] = Pi

k|k
II. Consensus update:

For d = 0 : (Nd − 1)
Xi

k|k[d + 1] = Xi
k|k[d] + ∑

j∈Ai

Wij(X j
k|k[d]− Xi

k|k[d])

Pi
k|k[d + 1] = Pi

k|k[d] + ∑
j∈Ai

Wij

(
Pj

k|k[d]− Pi
k|k[d]

)
end for:

III. State update:

Xi
k|k = Xi

k|k[Nd] Pi
k|k = Pi

k|k[Nd]

5. Simulation and Discussion

In this paper, we focused on tracking a non-cooperative target, which could perform
maneuvers such as equilibrium glide and skip glide in near space. To verify the effectiveness
and advantages of the proposed FDMM algorithm for satellites’ tracking systems, two
simulation scenarios were established: Case 1 was designed to track an equilibrium gliding
target, and Case 2 was for tracking the skip-gliding target. The target trajectories in the two
scenarios were designed according to [39]. Four LEO satellites were used as the tracking
platform, and their communication topology is given in Figure 4.
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Unlike a centralized framework, in the FDMM algorithm there is no need for a central
satellite to communicate with and process data from the remaining satellites, and each
satellite only exchanges data with its adjacent satellites. In both simulations, satellite 1
only communicated with satellite 2 and satellite 3; and satellite 2 only communicated
with satellite 1 and satellite 4, as shown in Figure 4. In the centralized algorithms, one
satellite was the central node to communicate with the others. In addition, in the FDMM
algorithm, each satellite undertakes specific computing tasks, which is also different to
a centralized framework, where most computational tasks are completed by the central
satellite. By allocating the computing tasks of the MM filtering process to each satellite, the
computational efficiency of the tracking system is significantly improved.

The initial orbital parameters of the satellites are shown in Table 1. Each satellite was
able to observe the azimuth and elevation of the non-cooperative target at each sampling
moment. The sampling interval was set as 1s in this study.
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Table 1. The initial orbital parameters of the satellites.

Parameters a (km) e i (◦) Ω (◦) ω (◦) M (◦)

Satellite 1 7,300,000 0.000001 80.030 0 0.041 345
Satellite 2 7,300,000 0.000001 75.030 15 0.041 345
Satellite 3 7,300,000 0.000001 85.030 20 0.041 345
Satellite 4 7,300,000 0.000001 70.030 5 0.041 345

Table 2 gives the detailed information of the model set in the multiple-model algorithm.
In the FDMM algorithm, satellite 1 selects the Singer 2 model, satellite 2 selects the CA
model, satellite 3 selects the CV model, and satellite 4 selects the Singer 1 model.

Table 2. The detailed information of the used models.

Model Parameter Value

Singer 1 1

α 1
20

amax 20
Pmax 0.1

P0 0.3

Singer 2

α 1
amax 10
Pmax 0.01

P0 0.5

CV var(ω) 2 100
CA Sω

3 20
1 In the Singer model, α refers to the maneuvering frequency; α, amax , Pmax and P0 are the design parameters for
the different maneuvering modes; 2 var(ω) refers to the variance of the white noise, ω; 3 Sω refers to the power
spectral density of the white noise, ω.

In the FDMM algorithm, the satellite tracking system tracks the target through a
novel distributed multiple-model fusion framework, as shown in Figure 3. The com-
munications between the four satellites in the FDMM algorithm, in the simulation, are
presented below. Firstly, satellite 1, when it performed local filtering based on the Singer 2
model, needed to collect the measurements

({
zj

k, Rj
k

}
, j ∈ {2, 3}

)
from satellites 2 and

3. After satellite 1 received the state estimates
{

X̂ j,Local
k|k , P̂j,Local

k|k , β
j
k

}
, j ∈ {2, 3} from

satellites 2 and 3, it was able to perform the multiple-model fusion, based on the data({
X̂ j,Local

k|k , P̂j,Local
k|k , β

j
k

}
, j ∈ {1, 2, 3}

)
. Finally, satellite 1 exchanged the data

(
Xi

k|k[d], Pi
k|k[d]

)
with satellites 2 and 3, and updated its state estimation according to the consensus protocol.
The other satellites followed a similar communication process to that of satellite 1.

To objectively compare the performance of the tracking algorithms, the experimental
results of each algorithm were obtained through 100 Monte Carlo runs. The root mean-
squared error (RMSE) [23,40] of the network, and the average CPU time per period of each
satellite, were adopted as the performance index.

For the distributed algorithm, the RMSE of the Position estimate (PRMSE) at the
satellite si, and at time k, is shown in Equation (44):

PRMSEi
k =

√√√√ 1
M

M

∑
i=1

[(
xk − x̂i

k|k

)2
+
(

yk − ŷi
k|k

)2
+
(

zk − ẑi
k|k

)2
]

(44)
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where M refers to the number of the Monte Carlo experiments—which, in this study, was
M = 100. The RMSE of the Velocity estimate (VRMSE) at satellite si, and at time k, is shown
in Equation (45):

VRMSEi
k =

√√√√ 1
M

M

∑
i=1

[(
.
xk −

.̂
x

i
k|k

)2
+

(
.
yk −

.̂
y

i
k|k

)2
+

(
.
zk −

.̂
z

i
k|k

)2
]

(45)

The PRMSE and VRMSE of the overall nodes of the satellite network at time k were
respectively calculated as Equations (46) and (47):

PRMSEnetwork
k =

1
N

N

∑
i=1

PRMSEi
k (46)

VRMSEnetwork
k =

1
N

N

∑
i=1

VRMSEi
k (47)

where N refers to the number of computing satellites. For the distributed algorithm in this
study, N = 4, and for the centralized algorithm, N = 1.

In the distributed algorithm, the average CPU time per period referred to the average
time consumed by each satellite for computing in each cycle; correspondingly, in the cen-
tralized algorithm, it referred to the average time the central satellite spent in calculations
per cycle. This reflected the computational complexity of the algorithm. Both simulation
experiments were run on a laptop equipped with an AMD Ryzen 7 4800H with Radeon
Graphics 2.90 GHz CPU and the Windows 10 operating system.

5.1. Case 1: Tracking the Equilibrium Gliding Target
5.1.1. Simulation Introduction and Results

In Case 1, we focused on tracking the non-cooperative target in the equilibrium glide
mode. The flight lasted for about 300 s during the gliding phase. The trajectory of the target
is shown in Figure 5. This scenario aimed to study the performance of tracking algorithms
for a target with wide-ranging lateral maneuvers in 3D space.
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The initial position and velocity of the target in the ECI were [6416 km, 0, 0] and
[−9.7 m/s, 4416.4 m/s, 858.5 m/s], respectively. In order to simulate a more realistic
scenario, and to test the robustness of each tracking algorithm, an initial disturbance
was given, where the position errors were [1 km, 1 km, 1 km] and the velocity errors were
[1 m/s, 1 m/s, 1 m/s].
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In this experiment, the proposed Fast Distributed Multiple-Model algorithm (FDMM)
was compared with the following algorithms: the Consensus-based Strong Tracking Cu-
bature Kalman Filter algorithm (CSTACKF) proposed in [24]; the Consensus-based Dis-
tributed Multiple-Model algorithm (CDMM) proposed in [23]; the Improved CDMM
algorithm (ICDMM) combined with STF; and the IMM algorithm combined with STF.
Specifically, the CSTACKF algorithm was applied where the satellites took the same single-
motion model as the global model, and utilized the STACKF. Here, the Singer 2 model in
Table 2 was used as the global model for the CSTACKF algorithm. The CDMM algorithm
represented the satellites’ employment of a distributed multiple-model approach to track
the maneuvering target. Moreover, the ICDMM algorithm indicated that the satellites
simultaneously used the multiple-model approach and STF method, to track the non-
cooperative target. The IMM algorithm indicated that the satellites applied the interactive
multiple-model approach and the STF under a centralized framework.

The RMSE of the position and velocity for the different algorithms are given in
Figures 6 and 7, respectively. Figure 8 gives the comparison of the average CPU time
per period, and Figure 9 gives the comparison of the estimated trajectories with the true
trajectory in one Monte Carlo run. Table 3 gives the average tracking error of the total
tracking process in each algorithm.

Remote Sens. 2022, 13, x FOR PEER REVIEW 15 of 22 
 

 

Distributed Multiple-Model algorithm (CDMM) proposed in [23]; the Improved CDMM 
algorithm (ICDMM) combined with STF; and the IMM algorithm combined with STF. 
Specifically, the CSTACKF algorithm was applied where the satellites took the same sin-
gle-motion model as the global model, and utilized the STACKF. Here, the Singer 2 model 
in Table 2 was used as the global model for the CSTACKF algorithm. The CDMM algo-
rithm represented the satellites’ employment of a distributed multiple-model approach to 
track the maneuvering target. Moreover, the ICDMM algorithm indicated that the satel-
lites simultaneously used the multiple-model approach and STF method, to track the non-
cooperative target. The IMM algorithm indicated that the satellites applied the interactive 
multiple-model approach and the STF under a centralized framework. 

The RMSE of the position and velocity for the different algorithms are given in Fig-
ures 6 and 7, respectively. Figure 8 gives the comparison of the average CPU time per 
period, and Figure 9 gives the comparison of the estimated trajectories with the true tra-
jectory in one Monte Carlo run. Table 3 gives the average tracking error of the total track-
ing process in each algorithm. 

 
Figure 6. The comparison of position RMSE for different algorithms in Case 1. 

 
Figure 7. The comparison of velocity RMSE for different algorithms in Case 1. 

Figure 6. The comparison of position RMSE for different algorithms in Case 1.

Remote Sens. 2022, 13, x FOR PEER REVIEW 15 of 22 
 

 

Distributed Multiple-Model algorithm (CDMM) proposed in [23]; the Improved CDMM 
algorithm (ICDMM) combined with STF; and the IMM algorithm combined with STF. 
Specifically, the CSTACKF algorithm was applied where the satellites took the same sin-
gle-motion model as the global model, and utilized the STACKF. Here, the Singer 2 model 
in Table 2 was used as the global model for the CSTACKF algorithm. The CDMM algo-
rithm represented the satellites’ employment of a distributed multiple-model approach to 
track the maneuvering target. Moreover, the ICDMM algorithm indicated that the satel-
lites simultaneously used the multiple-model approach and STF method, to track the non-
cooperative target. The IMM algorithm indicated that the satellites applied the interactive 
multiple-model approach and the STF under a centralized framework. 

The RMSE of the position and velocity for the different algorithms are given in Fig-
ures 6 and 7, respectively. Figure 8 gives the comparison of the average CPU time per 
period, and Figure 9 gives the comparison of the estimated trajectories with the true tra-
jectory in one Monte Carlo run. Table 3 gives the average tracking error of the total track-
ing process in each algorithm. 

 
Figure 6. The comparison of position RMSE for different algorithms in Case 1. 

 
Figure 7. The comparison of velocity RMSE for different algorithms in Case 1. Figure 7. The comparison of velocity RMSE for different algorithms in Case 1.



Remote Sens. 2022, 14, 4239 16 of 22Remote Sens. 2022, 13, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 8. The average CPU time per period for different algorithms in Case 1. 

 

Figure 9. The comparison of the estimated trajectories to the true trajectory in one Monte Carlo run 
in Case 1. 

Table 3. The average tracking error of the total tracking process. 

Algorithm Average Position Error 1 (m) Average Velocity Error 2 
(m/s) 

FDMM 35.9289 18.0141 
ICDMM 63.5542 33.6745 

IMM 70.9382 35.9268 
CSTACKF 44.2134 19.9188 

CDMM 1119.1594 294.4672 
1 The average position error is the average of 𝑃𝑅𝑀𝑆𝐸௧௪ over time. 2 The average velocity error 
is the average of 𝑉𝑅𝑀𝑆𝐸௧௪ over time. 

5.1.2. Analysis and Discussion 
Although each tracking algorithm was able to achieve tracking of the non-coopera-

tive target, they exhibited different performances. In terms of the algorithm convergence 
rates, after being affected by the initial disturbance, the proposed FDMM algorithm 
showed a similar tracking convergence rate to the CSTACKF algorithm, while the rest of 
the multiple-model algorithms had slower convergence rates, as shown in Figures 6 and 
7. As there was no prior information on the target dynamics, model errors inevitably ex-
isted in the chosen model set of the multiple-model algorithms. Intense competition 
among the mismatched sub-models resulted in slower convergence. As the FDMM 

Figure 8. The average CPU time per period for different algorithms in Case 1.

Remote Sens. 2022, 13, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 8. The average CPU time per period for different algorithms in Case 1. 

 

Figure 9. The comparison of the estimated trajectories to the true trajectory in one Monte Carlo run 
in Case 1. 

Table 3. The average tracking error of the total tracking process. 

Algorithm Average Position Error 1 (m) Average Velocity Error 2 
(m/s) 

FDMM 35.9289 18.0141 
ICDMM 63.5542 33.6745 

IMM 70.9382 35.9268 
CSTACKF 44.2134 19.9188 

CDMM 1119.1594 294.4672 
1 The average position error is the average of 𝑃𝑅𝑀𝑆𝐸௧௪ over time. 2 The average velocity error 
is the average of 𝑉𝑅𝑀𝑆𝐸௧௪ over time. 

5.1.2. Analysis and Discussion 
Although each tracking algorithm was able to achieve tracking of the non-coopera-

tive target, they exhibited different performances. In terms of the algorithm convergence 
rates, after being affected by the initial disturbance, the proposed FDMM algorithm 
showed a similar tracking convergence rate to the CSTACKF algorithm, while the rest of 
the multiple-model algorithms had slower convergence rates, as shown in Figures 6 and 
7. As there was no prior information on the target dynamics, model errors inevitably ex-
isted in the chosen model set of the multiple-model algorithms. Intense competition 
among the mismatched sub-models resulted in slower convergence. As the FDMM 

Figure 9. The comparison of the estimated trajectories to the true trajectory in one Monte Carlo run
in Case 1.

Table 3. The average tracking error of the total tracking process.

Algorithm Average Position Error 1 (m) Average Velocity Error 2 (m/s)

FDMM 35.9289 18.0141
ICDMM 63.5542 33.6745

IMM 70.9382 35.9268
CSTACKF 44.2134 19.9188

CDMM 1119.1594 294.4672
1 The average position error is the average of PRMSEnetwork

k over time. 2 The average velocity error is the average
of VRMSEnetwork

k over time.

5.1.2. Analysis and Discussion

Although each tracking algorithm was able to achieve tracking of the non-cooperative
target, they exhibited different performances. In terms of the algorithm convergence rates,
after being affected by the initial disturbance, the proposed FDMM algorithm showed a
similar tracking convergence rate to the CSTACKF algorithm, while the rest of the multiple-
model algorithms had slower convergence rates, as shown in Figures 6 and 7. As there was
no prior information on the target dynamics, model errors inevitably existed in the chosen
model set of the multiple-model algorithms. Intense competition among the mismatched
sub-models resulted in slower convergence. As the FDMM algorithm adopted a new
multiple-model fusion framework, where the introduction of Wasserstein distance made
the weight distribution between models more reasonable, the initial disturbance had little
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impact on the convergence of the FDMM algorithm, whereas it had a greater influence on
the other three MM algorithms.

In terms of algorithm precision, the proposed FDMM algorithm exhibited the smallest
position and velocity average tracking errors among all the employed algorithms. After the
filtering process converged, it showed the smallest RMSE of position tracking, about 25 m,
as shown in Table 3, Figures 6 and 7. The CDMM algorithm adopted the UKF in the
tracking process, which had poor adaptability. The initial disturbance engendered a more
significant impact on the CDMM algorithm, compared to the ICDMM algorithm with the
STUKF. Moreover, the wide-ranging lateral maneuver also made the filtering of the CDMM
algorithm take a long time to converge, as shown in Figures 6 and 9. For other algorithms,
the CDMM algorithm without the STF showed the worst performance. After the filtering
finally converged, the ICDMM and IMM algorithms, which adopted the MM method, and
combined STF, showed higher filtering convergence precision than the CSTACKF algorithm,
which adopted a single model and STF. The results indicated that the integration of the
MM method and STFs was effective and exhibited higher performance.

In terms of the average CPU time per period, compared to other MM algorithms, the
results illustrated that the FDMM algorithm required far less computation time, as shown
in Figure 8, meaning that the FDMM algorithm had far less computational complexity
than other MM methods. In addition, the average CPU time of the FDMM algorithm was
close to the CSTACKF, which employed a single model, proving that the new proposed
distributed multi-model fusion framework in the FDMM algorithm could significantly
reduce the computational complexity of the MM algorithm.

In conclusion, the FDMM algorithm exhibited the best performance, in terms of
convergence speed, tracking precision, and average CPU time per period. Case 1 demon-
strated the advantages and effectiveness of the FDMM algorithm for satellites tracking
non-cooperative targets with wide-ranging lateral maneuvers in 3D space.

5.2. Case 2: Tracking the Skip-Gliding Target
5.2.1. Simulation Introduction and Results

In Case 2, we focused on tracking a non-cooperative target in the skip-gliding mode.
This experiment was conducted to study the tracking performance of algorithms for strong-
maneuvering non-cooperative targets.

The initial position and velocity of the target in the ECI were [6416.11 km, 0, 0] and
[−12.8 m/s, 4499.8 m/s, 0], respectively. The initial altitude of the target was 45 km, and
the initial longitude and latitude were (0◦, 0◦). The trajectory is given in Figure 10.
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The position and velocity RMSE of the algorithms are shown in Figures 11 and 12,
respectively. Figure 13 gives the comparison of the average CPU time per period, and
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Figure 14 gives the comparison of the estimated trajectories to the true trajectory in one
Monte Carlo run. The average tracking error of the total tracking process is given in Table 4.
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Table 4. The average tracking error of the non-cooperative target in the skip-gliding mode.

Algorithm Average Position Error 1 (m) Average Velocity Error 2 (m/s)

FDMM 35.7261 15.9015
ICDMM 55.1157 29.2621

IMM 61.2298 30.5339
CSTACKF 56.2843 28.8910

CDMM 919.9887 239.1422
1 The average position error is the average of PRMSEnetwork

k over time. 2 The average velocity error is the average
of VRMSEnetwork

k over time.

In Case 2, the proposed FDMM algorithm was also compared with the CSTACKF,
the CDMM, the ICDMM, and the IMM algorithms. The initial disturbance was also
given, where the position errors were [1 km, 1 km, 1 km] and the velocity errors were
[1 m/s, 1 m/s, 1 m/s]. Since the target was non-cooperative, no relevant prior dynamics
information could be obtained, to build an accurate motion model for the tracking algorithm.
To verify the robustness of these tracking algorithms, the same set-up as in Case 1 was
used in each multiple-model algorithm, despite tracking the highly maneuvering target
in Case 2.

5.2.2. Analysis and Discussion

When tracking the non-cooperative target in the skip-gliding mode, the position
RMSE and the velocity RMSE of the CSTACKF algorithm were not stable, as can be seen
in Figures 11 and 12. The CSTACKF algorithm took a single model, which mismatched
the motion of the target. Affected by the skip-gliding maneuver of the target, it showed
lower tracking process stability, and its tracking precision also fluctuated up and down.
As there was no adaptive filter, the CDMM algorithm was greatly affected by the initial
disturbance. In addition, the skip-gliding maneuver also made the filtering of the CDMM
algorithm take a long time to converge, as shown in Figures 11, 12 and 14. In Case 2, the
CDMM algorithm still showed the worst performance among the five algorithms.

The ICDMM and IMM algorithms, which incorporated STFs and MM methods, had
relatively high tracking accuracy after the filtering converged. Although the STFs and
MM methods improved their stability in tracking the non-cooperative target with strong
maneuverability, inaccurate sub-models in the MM algorithms engendered problems with
the convergence rate. Due to the sub-model competition, the convergence rate of the
tracking process was relatively slow when it came to the initial disturbances, as shown in
Figures 11 and 12.
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In contrast, the proposed FDMM algorithm, which also combines the STFs and MM
methods, showed the best performance among the algorithms. By using the proposed
fusion factors, the FDMM algorithm drastically reduced the competition among sub-models
in the multiple model methods, and improved the ability to handle the disturbance. As
shown in Figures 11 and 12, and Table 4, the FDMM algorithm exhibited a relatively
fast convergence rate, extremely high tracking accuracy, and a highly stable tracking
process. After the filter converged, the position-tracking error was reduced to about 26 m.
Furthermore, the position-average-tracking error and the velocity-average-tracking error
of the whole process were reduced to 35.7261 m and 15.9015 m/s, respectively.

The average computational costs per period of the ICDMM, CDMM, IMM, FDMM,
and CSTACKF algorithms were assessed, as shown in Figure 13. This proved again that
the FDMM algorithm had much lower algorithm computational complexity than other
MM algorithms, and demonstrated the advantages of the newly proposed distributed
multi-model fusion framework in the FDMM algorithm.

Overall, considering the performance of tracking-process stability, convergence rate,
tracking precision, and the average CPU time per period, the FDMM algorithm demon-
strated the best performance when tracking the target with a skip-gliding trajectory.

6. Conclusions

This paper puts forward a novel distributed multiple-model algorithm, the FDMM,
for satellites tracking non-cooperative near-space targets. The FDMM algorithm had high
robustness against disturbance, and high adaptability to the uncertainty modeling of non-
cooperative targets. To improve the tracking precision, the strong-tracking CKF and the
multiple-model methods were adopted in the FDMM algorithm, to cope with the intense
maneuvers of the target. To reduce the computational burden, a new distributed multiple-
model framework was developed. It first required each satellite to perform local filtering
based on its own single model, and assigned corresponding weights to the local estimates
based on the fusion factor; then, each satellite performed multiple-model fusion based on
the minimum weighted KL divergence for the estimates from adjacent satellites; finally,
the states of each satellite were updated based on the consensus protocol. The results of
the two experiments demonstrated that the FDMM algorithm had higher tracking process
stability, a faster convergence rate, higher tracking precision, and lower computational
complexity, when compared with other multiple-model algorithms (e.g., the CDMM, the
ICDMM, and the IMM algorithms). The effectiveness and advantages of the FDMM for
satellites tracking non-cooperative near-space targets were thus validated.

In this paper, to reduce the computational burden and improve the accuracy of tracking
a single non-cooperative near-space target, the FDMM algorithm was developed for satellite
tracking systems equipped with SAR. A multi-target tracking scenario, employing the
FDMM algorithm, has not yet been studied. In the future, we will develop the improved
algorithm based on FDMM for multi-target tracking. Furthermore, the communication
delay problem was not considered in this study. In the future, we will study the problem of
satellites tracking non-cooperative targets in near-space with communication delays.
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