
Citation: Kriese, J.; Hoeser, T.; Asam,

S.; Kacic, P.; Da Ponte, E.; Gessner, U.

Deep Learning on Synthetic Data

Enables the Automatic Identification

of Deficient Forested Windbreaks in

the Paraguayan Chaco. Remote Sens.

2022, 14, 4327. https://doi.org/

10.3390/rs14174327

Academic Editor: Shawn C. Kefauver

Received: 21 July 2022

Accepted: 24 August 2022

Published: 1 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Deep Learning on Synthetic Data Enables the Automatic
Identification of Deficient Forested Windbreaks in the
Paraguayan Chaco
Jennifer Kriese * , Thorsten Hoeser , Sarah Asam , Patrick Kacic, Emmanuel Da Ponte and Ursula Gessner

German Remote Sensing Data Center (DFD), German Aerospace Center (DLR), 82234 Wessling, Germany
* Correspondence: jennifer.kriese@dlr.de

Abstract: The Paraguayan Chaco is one of the most rapidly deforested areas in Latin America,
mainly due to cattle ranching. Continuously forested windbreaks between agricultural areas and
forest patches within these areas are mandatory to minimise the impact that the legally permitted
logging has on the ecosystem. Due to the large area of the Paraguayan Chaco, comprehensive in
situ monitoring of the integrity of these landscape elements is almost impossible. Satellite-based
remote sensing offers excellent prerequisites for large-scale land cover analyses. However, traditional
methods mostly focus on spectral and texture information while dismissing the geometric context
of landscape features. Since the contextual information is very important for the identification of
windbreak gaps and central forests, a deep learning-based detection of relevant landscape features in
satellite imagery could solve the problem. However, deep learning methods require a large amount
of labelled training data, which cannot be collected in sufficient quantity in the investigated area. This
study presents a methodology to automatically classify gaps in windbreaks and central forest patches
using a convolutional neural network (CNN) entirely trained on synthetic imagery. In a two-step
approach, we first used a random forest (RF) classifier to derive a binary forest mask from Sentinel-1
and -2 images for the Paraguayan Chaco in 2020 with a spatial resolution of 10 m. We then trained
a CNN on a synthetic data set consisting of purely artificial binary images to classify central forest
patches and gaps in windbreaks in the forest mask. For both classes, the CNN achieved an F1 value
of over 70%. The presented method is among the first to use synthetically generated training images
and class labels to classify natural landscape elements in remote sensing imagery and therewith
particularly contributes to the research on the detection of natural objects such as windbreaks.

Keywords: remote sensing; CNN; deep learning; random forest; Sentinel-1; Sentinel-2; windbreaks;
landscape features; Paraguay

1. Introduction

The Paraguayan Chaco is a complex ecosystem rich in rare species, and its dry forest is
part of the largest dry forest in the world [1]. At the same time, Paraguay is one of the fastest
deforested countries in Latin America, and more than 40% of the Paraguayan Chaco’s forest
cover has been lost since 1987 [2]. This is a major threat to the conservation of existing
flora, fauna and soil conditions. Paraguay’s forestry and environmental authorities try to
ensure the protection of the environment through the implementation of environmental
laws and resolutions, the basis of which was created in 1986 with Decree 18831/86 [3].
Among other aspects, it prohibits the deforestation of contiguous areas larger than 100 ha
and requires that the logged areas be separated by forested stripes at least 100 m wide.
These forested stripes primarily serve to preserve forest and protect the soil from wind
erosion, which is why they are also referred to as windbreaks in the following. Further
regulations concerning a redefinition of the width of windbreaks [4,5] and the protection
of the endangered tree species palo santo (Balnessia sarmientoi) [6], were defined in the
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following years. This resulted in the formation of central forest patches in agricultural
fields—a second important landscape feature in the Paraguayan Chaco that shall protect
the rare palo santo tree.

Similar regulations also exist in Argentina and define the realization of windbreaks
in the Argentinian Chaco [7]. The established rules are important to limit the negative
consequences that deforestation has on nature. Windbreaks connect micro-ecosystems by
allowing flora and fauna to migrate, and they have a positive influence on the microclimate.
They alter the magnitude and direction of wind, which regulates the temperature and
moisture of the soils and reduces soil erosion [8,9]. In the lee of windbreaks, the evaporation
of surface humidity is reduced, and the surface heats up more than in exposed areas [10].
The warmer and more humid soils, in turn, facilitate chemical and biological mechanisms
promoting an increased biological diversity [10]. Moreover, windbreaks can protect soil
ecosystems from permanent deterioration as a consequence of droughts and floods [10].
All of the mentioned points reveal the importance of intact forested stripes.

Ginzburg et al. [7] found that less than 40% of the mandatory windbreaks were present
in their study area in the Argentinian Chaco in 2012. In Paraguay, too, the environmental
regulations are often disregarded, and many of the windbreaks are narrower than they
should be, or the farmers cut wide aisles to connect neighbouring fields. Comprehensive
monitoring of the windbreaks is necessary. However, there are hardly any paved roads
in the Paraguayan Chaco, making it difficult to reach remote areas. In situ monitoring
of the environmental resolutions requires days of travel and is only possible selectively,
whereas satellite remote sensing can provide exhaustive, repeated, and detailed imagery of
remote areas.

Even though the importance of windbreaks is well known, only few publications
address the monitoring of windbreaks through remote sensing imagery. Liknes et al. [11]
presented a semi-automated, morphology-based approach using binary forest maps to
differentiate between different types of windbreaks (i.e., north-south or east-west oriented,
or L-shaped). Although their method distinguishes between windbreaks and riparian cor-
ridors, it is not applicable if the windbreaks are connected to other forest patches. Different
from Liknes et al. [11], most other studies on windbreaks do not classify the windbreaks
in an automated manner. To map windbreaks, Burke et al. [12] and Ghimire et al. [13]
used the commercial software “eCognition” and the “ENVI Zoom 4.5 Feature Extractor”,
respectively, to generate object polygons which they manually optimized in a second step.
Piwowar et al. [14] even waived commercial software, concluding that manual labelling
is faster than correcting all errors from the software results. Furthermore, Deng et al.
work on manual annotations for their analysis on the width [15] and continuity [16] of
windbreaks. For the detection of discontinuities, their approach requires vector lines of
windbreaks that are continuous over gaps in order to identify the gaps along the line [16].
A more recent publication by Ahlswede et al. [17] reviews the potential of deep learning
models to recognize linear woody features such as hedges, which have a similar structure
as windbreaks, in satellite imagery and shows promising results reaching an F1 score of
75%. To train the convolutional neural networks (CNNs), they had manually annotated
polygons for the individual hedges at their disposal. What all these approaches have in
common and what differentiates them from the situation in the Paraguayan Chaco is the
fact that they all address isolated windbreaks, well-separated from each other, while grids
of connected windbreaks are characteristic for the Paraguayan Chaco. Moreover, most of
these publications address much smaller study areas of less than 4000 km2 (study area
Paraguayan Chaco: 240,000 km2).

In contrast with [7,14–16], who manually digitised windbreaks based on forest masks,
we aim at an automatic recognition of gaps in windbreaks and of central forest patches
in agricultural fields. In the last decade, deep learning has become an important tool in
Earth observation [18–21]. This sub-field of machine learning uses neural networks to
analyse large amounts of data by learning suitable feature extractors. The basic structure of
neural networks consists of successive layers of adjustable parameters. Here, the increasing
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depth of the models reflects the possibility of being able to map increasingly complex
feature representations. Due to this model layout, with a sufficient amount and variability
of training data, deep learning models have the potential to learn complex feature rep-
resentations from the training data [22]. In particular, CNNs from the computer vision
domain for the analysis of image data [22,23] and their further development have led
to the consideration of multiscale spatial features [20,24–26], which make them the most
widely used deep learning model in Earth observation [19–21]. As stated above, large
and variable training data sets, e.g., sets of images with their corresponding pixel-wise
class label, are necessary to optimise a deep learning model sufficiently. Particularly in
Earth observation, the acquisition of training data is very time intensive and often requires
experts who are skilled in interpreting remote sensing imagery [27,28]. Furthermore, the
Paraguayan Chaco is a rather small application area in the deep learning domain. To train
a neural network on annotated images from the Paraguayan Chaco, probably the entire
region would be needed for training. Additionally, in case of mapping gaps in windbreaks,
such labelling is an extremely time-intensive task because each gap needs to be annotated
as an individual polygon.

To overcome these limitations, this study uses a deep learning approach and syn-
thetic training data to detect windbreak gaps and central forest patches. Similar to Lik-
nes et al. [11], we conduct the windbreak mapping based on binary forest maps. The forest
maps were derived from Sentinel-1 and -2 imagery using an random forest (RF) classifica-
tion to distinguish between forest and non-forest areas. Consequently, this simplifies the
following training of the CNN because it only learns from binary images. Thus, it is widely
independent of a specific sensor radiometry, acquisition geometry, and light conditions,
and only needs to focus on the spatial features. Additionally, instead of manually labelling
heaps of image tiles, we train our CNN on completely synthetically generated training data.
This is a novel approach for landscape feature recognition and has, to our knowledge, yet
only been applied in one study on natural landscape elements, i.e., [29], and in a few other
studies on human-made objects, e.g., [28,30,31]. By using synthetic data, we can not only
avoid resource-intensive manual work, but we can also make sure that sufficiently variable
and numerous training data are available. For a deep learning model to solve the given
task by learning a highly generalised but still accurate representation of the underlying fea-
tures, we need thousands of different examples. Furthermore, the synthetically generated
training data are adjustable, and therewith, it provides the opportunity to control the deep
learning model behaviour. In order to systematically embed expert knowledge about the
agro-environmental system, spatial features, and the Earth observation sensor, the recently
proposed SyntEO framework for synthetic data generation in Earth observation by Hoeser
and Kuenzer [28] was used as a strategic guide.

Based on the binary forest map and the synthetic training data set, we aim at mapping
deficiencies in windbreaks and central forest patches in an efficient and automated manner
in the entire Paraguayan Chaco for the year 2020. At the same time, we would like
to demonstrate in this study how the concept of a synthetic training data set can be
implemented in the remote sensing domain and reveal this method’s opportunities and
limitations.

2. Study Area

The study region of this work is the Paraguayan Chaco, which is located in the western
part of Paraguay. It constitutes 25% of the Great American Chaco—a forest region with a
subtropical climate spreading over several South American countries [1]. The landscape of
the Paraguayan Chaco is dominated by regularly flooded savannahs in the East and the
South. In contrast, the central and north-western parts are characterized by dry forests
which are, especially in the centre, permeated by agricultural fields. Even though the region
comprises more than 60% of the country, having an area of approximately 240,000 km2,
only 3% of the population lives there [1]. At the same time, the Paraguayan Chaco has
been identified as one of the regions with the highest rates of deforestation in South
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America [2,32,33]. Numbers for 2008–2020 show that every year, 3200 km2 of the forest is
logged [2], whereby the land is subsequently used as pasture in most cases [32,33]. Figure 1
shows an overview map of the Paraguayan Chaco with two magnifications of different
scales which reveal the typical shape and arrangement of the agricultural areas: rectangular
and grid-like. This structure is the result of a decree passed by the Paraguayan government
in 1986. It specifies that continuously logged areas must not be larger than 100 ha and
that they must be separated from each other by forested stripes with a minimum width of
100 m [3]. Intact forested stripes, also called windbreaks, are essential landscape elements
that protect the soil from wind erosion, which is important, since the Paraguayan Chaco is
a flat plane with average wind velocities of 16.2 to 24.5 km/h [1]. However, many of these
windbreaks are eroded or interrupted, which is depicted in Figure 1b.

Figure 1. Overview of the Paraguayan Chaco (right map) showing regular grids of cropland and cattle
areas, which are separated by windbreaks and partly contain central forest patches (magnifications (a
and b)). Background: Sentinel-2 RGB-image—median of 10/2020–12/2020.

3. Materials and Method

This work aims to identify two types of landscape features which are hereafter also
addressed as classes: It involves both the detection of forest patches that are centrally
located in some of the fields and the detection of gaps in forest stripes that serve as
windbreaks. The proposed method for detecting these features comprises five main steps
(see Figure 2) which are individually addressed in the following sections: The preparation
of a binary forest mask, the transfer of real-world observations of a domain expert to an
ontology that is machine-readable, the generation of synthetic training data, the training
of the adapted U-Net model on the synthetic data, and the application of the model to
remote sensing imagery. We also assessed the model accuracy based on manually labelled
imagery from the study area. Figure 2 provides an overview of the entire process. The
corresponding detailed description of all steps is shown in Figure 3.
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Figure 2. Overview of major building blocks of the data processing workflow.

Figure 3. Workflow for the classification of central forest patches and gaps in windbreaks in the
Paraguayan Chaco based on synthetic training data. The boxes with a double rim denote data
products or intermediate results and the boxes with normal rim are actions.

3.1. Generation of the Forest Mask

The classification of forest and non-forest areas is based on a RF model with various
spectral features derived from the preprocessed Sentinel-1 and -2 scenes from the year 2020.
The data, with a spatial resolution of 10 to 20 m, was obtained and processed in Google Earth
Engine [34]. For Sentinel-1, which provides imagery of a C-Band Synthetic-Aperture-Radar
(SAR) instrument, we used only descending orbit scenes of the Level-1 Ground-Range-
Detected (GRD) product. After filtering the data to VV (vertical sent–vertical received) and
VH (vertical sent–horizontal received) polarization, the resulting analysis-ready collection
comprised 426 scenes. To reduce the amount of data but still capture the phenological variation,
we calculated percentiles (10th, 25th, 50th, 75th, and 90th) of the annual stack of VV and VH
polarized images.

From the Multi-Spectral Instrument (MSI) onboard Sentinel-2, we used the Level-1C
product with Top-of-Atmosphere (ToA) reflectance and less than 30% cloud coverage. In
the resulting 3098 scenes, all remaining clouds were masked through the provided cloud
mask of the Level-1C product [35]. The following spectral bands were used for analysis:
blue (B2), green (B3), red (B4), near-infrared (B8), short-wave-infrared-1 (B11), and short-
wave-infrared-2 (B12) [36]. From this collection, we calculated spectral indices (NDVI, EVI,
NDWI [37], and Tasseled Cap Greenness [38]) as additional features, and added them to
the selected spectral bands. Similar to the processing of the Sentinel-1 data, we aggregated
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the annual Sentinel-2 stacks to percentiles of each spectral band or index. In addition,
we obtained the differences in percentiles (75th–25th and 90th–10th) from all Sentinel-1
backscatter and Sentinel-2 spectral features, resulting in 74 features in total.

The classification workflow is similar to the study of [2], who aggregated annual
Landsat data for long multitemporal forest cover change analysis in Paraguay. Modelling
has been conducted in two steps: Following a feature importance analysis of all 74 Sentinel-
1 and -2 features, we used the 20 most important features to train the RF classifier because
the reduced number of features increased the model performance. A list of the selected
features can be found in Appendix A Table A1. The random forest model was set up in
Google Earth Engine [34] with 500 trees. We used 1300 samples for model training and
testing, and thereof, 60% for training (780) and 40% for testing (520). These samples were
derived through visual interpretation of high-resolution images, accessed through the
historic archive of Google Earth from 2020. The forest mask (Figure 4) serves as data base
for the generation of synthetic training for the classification of gaps and central forests.

Figure 4. Binary forest—non-forest mask of the Paraguayan Chaco as derived from Sentinel-1 and
Sentinel-2 time series for the year 2020. The magnifications a and b show the spatial structure of the
forest landscape in detail.

3.2. Synthetic Training Data

Following the SyntEO framework [28], the first step of generating a synthetic training
data set to train a deep learning model for an Earth observation task, is the formulation of
an ontology, which is based on observations in real-world data. Spatial characteristics and
arrangement of different landscape features were derived from the binary forest mask of the
Paraguayan Chaco (Figure 4). Based on these observations, we defined an ontology of all
relevant features, containing numeric information on, e.g., size, distance, and shape of both
the objects we intend to classify, as well as other landscape features. The ontology builds
the foundation for the synthetic image generator that imitates the remote sensing-based
binary forest mask.

3.2.1. Landscape Features in the Paraguayan Chaco

The subset of the Chaco forest mask depicted in Figure 5 shows all types of landscape
features that we considered. The grid-like structure of white lines (forest) is most striking
on a large scale. These white lines are windbreaks that separate the agricultural fields (black)
from one another. There are always several fields of the same shape and size, which together
form a field grid. We can also observe that windbreaks frequently show interruptions: Some
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were probably generated for purposes, such as the central gates that appear in a bunch of
neighbouring fields or the central roads that can be recognized in the top left corner. Other
interruptions occur irregularly and show a more organic structure, for instance, the gaps in
the windbreaks on the lower left, most likely showing eroded areas.

Figure 5. Example tile from the binary forest mask of the Paraguayan Chaco that shows all features
which were considered during the generation of the synthetic data set. White areas represent forest
and black areas represent non-forest areas.

We analysed 45 randomly chosen field grids to initialise the ontology with reasonable
attribute values. This analysis showed that the fields have a length and width of approxi-
mately 350–2000 m and 350–1200 m, respectively. The width of the windbreaks depends
on the size of the adjacent field and varies between 20 and 120 m. In the centre of some
fields, there are small, mostly rectangularly shaped forest patches (central forests), some
with interruptions and others very compact. Most of the landscape features described
so far are geometric, but there are other organic structures that need to be considered in
addition to the natural gaps in the windbreaks. In the lower-left corner, small forest patches
can be seen within fields. These are presumably individual clusters of trees or shrubs. On
the right side, three fields show salt and pepper effects, which are possibly heterogeneous
vegetation-rich pastures for cattle. Even though these features are not classification targets,
they need to be specifically included in the training data as landscape features in order
to provide non-target training examples. Non-target information was found to be highly
beneficial during the generation of synthetic training data sets [28]. Otherwise, the U-Net
model might later not be able to cope with features in the remote sensing derived forest
mask that were not included in the training data. Thus, noise and small forest patches are
particularly important to model, as they could be mistaken for parts of a windbreak.

3.2.2. Synthetic Training Data Set Generation

To generate a synthetic image data set, we first specified the image size, as suggested
by [28]. Considering the hardware limitations of 11 GB of the employed Nvidia RTX 2080Ti
GPU, we defined the size of the artificial images to 1024 × 1024 pixels. This way, it was
possible to represent the 10 m resolution of the forest mask and cover large-scale features
and spatial contexts. For a detailed description of balancing hardware limitations, spatial
sensor resolution, and feature sizes, we refer to [28].

Once the framework’s technical configurations are defined, all collected information
can be transferred into machine-readable code. We based the implementation of the
automatized process, that is simultaneously generating synthetic images with pixel-level
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class annotations, on the Python packages NumPy [39], scikit-image [40], OpenSimplex [41],
and OpenCV [42]. Figure 6 shows three examples of synthetically generated scenes with
the corresponding annotations, which are the result of the generation process described
below. Starting with two arrays filled with zeros, we gradually changed the array values
to draw field grids into the empty array. These arrays build the basic framework for each
image tile and are also referred to below as image base maps or simply base maps. One of the
base maps will contain the synthetic scene with complete windbreaks, and the other will
show windbreaks with gaps. According to the visual impression of the relation between
fields and forest that should resemble the Chaco forest mask, every base map contains
ten field grids, each with individual attribute values. Attributes are, for instance, the grid
location, the number and size of fields in the grid, the width of windbreaks in between, or
the existence of gates and central forests. Some attributes, such as the width of a windbreak
or the size of central forest patches, directly depend on the field size. The gap size in the
windbreaks is in turn derived from the windbreak’s width. For each image, we first defined
the first field grid with all attributes, then drew this field grid field by field on the base
maps, and then continued in the same way with the next field grid. To draw the field grids,
we defined one template array valid for all identical fields of one field grid. This array
has about the size of one field and shows the field as a non-forest area, the surrounding
forested windbreak and central forests. By adding this template to the image base maps,
we generated two images in parallel: The one with the undisturbed and the other with
interrupted windbreaks. Before drawing the latter, roads, central gates, and gaps were
included, as they were previously defined.

Figure 6. Examples of synthetically generated scenes with their corresponding class labels and a
scene composition revealing the landscape features of which the scenes are composed. Areas that
appear grey in the second row are actually noisy areas with forest and non-forest pixels.

The gaps were generated by convolving random locations in the windbreaks with
quadratic erosion masks, which have the size of a typical gap and are filled with random
noise. Hence, there are three adjustment options to obtain realistic interruptions: The
number of locations, the size of the masks, and the density of the eroding pixels within
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the mask. The sizes of the filter masks were derived from the analysis of the 45 real-world
field grids, while the number of masks and the noise density were determined by visual
impression. We added strips of non-forest pixels either along or across a windbreak to
incorporate roads and central gates. When all fields of one grid were drawn onto the base
map, the next field grid was defined and added.

The second image row in Figure 6 gives an impression of how such a synthetic
scene can look. After all field grids were added to the base maps, they were randomly
rotated and sheared, which has the effect that the U-Net will be able to handle differently
oriented, as well as trapezoidal fields after training. Due to the rotation and shearing,
the corners of the base maps did not contain any information. To overcome this issue,
the base maps had previously been designed as 2048 × 2048 arrays, such that an area
of 1024 × 1024 pixels could be cropped from the centre. In the last step, small forest
patches were added to 25% of the samples in order to simulate small clusters of trees that
occur also within agricultural fields. The organic structures were generated by overlaying
three two-dimensional gradient noise functions with different frequencies and amplitudes,
using the OpenSimplex package [41]. To finally retrieve the pixel-level annotation of the
gaps, we subtracted the image with the interrupted windbreaks from the image with the
undisturbed windbreaks. The class labels of the central forests could directly be retrieved
from either of the two images. In a final step, we set all forest pixels to 1 and all non-forest
pixels to 0. Figure 6 shows three examples of synthetically generated images, with the
first row showing the underlying building blocks of the artificial scene: continuous forest,
fields, windbreaks, gaps in the windbreaks, and central forests. The second row shows the
resulting artificial image where fields and gaps are grouped to a non-forest class (black),
and forest, central forest, and windbreaks are grouped to a forest class (white). The aim
was to classify windbreak gaps and central forest, which is why only these two classes
were extracted from the scene composition and are contained in the pixel-level class labels
in the bottom row. In this way, we generated a data set comprising 10,000 samples. Each
sample consisted of a 1024 × 1024 pixel image, the corresponding pixel-level class label,
and a statistical description of all features within the image. The statistics of the features
which are embedded in the final synthetic data set are displayed in Figure 7.

Figure 7. Histograms of the synthetically generated training set (8000 samples). Every image contains
ten field grids with different features. Note that the validation set (2000 samples) histograms look
almost identical, and are therefore not displayed. Since all samples were generated on a random
basis, the split of the data into training and validation set corresponds to a random sampling.
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To use exclusively synthetically generated training data, the synthetic images must be
modelled as close as possible to the real-world situation because the trained CNN directly
maps the synthetic onto the real-world data domain. Since we observed only samples of
the real-world situation, we do not know the true statistical distribution of all the features.
Hence, the observations of real-world features can only serve as initial parameters for the
synthetic data generator. Accordingly, there is the true distribution, the distribution that we
observed, and the distribution of the synthetic data set. In addition, is nearly impossible
to cover all existing details of the real world, which is why we approached the generation
of a synthetic data set as an iterative process. We started with a data description which
was as simple as possible: a few features represented through equally distributed values.
By inferring the trained CNN on a set of 100 image tiles from the Paraguayan Chaco, we
identified deficits and adapted the distributions of the respective attribute values or added
new objects to the ontology. In this way, we improved the synthetic data set step-wise.

3.3. CNN Architecture and Training

The general CNN model architecture follows the U-Net layout proposed by Ron-
neberger et al. [24]. The skip connections between each convolutional and deconvolutional
stage in the encoder and decoder are important to restore small-scale details in the segmen-
tation masks, which was found to be an advantage for applications in the Earth observation
domain [21]. For a detailed illustration of the modified U-Net used in this study, see Figure 8.
The encoder consists of four residual blocks, each containing two consecutive convolutional
layers (3 × 3), one residual connection as proposed by [43] and a max pooling layer with a
stride of two. The four blocks subsequently reduce the input size of 1024 × 1024 pixels to
64 × 64 pixels. Within each block, we use LeakyReLU activation functions with a negative
slope of 0.3 after the first 3 × 3 convolution and before the max pooling. Furthermore, to
increase the sensitivity of the model for multiscale features, the atrous spatial pyramid
pooling (ASPP) module from the DeepLab architectures [25,26,44] has been plugged in
between the encoder and the decoder of the U-Net layout. The ASPP module allows using
different dilation rates in parallel to learn spatial features on multiple scales. The module
in the proposed model layout has five parallel convolutional layers: one 1 × 1 convolution
and four 3 × 3 convolutions with dilation rates of 2, 4, 8, and 12. All convolutions in
encoder, decoder, and ASPP module were conducted with a zero-padding. Additionally,
we included a dropout layer which is, for the sake of clarity, not included in Figure 8.
In the encoder, 30% of the input units are discarded after every max pooling and in the
decoder after the concatenation of the copied block from the encoder with the result of the
up-convolution. The final layer of the decoder has a depth of three and is derived through a
1× 1 convolution followed by a softmax activation function. The three segmentation masks
provide the probability for the pixels to belong to the classes central forest, windbreak gap,
and background. In total, the final CNN comprises 10,601,155 trainable parameters.

The model was built and trained by using the TensorFlow 2.4 deep learning library [45]
with the Keras 2.4 API [46]. The loss is provided by the sparse categorical cross-entropy
cost function, which is reduced by using the Adam optimiser [47] with a learning rate
decrease from 0.0001 to 0.00001 when a plateau of the loss value is reached. For the model
training, we used 8000 training and 2000 validation samples which were parsed in batches
of two. If there was no improvement in reducing the validation loss for three epochs, the
training was automatically terminated. The optimised model was then exported and ready
for predicting on the remote sensing derived forest mask. Figure A1, in the Appendix A,
documents the development of the training and validation loss during training.
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Figure 8. Structure of the used U-Net with ASPP module.

3.4. Image Segmentation on Real-World Data

To use the customized U-Net model for classifying windbreak gaps and central forests
in real-world data, we brought the forest mask of the Paraguayan Chaco into a form which
the model can process. We trained our CNN on synthetic training data with a spatial extend
of 1024 × 1024 pixels and a depth of one channel. Since the real-world binary forest mask
also had a single channel, we only had to divide the entire mask of the Paraguayan Chaco
into tiles of 1024 × 1024 pixels, which resulted in 3819 tiles for prediction. As model output
for the real-world tiles, we received 3819 tiles showing the predictions for the windbreak
gaps and 3819 tiles showing the central forest predictions. Even though the CNN was not
trained to classify agricultural fields as a separate class, we derived this class from the
classification results by defining all remaining non-forest areas between 10 and 20,000 ha as
such. These include all non-forest areas from the forest mask less than the detected gaps.
This step is legitimate to apply in the Paraguayan Chaco, where there are hardly any other
non-forest areas apart from farms that are usually smaller than 10 ha, and the more densely
populated area around the Filadelfia urban area, which exceeds 20,000 ha. We merged the
tiles back together for subsequent analysis, resulting in continuous classification results for
the entire Paraguayan Chaco.

3.5. Evaluation

To evaluate the results, we used the intersection over union (IoU), the F1 score, and
the Kappa coefficient [48]. The latter quantifies the degree to which a classification differs
from a random classification with the same statistical class distribution. Possible values
are between −1 and 1, whereby a value of 0 means that the probability for a correct
classification is the same as if the decision was made randomly. Positive Kappa values
indicate a better classification than by chance, while negative Kappa values indicate a
contrary class assignment. The second metric that we considered is the F1 score:

P =
TP

TP + FP
(1)
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R =
TP

TP + FN
(2)

F1 =
2 × P × R

P + R
(3)

Precision P measures the fraction of predictions that are correct, whereas recall R
provides the share of made predictions over all relevant elements. The abbreviations TP,
FP, and FN denote true positive, false positive, and false negative, respectively. The F1 score
is the harmonic mean over precision and recall, and ranges between 0 and 1. The IoU, also
ranging between 0 and 1, is a metric used in the computer vision domain and describes the
fraction of the correctly classified area (TP) over the union of all TP, FP, and FN areas. For
more detailed information, we refer to [49].

The model performance was evaluated based on a test set of 60 manually annotated
image tiles from the Paraguayan Chaco, each 1024× 1024 pixels in size. Since the annotation
of gaps which are often only single pixels is a complicated task, we digitalized individual
fields as a class. In a subsequent step, we considered all non-forest pixels that are within a
distance of 150 m to a field, but not part of any field, as gaps. The labelling of the forest
areas that are to be classified as centre forest was performed by a straightforward manual
annotation. The resulting real-world test set shows 1599 fields, 165 centre forests, and
132,303 gaps in an area of 6291 km2.

4. Results

Our application aimed to identify gaps in windbreaks and central forest patches in
agricultural fields of the Paraguayan Chaco in a two-step approach. First, an RF classifier
was used to create a binary forest map of the study area. The resulting map has an overall
accuracy of 92.9% and a Kappa coefficient of 0.82. As this forest cover map was the data
basis for the design of the synthetic data set and also input for the CNN inference, it was
already presented in Section 3.1 in Figure 4. In the second step, a CNN was trained to
classify central forests and gaps in windbreaks. Figure 9 shows the classification results
of two tiles along with two magnifications that reveal more details. The top row of the
illustration displays for two tiles both the Sentinel-2 RGB composite and the binary RF
classification of the forest areas with the gaps and the central forests that were identified by
the trained CNN. In the corresponding magnifications below, the non-forest areas are not
displayed and for a ground-truth reference, the results are placed upon a Sentinel-2 RGB
image, in which the windbreaks are clearly visible. In both magnifications, paths separate
the windbreaks into two parallel forest strips, and there are passages between the fields,
either in the field corner magnification (a) or centrally positioned magnification (b). Even
though the windbreaks in magnification (a) look very consistent in the satellite image, we
can see that the derived forest mask does not cover them completely. From a visual analysis
of the Sentinel-2 image, it is very likely that some windbreak pixels were falsely classified as
non-forest areas, which might be the result of mixed pixels in the satellite image, which has
a 10 m resolution. The windbreaks in magnification (b) are wider than in magnification (a)
and were detected completely by the RF classifier. Unlike in the first example, most of
the paths within the windbreaks were not classified as non-forest areas. Only one road
in the upper part of the magnification seems to be wide enough to provide the required
spectral information. The right column in Figure 9 shows the areas which the U-Net has
classified as gaps. For magnification (a), the classified gaps include all pixels that belong to
the windbreak but were previously classified as non-forest by the RF model, as well as the
interruptions and passages that we could already identify in the satellite image. Hence, the
identified gaps comprise both actual windbreak gaps and parts of the windbreaks that were
missing in the forest mask. In magnification (b), the existing windbreaks were captured
completely by the forest mask. Therefore, all pixels that were subsequently classified as
gaps are actual gaps. The CNN correctly identified both the paths along as well as the
interruptions across the windbreaks as gaps.
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Figure 9. Classification results for the forest mask (RF classifier) and the classified windbreak gaps
and central forests (CNN). Two tiles (A and B) with magnifications (a and b) of the agricultural areas.

Figure 10 shows again the classification results for tiles A and B as well as five other
tiles of the study area (C–G) to better visualise the variety of landscape patterns in the
Paraguayan Chaco. For each tile, the Sentinel-2 RGB image is shown to the left, and the
binary forest maps with the U-Net classification are shown to the right. In most cases, all
central forests in one field grid were localized correctly (e.g., tiles C, D). Thereby, the model
did not only recognize that there is a central forest, but also all pixels of a central forest
were classified correctly. However, in some cases where the shape of the central forest
patches differed strongly from what is proposed in the synthetic data set, this landscape
class was not recognized correctly (e.g., tile A). During the real-world observation of the
45 field grids, none of the central forests exceeded 400 m, so longer central forests were not
included in the synthetic training data. Accordingly, the model had difficulties identifying
the exceptionally long central forests in tile A (approximately 100 m × 480 m). A second
reason why central forests might not be detected are “salt and pepper”-like areas (e.g.,
tile D) which simultaneously trigger an over-classification of gaps. Apart from regions near
rivers, which were not included in the training data, there are hardly any areas in which
central forests are classified as false positives. In tile G, we can also see that rivers provoke
an increased false positive rate for gaps as well. The inclusion of more natural structures
such as rivers could reduce the overestimation of central forests and gaps in these regions.
One might also expect that smaller groves of trees or shrubs (e.g., tiles E, F) might also be
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misinterpreted as part of a windbreak or as a central forest. However, this is not the case.
The trained CNN is able to disregard such forest patches for classification purposes.

Figure 10. Classification results for the forest mask (RF classifier) and the classified windbreak gaps
and central forests (CNN). Tiles (A–G).

Overall, the classification of windbreak gaps shows robust results for both small
central gates (e.g., tile B), as well as for very eroded forest stripes (e.g., tiles D, E), and
forested stripes which contain a road (e.g., tiles A, E). Moreover, in very narrow (e.g., tile
D) and very wide (e.g., tile F) windbreaks, the model is able to recognize gaps. Tile F
additionally poses the challenge that the fields are not structured in regular grids as they
usually are in the Paraguayan Chaco, but rather in four blocks of horizontal stripes of forest
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and non-forest. The segmentation of gaps that need to be filled to separate the individual
fields from each other is reasonable.

For a quantitative evaluation of the CNN performance (Table 1), we considered the
model performance on the test set from the Paraguayan Chaco. The model reached an
F1 score of 73.6% classifying the central forests and a score of 70.4% for the windbreak
gaps. Additionally, the agricultural fields, which were derived by considering all non-forest
areas excluding the classified gaps, sufficiently match the manually annotated fields, even
reaching an F1 score of 95.7% and an IoU of 91.7%. Considering the IoU of all three classes,
the model reached a mean IoU (mIoU) of 68.1%. During the model training, we did not
distinguish between gaps in windbreaks and other gaps in the forest cover, which is why
we also did not consider any other gaps except for windbreak gaps in the evaluation. The
test data set included gaps in the direct neighbourhood of agricultural fields or field grids,
and all other detected gaps which were further away than 150 m from a field were masked.
For the central forests, the precision value (77.3%) is higher than the recall (70.2%), which
entails that central forests are rather missed out than there being areas falsely classified as
central forests. In the case of the gaps, the recall (75.7%) is higher than the precision (65.9%).
For this class, the trained CNN showed a tendency to classify more pixels as a gap than
missing gap pixels.

Table 1. Evaluation results for the classification of fields, central forests and gaps, evaluated on the
manually annotated test data set of the Paraguayan Chaco.

Precision Recall F1 Kappa IoU

Fields 95.5% 95.9% 95.7% 0.94 91.7%
Central Forests 77.3% 70.2% 73.6% 0.74 58.2%
Gaps 66.0% 75.8% 70.6% 0.70 54.5%

5. Discussion

With their high spatial and temporal resolution, the Sentinel-1 and Sentinel-2 satellites
meet the requirements to map land use and land cover of large areas. However, a good map
of forest and non-forest areas alone is not sufficient for monitoring the various functions
that the forests provide in the Paraguayan Chaco: Large and continuous forest stands
are required to provide shelter for numerous species, forested stripes between pastures
are needed to protect the soil from wind erosion, and through central forest patches in
agricultural areas, the rare tree species palo santo must be protected [3,6,10]. In combination
with synthetic data generation to train deep learning models, satellite remote sensing offers
the possibility of large-scale monitoring of environmentally valuable landscape elements in
the Paraguayan Chaco. So far, this potential has not been exploited. With an RF classifier,
we have derived a forest cover map of the entire Paraguayan Chaco from Sentinel-1 and
Sentinel-2 data. On this basis, we have developed a synthetic data set which can be
generated automatically, depicting structures of the derived forest mask. Our results
have shown that the customized U-Net, which we trained on the synthetic data set, is
capable of identifying gaps in windbreaks and central forests with F1-scores of 70% and
73%, respectively, in the entire Paraguayan Chaco without need for additional input data
or information.

For a holistic discussion of the results, we first discuss the binary forest map of the
Paraguayan Chaco because the entire classification of forest landscape elements is based on
this map. In the visual analysis, we have seen that the forest mask mainly shows problems
in the windbreaks, even though the RF classifier reached an overall accuracy of more than
92%. In particular, the thin windbreaks of 20 to 40 m pose a problem for the classifier,
most likely due to the only slightly higher spatial resolution of the satellite input data
(10 m). Therefore, major parts of the thin windbreaks are represented by mixed pixels,
containing both forest and non-forest spectral information. A second possible reason for
the incomplete detection of existing windbreak pixels is that the windbreak is degraded
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and does not consist of an intact forest, but only of shrubbery. In this case, the classification
as non-forest would be correct. We see that based on a Sentinel derived forest mask with a
10 m resolution, it is not possible to differentiate between obviously existing gaps in the
form of passages, gaps due to degradation (e.g., shrubbery), and gaps due to misclassified
pixels (e.g., mixed pixels). Particularly, the misclassified pixels in the forest mask affect
the subsequent classification of gaps. Figure 9 shows that the occurrence of many gaps
in the forest mask does not pose a problem to the U-Net when detecting the gaps in
the windbreaks.

Nevertheless, there are some limitations in detecting windbreak gaps because the
synthetic training data do not include all details that appear in the forest mask. The trained
U-Net employs the features it learns from the synthetic data to classify all features it sees
in the real data. For instance, we did not include roads through the compact forest in the
synthetic data. Thus, the model classified these as gaps. To the trained CNN, the roads are
small non-forest zones between coherent woodlands, which is indeed very similar to the
appearance of the gaps on which the model was trained. We saw that the elongated central
forests could not be detected in tile A in Figure 10. These central forests had a length of
approximately 480 m, which exceeds the maximum length of central forests of 400 m in the
artificial data, as we can also observe in the statistical distributions of landscape features
(Figure 7). We see in this example that it might happen that the synthetically generated
data do not cover the entire range of attribute values as they occur in real-world data.
However, for manually labelled data, too, it is probable that the training data do not contain
the exact same features and distributions over attribute values as there are in the area of
application. Having the possibility to immediately compare the statistical distributions
(Figure 7) of the artificial training set to the problematic features in the real-world data is
one big advantage of using synthetically generated training data. Using manually labelled
training data would require an additional step to derive statistics. A second benefit is
that one can directly modify the features in the training data and, for instance, increase
the maximum length of central forests. This would be almost impossible to realize with
manually labelled data. Figure 6 shows the scene composition on which the synthetic
images were based. Hence, the information where there are windbreaks, agricultural areas,
and compact forests already exist, the extension of the prediction by these classes can easily
be implemented by adding them to the class labels. Manual labelling of one additional
class, e.g., to additionally classify pixels that belong to agricultural areas, would probably
take weeks compared to the generation of a new synthetic data set which is easily feasible.

The visual analysis of the classification results also revealed that natural structures, for
instance, water bodies, provoked falsely classified central forests and gaps. To prevent such
misclassifications, we would have had to include more natural structures in the synthetic
training data. Although we have shown through the integration of the small forest patches
that it is possible to model naturally structured features, the synthetic design of such
structures is more complex and time-intensive than the synthetic design of geometric
features. In addition, this involves increased use of random variables and noise functions,
which makes it difficult to numerically control the size or shape of the resulting landscape
elements. Hence, there is always a trade-off between modelling the images as realistically as
necessary while keeping the data generation process as simple and traceable as possible to
make sure that the synthetic data design does not become more time-intensive than manual
labelling. Additionally, we have also noticed that simply adding new features might harm
the classification performance of existing features because statistical distributions that were
suitable before may need to be adjusted as well.

In summary, the areas within the windbreak fractions were well identified as gaps such
that the union of forest mask and detected gaps give a good approximation of where there
should be forest to protect the fields from wind erosion. However, it must be considered
that the detected gaps are spaces in the derived forest mask and not necessarily spaces in the
actual windbreaks. Although the windbreak gaps are partly overestimated, the result can
present a good overview of where there are hot spots of defective windbreaks and where the
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windbreaks are in good condition. Such maps can be particularly beneficial to Paraguayan
forestry and environmental authorities such as the Instituto Forestal Nacional (INFONA),
which is concerned with monitoring regulations such as the presence of windbreaks and
central forests. It would, therefore, be interesting to investigate how the presented approach
performs on higher resolved imagery from satellites, such as Planet (0.5–3 m) or WorldView
(0.3–3.7 m) satellites. However, it is unclear whether these purely optical data can produce
forest maps of comparable quality as the combination of the multispectral optical Sentinel-2
images with the radar images from Sentinel-1. In addition, Planet and WorldView data
are less easily accessible. Another strength of synthetically generating data is that once a
framework is set up, it can easily be adapted to related tasks or new application regions
with a similar landscape. For instance, if the fields in a new application area have different
shapes, are smaller, larger, or even round, the concerned features can be adapted in the data
set generator, which is much faster than a setup from scratch. Additionally, the adaptation
to new spatial image resolutions is possible, provided that the landscape features can still be
adequately displayed on the specified image size (here, 1024× 1024 pixels). The Argentinian
Chaco, extending across the country’s North, strongly resembles the Paraguayan Chaco
and would therefore be another possible area where the presented method can be applied.
Presumably, only small modifications of field sizes or barrier widths would be required.
Bolivia, bordering Paraguay’s Northwest, also has large, agriculturally dominated regions.
However, the fields there have thinner, but more frequent, windbreaks arranged in a striped
rather than a grid pattern. Thus, more extensive adjustments to the data generator would
probably be necessary. Another region where windbreaks between logged areas were left
in a grid-like structure, almost identical to the structures in the Paraguayan Chaco, is the
island Hokkaido in Japan [50]. Here, the forest strips are about 180 m wide and occur every
3 km, approximately.

It can be concluded that the presented approach works well for classifying features
in binary images, which in return makes the gap and forest patch detection dependent on
the quality of the binary mask. Therefore, it would be interesting to apply this method
directly to RGB or even multispectral images in future research. However, the generation
of artificial scenes with realistic surface textures can become a complex task. The fact that
more complex tasks require a much larger number of training samples is not a problem
since, theoretically, an infinite number of artificial training images can be generated, which
is probably the greatest advantage compared with manual data generation. Most other
studies using synthetic training data for remote sensing tasks address the detection of
human-made objects such as aircraft [51–53], vehicles [54,55], or wind farms [28] and wind
turbines [56]. Berkson et al., Liu et al., Weber et al., and Han et al. [51,53–55] use real
satellite images and images generated with existing software and position the object of
interest onto the satellite image background. Such an approach would not have been
feasible for detecting central forests and windbreaks because these are not explicit objects
such as aircraft. Similar to this study, Hoeser and Kuenzer [28], Hoeser et al. [56] and
Isikdogan et al. [29] break away from the division into foreground and background and
model the landscape scenes as a whole. Hoeser and Kuenzer [28] and Hoeser et al. [56]
aim at a global detection of wind turbines in offshore wind farms and generate detailed
and complex synthetic SAR-scenes of coastal areas to use these for training. Since complete
landscape modelling is resource-expensive, we chose to pursue a more straightforward
approach by focussing on a binary representation of the landscape. This proceeding is
similar to that of Isikdogan et al. [29] who generated a synthetic data set to extract the
centre lines of river networks in MNDWI images. Although river networks often have
natural twists and turns, the authors successfully used straight geometries to model the
river landscape. Thereby, they proved that it is not always necessary to generate synthetic
images that perfectly imitate the real world, but that it might be sufficient to represent basic
spatial contexts and features.

With our approach, we show that it is possible to model more complex landscapes,
allowing analysis beyond a land cover classification. It is the first approach to synthetically
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model the spatial arrangement of different land use classes and subdivide the classes into
further subclasses based on their geometry and arrangement. The methodology can be
applied and adapted to new tasks and is straightforward to implement. Additionally, once
a synthetic data set is created, and a model is set up and trained according to our approach,
it is suitable to monitor the future developments of the considered landscape features on a
regular basis. In Paraguay, there are no signs of the intensive use of land for cattle ranching
and the accompanying deforestation diminishing in the coming years. Therefore, it is all
the more important to ensure that at least the regulations implemented for the protection
of soil, flora, and fauna are adhered to. Such supervision can be enabled through the
presented method. The next step towards an operational system is to find the most suitable
architecture for this task. A comprehensive comparison with different state-of-the-art
architectures such as DeepLabV3+ will be an important challenge in subsequent research
in order to obtain the best possible classification results.

6. Conclusions

This study presents a method to automatically detect natural landscape features
relevant for environmental monitoring and conservation measures in Sentinel-1 and -2
images. In particular, we derived a forest mask and generated a synthetic training data
set to classify gaps in windbreaks and small forest patches that are centrally located in
agricultural areas in the Paraguayan Chaco. The customized U-Net, which was exclusively
trained on synthetic data, reached F1 scores of 70.4% and 73.6% for the classification of
windbreak gaps and central forests, respectively. The method we propose has the potential
to be a great asset to the preservation of intact ecosystems because it enables the automated
and exhaustive analysis of the current state of important landscape features.
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Appendix A

Table A1. Variable importances of the RF classification to derive the forest mask.

Sensor Feature Name Variable Importance Sensor Feature Name Variable Importance

S2 SWIR1 90th 184.3 S2 Green 50th 144.5
S1 VV 50th 179.5 S2 NDVI 90th 143.4
S2 SWIR1 75th 173.2 S2 Diff SWIR1 75th–25th 143.3
S2 Diff SWIR1 90th–10th 169.4 S2 NDVI 50th 142.8
S2 NDVI 25th 166.4 S2 Green 10th 141.8
S2 Diff Red 75th–25th 165.9 S2 SWIR1 25th 141.3
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Table A1. Cont.

Sensor Feature Name Variable Importance Sensor Feature Name Variable Importance

S1 Diff VV 90th–10th 159.1 S2 Blue 10th 140.8
S2 SWIR2 75th 157.8 S2 SWIR2 10th 135.0
S1 VV 75th 153.3 S2 NDVI 90th 134.1
S2 Red 25th 151.5 S2 NIR 10th 131.7

Figure A1. Development of the training and validation loss during model training.
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