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Abstract: Forage grass is very important for food security. The development of artificial grassland
is the key to solving the shortage of forage grass. Understanding the spatial distribution of forage
grass in alpine regions is of great importance for guiding animal husbandry and the rational selection
of forage grass management measures. With its powerful computing power and complete image
data storage, Google Earth Engine (GEE) has become a new method to address remote sensing data
collection difficulties and low processing efficiency. High-resolution mapping of pasture distributions
on the Tibetan Plateau (China) is still a difficult problem due to cloud disturbance and mixed
planting of forage grass. Based on the GEE platform, Sentinel-2 data and three classifiers, this study
successfully mapped the oat pasture area of the Shandan Racecourse (China) on the eastern Tibetan
Plateau over 3 years from 2019 to 2021 at a resolution of 10 m based on cultivated land identification.
In this study, the key phenology windows were determined by analysing the time series differences
in vegetation indices between oat pasture and other forage grasses in the Shandan Racecourse, and
monthly scale features were selected as features for oat pasture identification. The results show
that the mean Overall Accuracy (OA) of Random Forest (RF) classifier, Support Vector Machine
(SVM) classifier, and Classification and Regression Trees (CART) classifier are 0.80, 0.69, and 0.72 in
cultivated land identification, respectively, with corresponding the Kappa coefficients of 0.74, 0.58,
and 0.62. The RF classifier far outperforms the other two classifiers. In oat pasture identification,
the RF, SVM and CART classifiers have high OAs of 0.98, 0.97, and 0.97 and high Kappa values of
0.95, 0.94, and 0.95, respectively. Overall, the RF classifier is more suitable for our research. The oat
pasture areas in 2019, 2020 and 2021 were 347.77 km2 (15.87%), 306.19 km2 (13.97%) and 318.94 km2

(14.55%), respectively, with little change (1.9%) from year to year. The purpose of this study was to
explore the identification model of forage grass area in alpine regions with a high spatial resolution,
and to provide technical and methodological support for information extraction of the forage grass
distribution status on the Tibetan Plateau.

Keywords: identification of oat pasture areas; Sentinel-2; random forest; Google Earth Engine;
Shandan Racecourse

1. Introduction

China is a populous country with a population of 1.4 billion. Food safety has always
been its top priority. In the past 30 years, the dietary structure of Chinese residents has
undergone tremendous changes, mainly manifested in the reduction in ration consumption
and the increase in consumption of animal products such as meat, eggs, and milk. However,
China is still unable to provide all residents with high-quality and safe meat, eggs, milk and
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other livestock products [1,2]. Therefore, the safety of forage is crucial to food safety [3,4].
Moreover, China is still strengthening the production of rations and ignoring the supply of
animal forage. The development of artificial grassland is the key to solving the shortage
of forage [2]. To date, the proportion of animal husbandry output value in agriculture in
the country is still very low compared with that in developed countries [5]. In countries
such as Australia and New Zealand, and in European countries with developed animal
husbandry industries, artificial grassland accounts for more than 50% of the total grassland
area [6]. An important measure for the sustainable development of animal husbandry in
the future is to establish intensively managed artificial grassland.

Artificial grassland is an artificial herbaceous plant community established by adopt-
ing production technology measures similar to those of crop planting. Suitable and excellent
grass species are selected for planting, irrigation and fertilization, aiming at producing
high-quality and high-yield forage grass. This process is an important part of the grassland
animal husbandry system, which can supplement the shortage of natural grassland and
solve the imbalance between the supply and demand of grass and livestock caused by sea-
sonal changes. The forage that is produced can be used as silage, fodder, semidry silage or
hay. Therefore, the establishment of artificial grassland is an important measure to develop
an intensive grassland animal husbandry system and implement ecological restoration
and reconstruction measures and sustainable development strategies. Oat pasture has the
advantages of high sugar content, good palatability and high fiber content, is rich in protein
and of high quality and has high feed value [7]. Known as the “Roof of the World” and the
“Third Pole”, the Tibetan Plateau an important grassland animal husbandry base in China
and the largest natural grazing land in China [8]. The Zhangye Shandan Racecourse which
belongs to the Tibetan Plateau has a cool climate and fertile soil, with ideal conditions
for plateau forage grass growth. It is a good area for plateau green feed production and
processing, and has produced a high-quality oat pasture base of the Shandan Racecourse
brand [7].

Understanding the spatial distribution of artificial grassland is of great importance
for guiding animal husbandry practices and rationally selecting forage management and
cultivation measures. However, traditional methods such as statistical reports and sampling
surveys consume considerable manpower and material resources, and are inefficient and
inaccurate. Emerging remote sensing technology provides the possibility of extracting
information on the planting area and yield of artificial grassland in large areas [9]. With the
rapid development of remote sensing technology, there are an increasing number of remote
sensing recognition algorithms for crops and forages, which can be roughly divided into
two categories. The first category is the traditional visual interpretation algorithm, which is
time-consuming and labor-intensive, so it is not suitable for large area data acquisition. The
second is machine learning algorithms, including classic machine learning methods that
have emerged with remote sensing technology, such as automatic classification algorithms,
maximum likelihood and iterative self-organizing data analysis. There is also a new
generation of machine learning methods developed in recent years, such as random forests
(RFs), convolutional neural networks and other methods. Machine learning models are
data-driven, and their methods of automatically retrieving and interpreting data are flexible
and can be used for any training task. Deep learning algorithms such as convolutional
neural networks and fully convolutional neural networks are difficult to popularize in
large-scale crop area extraction due to their time-consuming data processing and high
requirements regarding the number of samples [10]. Some of the spectral bands in Sentinel-
2 data have a higher spatial resolution (10 m) than MODIS data and Landsat-8 data. In the
case of dual satellites, the temporal resolution is also higher than that of MODIS data and
Landsat-8 data, only five days [11,12]. Many studies have shown that Sentinel-2 data can
be used for area identification and yield estimation of small-scale crops [13–16].

At present, research on crop information extraction around the world is relatively
mature. Most of the studies are based on Gao Fen (GF) data, Sentinel data and Landsat
data, using RF, support vector machine (SVM), neural network and other methods to
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extract crop information. Huang et al. [9] calculated the normalized difference vegeta-
tion index (NDVI), enhanced vegetation index (EVI), normalized difference water index
(NDWI) and wide dynamic range vegetation index (WDRVI) based on GF-1 wide field
view (WFV) data and used a random forest classification algorithm to extract corn and
soybean planting areas in Heihe city, Nenjiang County, Heilongjiang Province. Based on
TerraSAR-X data, Sonobe et al. [17] compared the recognition effects of three classification
algorithms, a decision tree, support vector machine and random forest, on various crops
in Hokkaido, Japan. The results showed that the support vector machine method had the
highest recognition accuracy. Based on Landsat-8 and Sentinel-1 data, Kussul et al. [18]
used four methods, random forest, evolutionary neural network, one-dimensional neural
network, and two-dimensional neural network methods, to classify and map summer
crops in Ukraine. The results showed that the accuracy based on the two-dimensional
neural network was the highest, reaching 94.60%. Based on Sentinel-1 and Sentinel-2 data,
Cai et al. [19] used an object-based random forest method to obtain rice planting distribu-
tion information in the Dongting Lake wetland with an accuracy higher than 95%. Based
on Landsat-8 data, Lv et al. [20] used the object-oriented Classification and Regression Tree
(CART) decision tree classifier and random forest classifier to identify four main crops,
wheat, corn, melon and sunflower, in Qitai County, Xinjiang. The random forest classifier
had an accuracy of 94.50%. Guo et al. [21] fused GF-1, Landsat-8 OLI, and Sentinel-2 images
based on the data conversion method to obtain the NDVI time series data set mainly based
on GF-1. They extracted the spatial distribution information of multicrop barley and oat
artificial grassland through the step-by-step elimination method. The accuracy was as
high as 96.52%. Based on Landsat-8 and GF-1 remote sensing image data, Bai et al. [22]
selected six different classification methods to identify crops in Shawan County, Xinjiang.
The results showed that the support vector machine classification method had the highest
accuracy, and the overall accuracy (OA) of Landsat-8 imagery (91.22%) was slightly higher
than that of GF-1 imagery (88.23%). Saltykov et al. [23] used artificial neural networks to
identify mixed forests, boreal forests and grasslands in Krasnoyarsk based on Sentinel-2
satellite images, and the results showed that neural networks could be used as classifiers
on Sentinel-2 images.

However, there are few studies on information extraction for artificial grasslands,
with studies mainly focusing on alfalfa. Liu et al. [24] constructed NDVI time series based
on GF-1 data, used the threshold method to gradually eliminate interfering objects, and
realized the extraction of the spatial distribution information of dry alfalfa in Linxi County.
Ren et al. [25] used the NDVI summation method and the NDVI difference summation
method to extract the information of intensive alfalfa artificial grassland in the Arukorqin
Banner based on multitemporal Landsat 8 data. Based on GF-1 WFV and Sentinel-2 remote
sensing images, Bao et al. [26] constructed an NDVI data set for alfalfa in Jinchang city,
Gansu Province, and combined the variation in spectral reflectance of alfalfa with the
growth period to extract the spatial distribution information of alfalfa lineages there.

The Google Earth Engine (GEE) (https://earthengine.google.com/, accessed on
10 July 2022). is a cloud computing platform dedicated to processing satellite imagery data
and other Earth observation data. It not only stores complete Earth observation satellite im-
age data, and environmental and socioeconomic data but also provides enough computing
power to process these data. It is becoming a new way to address the remote sensing data
collection difficulties and low processing efficiency. However, there are few studies on the
classification of forage grassland in alpine regions based on the GEE platform. The existing
studies are mainly based on the GEE cloud platform, using different classification methods
to identify crops. For example, Ni et al. [27] developed an enhanced Sentinel-2 image-based
phenological feature composite method (Eppf-CM), based on the GEE platform. They
obtained a rice map with the highest accuracy (0.98) in Northeast China. Chong et al. [28]
used the GEE and Sentinel-1/2 images combined with an RF classifier to generate a crop
distribution map in Heilongjiang Province, with an OA of 89.75%. He et al. [29] used
Sentinel-1/2 images on the GEE platform to map the distribution and cultivation intensity
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of rice in the Changsha, Zhuzhou and Xiangtan regions, and the overall accuracy reached
81%. Based on Landsat 8, the GEE platform and the improved phenology and pixel-based
paddy rice mapping (PPPM) algorithm, Dong et al. [30] identified Asian rice in Northeast
China and drew a 30-m rice map with an accuracy of 92%. Jin et al. [11] used the GEE to
map field conditions, maize conditions, and maize yields for the 2017 main maize season in
Kenya and Tanzania.

However, the above research has the following problems. (1) Although crop identifica-
tion research has been carried out on a large scale, the classification of artificial grasslands,
especially annual forage grass (such as oat pasture), in alpine regions is still difficult.
(2) Few studies have focused on the relationship between cultivated land identification
and forage grass identification accuracy, whether for crop or forage classification. (3) A
major difference between forage grass and other ground objects is that the growth cycle
of the former has a clear artificial rhythm. By analyzing the key phenological windows of
forage grass, screening distinguishable time series images rather than single phase images,
and using a short-period vegetation index as a classification feature, the identification of
forage grass species will be easier. (4) Due to external disturbances such as mixed planting
of forages and cloud cover, high-precision identification of forage grass in small areas in
alpine regions is challenging.

The Tibetan Plateau is an ecologically fragile area. At present, there are few studies
on the layout and construction of artificial grasslands on the Tibetan Plateau. Many stud-
ies have been carried out on the characteristics, stability, sustainability and management
techniques of artificial grasslands on the Tibetan Plateau. In this study, the GEE platform,
Sentinel-2 Multi Spectral Instrument (MSI) remote sensing data, and RF, SVM, and CART
classifiers are used to produce annual oat pasture maps in the Shandan Racecourse from
2019 to 2021 at 10 m spatial resolution based on cultivated land identification. The main
work includes the following aspects: (1) data preprocessing (cloud mask and maximum
value synthesis); (2) feature selection; (3) cultivated land identification; (4) oat pasture iden-
tification; and (5) accuracy evaluation and validation. The results of this study can provide
technical and methodological support for the estimation of the status and development
potential of artificial grasslands on the Tibetan Plateau.

2. Materials and Methods
2.1. Overview of the Study Area

The Shandan Racecourse is located in the hinterland of the Qilian Mountains (North-
eastern Tibetan Plateau), and has a natural endowment of natural ecological resources. It
is in an arid and semiarid area, with an annual average temperature of 0.2 ◦C. It has a
short frost-free period, generally 100 days, and an altitude of 2376–4412 m (Figure 1). It
is the largest racecourse in the world, with a total area of 2192 km2. With the change in
business strategy, in recent years, the Shandan Racecourse has relied on excellent grade oat
pasture grass that contains 6.93% crude protein, 28.44% acid detergent fiber, 46.50% neutral
detergent fiber, 32.82% carbohydrates, and 9.29% water content. A high-quality oat pasture
base is derived from grass, which has a good reputation in major pastures and breeding
bases across the country and shows good development momentum [7].

2.2. Sentinel-2 Imagery

Sentinel-2 is a wide-swath, high-resolution, multispectral imaging mission supporting
Copernicus land monitoring studies that includes the monitoring of vegetation, soil and
water cover, as well as the observation of inland waterways and coastal areas. The optical
sensor of the Sentinel-2 satellite is called the MSI. It consists of two satellites, Sentinel 2A
and Sentinel 2B, whose orbits differ by 180◦. The time resolution of each satellite is 10 days,
and the two satellites can achieve a return visit time of five days.

Sentinel-2 includes Level 1C data and Level 2A data. In contrast with 1C data, 2A data
correspond to an image that has been atmospherically corrected, so it has more realistic
color levels, is sharper, and has higher brightness and contrast. This study uses the Sentinel-
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2 MSI and Level-2A data provided by the GEE, which includes 12 spectral bands of different
resolutions, as well as the QA60 band we use to exclude clouds and other undesirable
observations (Table 1).
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Table 1. Spectral bands from Sentinel-2 data.

Name Description Resolution Wavelength

B1 Aerosols 60 m 443.9 nm (S2A)/442.3 nm (S2B)
B2 Blue (B) 10 m 496.6 nm (S2A)/492.1 nm (S2B)
B3 Green (G) 10 m 560 nm (S2A)/559 nm (S2B)
B4 Red (R) 10 m 664.5 nm (S2A)/665 nm (S2B)
B5 Red Edge 1 20 m 703.9 nm (S2A)/703.8 nm (S2B)
B6 Red Edge 2 20 m 740.2 nm (S2A)/739.1 nm (S2B)
B7 Red Edge 3 20 m 782.5 nm (S2A)/779.7 nm (S2B)
B8 Near infrared (NIR) 10 m 835.1 nm (S2A)/833 nm (S2B)

B8A Red Edge 4 20 m 864.8 nm (S2A)/864 nm (S2B)
B9 Water vapour 60 m 945 nm (S2A)/943.2 nm (S2B)

B11 SWIR 1 20 m 1613.7 nm (S2A)/1610.4 nm (S2B)
B12 SWIR 2 20 m 2202.4 nm (S2A)/2185.7 nm (S2B)

QA60 Cloud mask 60 m

2.3. Main Workflow

The overall workflow of this study is shown in Figure 2, which is mainly divided
into two parts: cultivated land identification and oat pasture identification. The specific
workflow is as follows:
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(a) Cultivated land is identified to exclude non-cultivated land areas. (1) The Sentinel
2 data are cloud masked and max composited; (2) suitable features are selected;
(3) training and validation data are obtained; (4) the features and training samples
are put into the RF, SVM and CART classifiers for classification; and (5) accuracy
evaluation is performed.

(b) Oat pasture identification is carried out based on cultivated land identification.
(1) The Sentinel 2 data are cloud masked, smoothed by the Savitzky-Golay (SG)
filter and max composited. (2) By comparing the time series differences in vegeta-
tion indices between oat pasture and other forage grasses, key phenological periods
(June, September, October) are extracted. Next, the suitable features are determined.
(3) Training and validation data are obtained. (4) The obtained cultivated land results
are masked to remove non-cultivated land areas. Next, the features and training
samples are put into the RF, SVM and CART classifiers for classification. (5) Accuracy
evaluation is performed.

These aspects are introduced in the following Methods section.
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2.4. Feature Selection
2.4.1. Cultivated Land Identification Feature Selection

Before oat pasture identification, we first identified the cultivated land in the study
area. After many tests, we finally selected three types of features that can clearly distinguish
cultivated land from non-cultivated land areas to identify cultivated land. Figure 3 shows
the feature mean difference between cultivated land and other areas in 2019–2021. Figure 3
shows the features we choose are very different for cultivated land and non-cultivated
land. Since cultivated land basically does not change within a year, the features we choose
here are all in units of years. (1) First, we selected seven Sentinel-2 spectral bands (Blue,
Green, Red, Red Edge 1, Red Edge 2, Red Edge 3 and NIR). (2) In addition, we also selected
five vegetation indices, the NDVI, EVI, Normalized difference phenology index (NDPI),
Sample Ratio (SR), Soil adjusted vegetation index (SAVI) and one water body index, the
Normalized difference water index (NDWI). The equations are shown in Table 2. We used
the maximum synthetic Sentinel-2 image to calculate the index data for each year from
2019 to 2021 as features. (3) Finally, since the cultivated land should be relatively regular
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and flat, we also selected the elevation, slope and aspect data as features [30,31]. There are
16 abovementioned features (Blue, Green, Red, Red Edge 1, Red Edge 2, Red Edge 3, NIR,
NDVI, EVI, NDPI, SR, SAVI, NDWI, elevation, slope, and aspect) in total, and they will be
used to identify cultivated land in the Shandan Racecourse.
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Figure 3. Mean feature difference between cultivated land and other areas in 2019–2021 (Note: For
visual effect, the SR in the Figure is the value after being reduced 50 times).

Table 2. Index data used in this study (Note: Near infrared (NIR), Red (R), Blue (B), G (Green)).

Number Index Full Name Equation Reference

1 NDVI Normalized difference vegetation index NDVI = NIR−R
NIR+R Tucker [32]

2 EVI Enhanced vegetation index EVI = 2.5 × NIR−R
NIR+6×R−7.5×B+1 Liu [33]

3 SR Sample Ratio SR = NIR
R Jordan [34]

4 SAVI Soil adjusted vegetation index SAVI = (NIR−R)×(1+0.5)
(NIR+R+0.5)

Marsett [35]

5 NDPI Normalized difference phenology index NDPI = NIR−(0.74×R+0.26×SWIR)
NIR+(0.74×R+0.26×SWIR)

Wang [36]

6 NDWI Normalized difference water index NDWI = G−NIR
G+NIR Gao [37]

2.4.2. Oat Pasture Identification Feature Selection

Based on the identification of cultivated land, we identified oat pasture in the Shandan
Racecourse. Annual NDVI, EVI, NDPI, SR, SAVI, NDWI, elevation, slope and aspect data
that performed well in cropland identification were selected.

Remote sensing time series images are widely used to extract key phenological periods
of crops, and then identify crops [38–40]. We carried out a 2019–2021 time series curve
analysis of the five vegetation indices (NDVI, EVI, NDPI, SR and SAVI) of oat pasture and
other forages (barley, highland barley and broad bean) on the racecourse (Figures 4 and 5).
In Figures 4 and 5, we marked June 1 and November 1 with black dotted lines each year
for easy observation. The vegetation index of oat pasture is smaller than that of other
forages in June but larger than that of other forages in September and October, which is
consistent with what we know about local oat pasture growing the most in September and
October. June, September and October are the months in which oat pasture differ from
other forages. Therefore, in addition to the above features, we also selected the monthly
NDVI, EVI, NDPI, SR, and SAVI in June, September and October as separate features,
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with a total of 24 features (NDVI, EVI, NDPI, SR, SAVI, NDWI, elevation, slope, aspect,
ndvi_06 (NDVI in June), ndvi_09 (NDVI in September), ndvi_10 (NDVI in October), evi_06
(EVI in June), evi_09 (EVI in September), evi_10 (EVI in October), ndpi_06 (NDPI in June),
ndpi_09 (NDPI in September), ndpi_10 (NDPI in October),sr_06 (SR in June), sr_09 (SR in
September), sr_10 (SR in October), savi_06 (SAVI in June), savi_09 (SAVI in September) and
savi_10 (SAVI in October)). These monthly vegetation index data were calculated from
Sentinel-2 images for the month after the maximum synthesis.
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Figure 4. Time series curves of the oat pasture vegetation index (provided by Sentinel-2).

Note that there may be no data areas in the monthly vegetation index data after cloud
masking. For this, we used SG filtering to smooth and fill the vegetation index data in the
study area [41].

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 28 
 

 

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
eg

et
at

io
n 

In
de

x 
V

al
ue

time

rapeEVI NDPI NDVI SAVI SR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
eg

et
at

io
n 

In
de

x 
V

al
ue

time

barleyEVI NDPI NDVI SAVI SR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
eg

et
at

io
n 

In
de

x 
V

al
ue

time

highland barleyEVI NDPI NDVI SAVI SR

Figure 5. Cont.



Remote Sens. 2022, 14, 4358 9 of 27

Remote Sens. 2022, 14, x FOR PEER REVIEW 9 of 28 
 

 

 

 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
eg

et
at

io
n 

In
de

x 
V

al
ue

time

rapeEVI NDPI NDVI SAVI SR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
V

eg
et

at
io

n 
In

de
x 

V
al

ue

time

barleyEVI NDPI NDVI SAVI SR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
eg

et
at

io
n 

In
de

x 
V

al
ue

time

highland barleyEVI NDPI NDVI SAVI SR

Remote Sens. 2022, 14, x FOR PEER REVIEW 10 of 28 
 

 

 
Figure 5. Time series curves of other forage grass vegetation indices (provided by Sentinel-2; the 
four Figures represent the vegetation index values of rape, barley, highland barley and broad bean). 

2.5. Ground Truth Data for Training and Validation 
The training and validation data for this study were obtained from the measured data 

and the Sentinel-2 images provided by the GEE. For cultivated land identification, our 
goal is to distinguish cultivated areas from non-cultivated areas. To obtain better culti-
vated land identification results, we divided the study area into five categories (cultivated 
land, mountain meadow, others, temperate steppe, and alpine meadow steppe) and ex-
tracted the cultivated land area for follow-up research. We generated a total of 977 sample 
points by measured data and visual interpretation of Sentinel-2 high-definition images, 
including 356 cultivated land sample points, 72 alpine meadow grassland sample points, 
234 mountain meadow grassland sample points, 62 temperate grassland sample points 
and 253 other sample points scattered outside the above categories. The number of sam-
pling points also depends on the area occupied by each category. Figure 6 is the distribu-
tion map of cultivated land identification sample points. The five types of sample points 
are represented by different colors, and the typical areas of each type are shown in the 
form of subsets (Figure 6a–e). The same sample data were used for the identification of 
cultivated land in 2019, 2020 and 2021, as there was little change in the amount of culti-
vated land in the racecourse from year to year. 

 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

V
eg

et
at

io
n 

In
de

x 
V

al
ue

time

broad beanEVI NDPI NDVI SAVI SR

Figure 5. Time series curves of other forage grass vegetation indices (provided by Sentinel-2; the four
Figures represent the vegetation index values of rape, barley, highland barley and broad bean).
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2.5. Ground Truth Data for Training and Validation

The training and validation data for this study were obtained from the measured
data and the Sentinel-2 images provided by the GEE. For cultivated land identification,
our goal is to distinguish cultivated areas from non-cultivated areas. To obtain better
cultivated land identification results, we divided the study area into five categories (cul-
tivated land, mountain meadow, others, temperate steppe, and alpine meadow steppe)
and extracted the cultivated land area for follow-up research. We generated a total of
977 sample points by measured data and visual interpretation of Sentinel-2 high-definition
images, including 356 cultivated land sample points, 72 alpine meadow grassland sample
points, 234 mountain meadow grassland sample points, 62 temperate grassland sample
points and 253 other sample points scattered outside the above categories. The number
of sampling points also depends on the area occupied by each category. Figure 6 is the
distribution map of cultivated land identification sample points. The five types of sample
points are represented by different colors, and the typical areas of each type are shown in
the form of subsets (Figure 6a–e). The same sample data were used for the identification of
cultivated land in 2019, 2020 and 2021, as there was little change in the amount of cultivated
land in the racecourse from year to year.
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With cultivated land identification, we carried out oat pasture identification, and the
goal was to classify the area identified as cultivated land into two categories—oat pasture
and others. For the selection of sample points for oat pasture identification, we selected
Sentinel-2 images from 15 September–15 October in 2019, 2020, and 2021 to obtain sample
sites for oat pasture and other forages. This is due to the large difference in the growth
of oat pasture and other forages during this period, as seen from the comparison of the
attached drawings a and b in Figures 7–9. Combined with the measured data, we generated
three groups of sample point data for 2019, 2020 and 2021 (Figures 7–9). Among them, there
were 504 oat pasture sample points and 374 other sample points in 2019; 433 oat pasture
sample points and 274 other sample points in 2020; and 601 oat pasture sample points and
309 other sample points in 2021.
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2.6. Classifiers

We used the RF, SVM and CART classifiers for both cultivated land and oat pasture
classification. The real data set was divided into two parts: a training set (80%) and a
validation set (20%). The SVM aims to separate two kinds of samples by an optimal
separating hyperplane so that the two kinds of samples have the best robustness and the
strongest generalization [42]. The Decision Tree (DT) algorithm usually obtains and designs
classification rules through professional knowledge, mathematical statistics and machine
learning algorithms and then classifies images according to these rules [43]. In this study,
we used the CART algorithm. As with the SVM, the CART parameter is set to default.
The RF adopts the idea of ensemble learning, which can combine “n” decision trees and
produce the final result through their voting. The RF has high calculation accuracy, requires
less model training, and can determine the relative importance of variables in the model. It
has low sensitivity to the number and quality of training samples, which can avoid data
overfitting, so it is widely used in crop identification [29,44]. To choose the number of
decision trees in the classifier, we tested 10 trees, 30 trees, 50 trees, 100 trees, 300 trees and
500 trees. Finally, we chose 500 trees, which had the highest accuracy. Other parameters,
such as minleafPopulation, variablesPerSplit, bagFraction and seed are set by default.
Furthermore, the RF, SVM and CART classifiers are all achievable in the GEE [45–47].

2.7. Accuracy Verification

Two different methods were used to evaluate the identification results of cultivated
land and oat pasture. First, through the confusion matrix, the overall accuracy (OA)
(Equation (1)), producer accuracy (PA) (Equation (2)), user accuracy (UA) (Equation (3)),
Kappa coefficient (Equation (4)) and F1-score (Equation (5)) were obtained. All five equa-
tions are further detailed in Congalton [48]. In addition, our results were compared with
real images, and our results were verified by real map data.

OA =
∑n

i=1 Xi+

N
(1)



Remote Sens. 2022, 14, 4358 13 of 27

PA =
Xii

X+i
(2)

UA =
Xii

Xi+
(3)

Kappa coefficient =
N ∑n

i=1 Xii − ∑n
i=1(Xi+ × X+i)

N2 − ∑n
i=1(Xi+ × X+i)

(4)

F1 − score =
2 × UA × PA

UA + PA
(5)

where n is the total number of columns of the confusion matrix, and N is the total number
of samples used for verification; Xii is the number of correct classifications of the upper
crop-type sample in the ith row and ith column of the confusion matrix; and Xi+ and X+i
are the total number of crop-type samples in row i and column I, respectively.

3. Results
3.1. Feature Importance Evaluation

Table 3 shows the three-year average importance ranking of the respective features in
cultivated land identification and oat pasture identification from 2019 to 2021, of which
16 features are used in cultivated land identification and 24 features are used in oat pasture
identification. In the identification of cultivated land, the feature with the best performance
is Elevation (983.10), followed by vegetation index (533.18–639.83), slope (593.44) and aspect
(508.56). The performance of single-band reflectance is relatively general, and there is little
difference between spectral bands (427.48–472.40), among which the Red edge 3, NIR and
Green bands perform better. In the identification of oat pasture, the best-performing feature
was the NDVI in September (74.70). The five vegetation indices in September and October
have the top ten importance (49.73–74.70), followed by the elevation and June vegetation
indices (32.23–38.35). Index data on an annual scale performed well (27.46–34.98). The
aspect and slope performance are not good (22.08 and 16.73). Some features are used in
both cultivated land identification and oat pasture identification, such as Elevation, Slope,
Aspect and annual scale index data (NDVI, EVI, NDPI, SR, SAVI, and NDWI). Although
these features are very important for cultivated land identification, they are not as important
as the monthly scale vegetation index data in the identification of a specific forage species,
oat pasture.

Table 3. Rank of feature importance.

Features of Cultivated Land Identification Importance Features of Oat Pasture Identification Importance

Elevation 983.10 ndvi_09 (NDVI in September) 74.70
SAVI 639.83 savi_10 (SAVI in October) 70.37
EVI 612.84 ndvi_10 (NDVI in October) 68.00

NDWI 597.67 sr_10 (SR in October) 67.72
Slope 593.44 ndpi_10 (NDPI in October) 66.22
NDVI 548.67 sr_09 (SR in September) 57.88

SR 538.71 savi_09 (SAVI in September) 57.75
NDPI 533.18 ndpi_09 (NDPI in September) 49.73

Aspect 508.56 evi_10 (EVI in October) 46.18
B8 472.40 evi_09 (EVI in September) 45.79
B7 459.71 Elevation 38.35
B2 459.52 savi_06 (SAVI in June) 37.31
B4 449.29 ndvi_06 (NDVI in June) 36.10
B3 437.30 NDVI 34.98
B6 435.08 NDPI 34.56
B5 427.48 evi_06 (EVI in June) 34.29
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Table 3. Cont.

Features of Cultivated Land Identification Importance Features of Oat Pasture Identification Importance

sr_06 (SR in June) 32.98
ndpi_06 (NDPI in June) 32.23

SR 31.19
SAVI 29.64

NDWI 27.56
EVI 27.46

Aspect 22.08
Slope 16.73

We took the proportion of feature importance as the contribution of the feature and
present Figures 10 and 11. As seen from Figure 10, except for the relatively high contribution
rate of Elevation (11.31%), the contributions of other features are not much different. There
was no significant difference between the contribution rates of features in 2019, 2020,
and 2021.
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Figure 10. Contribution rates of the 16 features for cultivated land identification to the identification
results, including the results from 2019, 2020, and 2021 and the average of these three years.

Figure 11 clearly shows that the five vegetation indices in September and October
performed the best (4.40–7.18%), and their contribution rate reached more than half of the
total (58.12%). In contrast with cultivated land identification, the contribution of features in
different years in oat pasture identification is quite different. It is obvious that the most
important features in 2019 are the five vegetation indices in September, while the most
important features in 2020 and 2021 are the five vegetation indices in October, which may
be related to the harvest time of the year.
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Figure 11. Contribution rates of the 24 features for oat pasture identification to the identification
results, including the results from 2019, 2020, and 2021 and the average of these three years.

3.2. Accuracy Evaluation

As shown in Table 4, our accuracy evaluation of cultivated land identification and oat
pasture identification results includes five metrics: OA, PA, UA, Kappa, and F1. Regardless
of the recognition of cultivated land or oat pasture, the accuracy of the RF classifier was
the highest. The 2019, 2020 and 2021 cultivated land identification accuracy evaluation
results of the RF show that the mean OA is 0.80 (0.79, 0.81, and 0.81); the PA values are
0.89, 0.90, and 0.96; the UAs are 0.85, 0.81, and 0.83; the mean Kappa coefficient is 0.74
(0.71, 0.75, and 0.75); and the F1-scores are 0.87, 0.85, and 0.89, respectively. The accuracy
of cultivated land identification results in 2021 is the highest. The 2019, 2020 and 2021
oat pasture identification accuracy evaluation results of the RF show that the mean OA
is 0.98 (0.97, 0.97, and 0.99); the PAs are 1.00, 0.96 and 0.99; the UAs are 0.95, 0.98 and
1.00; the mean Kappa coefficient is 0.95 (0.94, 0.93, and 0.99); and the F1-scores are 0.97,
0.97, and 0.99, respectively. Similar to the cultivated land identification results, the oat
pasture identification results in 2021 still had the highest accuracy. In all three years, the
identification results of oat pasture were more accurate than those of cultivated land.

However, in cultivated land identification, the SVM and CART classifiers have a large
gap with the RF, with mean OAs of 0.69 and 0.72, respectively (0.67, 0.73, and 0.68; 0.71, 0.75,
and 0.71). However, the SVM and CART are not inferior to RF in oat pasture identification,
with mean OAs of 0.97 and 0.97 (0.97, 0.97, and 0.97; 0.95, 0.97, and 0.98).
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Table 4. Accuracy of cultivated land identification and oat pasture identification.

Algorithms and Classifiers Identification Type OA PA UA Kappa F1

RF Cultivated land in 2019 0.79 0.89 0.85 0.71 0.87
Cultivated land in 2020 0.81 0.90 0.81 0.75 0.85
Cultivated land in 2021 0.81 0.96 0.83 0.75 0.89

Oat pasture in 2019 0.97 1.00 0.95 0.94 0.97
Oat pasture in 2020 0.97 0.96 0.98 0.93 0.97
Oat pasture in 2021 0.99 0.99 1.00 0.99 0.99

SVM Cultivated land in 2019 0.67 0.86 0.72 0.55 0.78
Cultivated land in 2020 0.73 0.90 0.80 0.63 0.85
Cultivated land in 2021 0.68 0.83 0.76 0.57 0.79

Oat pasture in 2019 0.97 0.99 0.96 0.93 0.97
Oat pasture in 2020 0.97 0.98 0.98 0.95 0.98
Oat pasture in 2021 0.97 0.96 1.00 0.95 0.98

CART Cultivated land in 2019 0.71 0.84 0.82 0.61 0.83
Cultivated land in 2020 0.75 0.88 0.84 0.67 0.96
Cultivated land in 2021 0.71 0.84 0.82 0.60 0.83

Oat pasture in 2019 0.95 0.98 0.94 0.90 0.96
Oat pasture in 2020 0.97 0.96 0.99 0.95 0.97
Oat pasture in 2021 0.98 0.98 1.00 0.99 0.99

3.3. Cultivated Land Identification Results

For cultivated land identification, we combined the four categories (mountain meadow,
temperate steppe, alpine meadow steppe and others) except cultivated land into others.
Since the RF classifier has the best recognition and the highest accuracy, we output the
results of the identification of racecourse cultivated land in 2019, 2020 and 2021 based
on the RF classifier (Figure 12). The identification results for cultivated land in the three
years are relatively similar, and the results have a high consistency with the cultivated land
distribution of the high-definition images. This identification result provides a good basis
for the subsequent identification of oat pasture. The identified areas of cultivated land
in 2019, 2020 and 2021 were 449.91 km2 (20.53%), 448.43 km2 (20.46%), and 463.17 km2

(21.13%), respectively. Among them, the cultivated area in 2021 is the largest. The annual
change in cultivated land is not large (0.6%). There is no large-scale actual change in
cultivated land in the three years, so the identification results are more credible.
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3.4. Oat Pasture Identification Results

Based on the identification of cultivated land, we carried out the identification of oat
pasture in the racecourse. We divided the racecourse into two categories: oat pasture and
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others. Similarly, we output the result obtained with the RF as the classifier. The results are
shown in Figure 13, including the results from 2019 (Figure 13a), 2020 (Figure 13b), and
2021 (Figure 13c). After calculation, the oat pasture areas in 2019, 2020 and 2021 were 347.77
km2 (15.87%), 306.19 km2 (13.97%) and 318.94 km2 (14.55%), respectively. The distribution
area of oat pasture was the largest in 2019, and the difference did not exceed 1.9%. Oat
pasture is the most widely planted forage in the racecourse, which is also in line with the
actual local situation.
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In addition, to verify the authenticity of our results, we also compared them with high-
definition images (10 m) obtained by the GEE. We selected six areas to display each year
(Figures 14–16, where A, B, C, D, E, and F display high-definition images and a, b, c, d, e, and
f display our results), where a, b, c, and d are random regions where the positions change
from year to year, while e and f are regions with fixed positions. These areas can reflect
different cultivated land conditions. In 2019, 2020 and 2021, our results can distinguish oat
pasture from other forages. Our results are highly consistent with the real situation.
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Figure 14. Comparison of the 2019 racecourse oat pasture identification results and actual images
with a spatial resolution of 10 m. The main image in the middle is the image map of the study area,
where a–f are the positions of the six display areas; (A–F) in the subsets represent the true color
composition of the six display areas and (a–f) represent the classified outcome.
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Figure 15. Comparison of the 2020 racecourse oat pasture identification results and actual images
with a spatial resolution of 10 m. The main image in the middle is the image map of the study area,
where a–f are the positions of the six display areas; (A–F) in the subsets represent the true color
composition of the six display areas and (a–f) represent the classified outcome.
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Figure 16. Comparison of the 2021 racecourse oat pasture identification results and actual images
with a spatial resolution of 10 m. The main image in the middle is the image map of the study area,
where a–f are the positions of the six display areas; (A–F) in the subsets represent the true color
composition of the six display areas and (a–f) represent the classified outcome.

4. Discussion
4.1. Reliability of the Sentinel-2 Data

In contrast with general land classification, small-area forage identification is based
on images of different phases in the same growing season to distinguish between dif-
ferent forages. In addition, there is missing data due to clouds and other disturbances,
which requires high spatial and temporal resolution. Data and methods to exclude cloud
interference or fill in missing images are important [49].
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At present, the selection of remote sensing data for crop identification is limited to
Sentinel-1, Sentinel-2 and Landsat data [50,51]. Sentinel-2 data have a temporal resolution
of five days and a spatial resolution of 10 m and were the best choice for our research. There
are also studies that prove that Sentinel-2 data are superior to other types of remote sensing
data in the identification of some crops [29,52].

With the interference of clouds, Sentinel-2 images with short time intervals have
missing data. This situation is inevitable. We also encountered this problem when using
the monthly-scale vegetation index feature in our study. Of course, MODIS data can fill
in the missing vegetation index data, but the 250 m spatial resolution of MODIS data is
unacceptable in the identification of forage grass in small areas. SG filtering has better
performance in this regard. It can reconstruct, smooth and enhance the vegetation index
time series [41,53].

4.2. Classification Accuracy Evaluation

In cultivated land identification, the mean OAs of the RF, SVM, and CART classifiers
are 0.80, 0.69, and 0.72, respectively; the Kappa coefficients are 0.74, 0.58, and 0.62, respec-
tively. The performance of the RF is better than that of the other two classifiers. In oat
pasture identification, the RF, SVM and CART classifiers have high OAs of 0.98, 0.97, and
0.97 and high Kappa values of 0.95, 0.94, and 0.95, respectively. In our study, the RF has
a good performance in both cultivated land identification and oat pasture identification,
while the SVM and CART are more suitable for oat pasture identification. By comparison,
the RF algorithm has a high calculation accuracy and short model training time and can de-
termine the relative importance of variables in the model. At the same time, this algorithm
has low sensitivity to the number and quality of training samples, and is widely used in
crop identification [44].

Although few studies on the identification of forage grass have been carried out,
research on the classification of land types and crops is mature. Hu et al. [54] had an OA of
89% for crop classification in the Hetao Irrigation District in 2020 based on Sentinel-1/2
and an RF classifier with 300 trees. Kushal, KC et al. [55] showed that the OA of the four
types of cover crops in the Maumee River was 75%, and the Kappa coefficient was 0.63
based on Landsat and an RF classifier for 2008–2019. The OA of the winter wheat map of
Jiangsu Province drawn by Yang et al. [56] based on Sentinel-2 was 0.93. Tian et al. [57]
used Sentinel-1/2 to identify the corn field scale in Hebei Province, and the OA was 0.90.

Compared with previous studies, our oat pasture classification accuracy is relatively
high, which is mainly due to the following reasons: (1) the collection of real data and the
selection of characteristic variables are theoretically supported; (2) before classifying oat
pasture, we carried out cultivated land identification, and classified oat pasture based on
cultivated land, which may improve our classification accuracy of oat pasture; and (3) the
classification results of oat pasture only include two categories (oat pasture and others),
and this classification method has high precision.

The recognition accuracy of our cultivated land is slightly lower than that of
Ganbaatar et al. [58] (93.7%) and Cao et al. [59] (92.82%), mainly due to the low accu-
racy of temperate grasslands, alpine meadow grasslands and others in cultivated land
classification. Table 5 shows the confusion matrix of cultivated land classification in
2019–2021, as well as the UA and PA for each category. The cultivated land category has
higher UA (0.83) and PA (0.92). The above three categories have many misclassifications,
resulting in low OA.
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Table 5. Confusion matrix and accuracy of cultivated land identification in 2019–2021 (cl: cul-
tivated land, tg: temperature grasslands, mmg: mountain meadow grasslands, ag: alpine
meadow grasslands).

Year Category cl tg mmg ag Others PA

2019

cl 62 0 2 0 6 0.89
tg 0 8 0 0 7 0.53

mmg 2 0 47 1 0 0.94
ag 1 0 3 10 3 0.59

others 8 2 6 5 41 0.66
UA 0.85 0.8 0.81 0.63 0.72

2020

cl 63 0 4 0 3 0.9
tg 3 10 1 0 1 0.67

mmg 3 0 46 1 0 0.92
ag 0 0 2 12 3 0.71

others 9 1 6 3 43 0.69
UA 0.81 0.91 0.78 0.75 0.86

2021

cl 67 0 1 0 2 0.96
tg 4 8 0 0 3 0.53

mmg 2 0 48 0 0 0.96
ag 0 0 3 10 4 0.59

others 8 1 8 4 41 0.66
UA 0.83 0.89 0.8 0.71 0.82

4.3. Feature Selection Methods

The selection of feature variables has an important impact on the classification results
and the efficiency of machine learning algorithms [52]. For the feature selection of culti-
vated land identification, altitude, slope and aspect are selected, which are important for
cultivated land identification [30,53]. In addition, as shown in Figure 3, the features with
large differences between cultivated land and other land objects are selected, which can
distinguish cultivated land from other areas to the greatest extent and improve the accuracy
of our results.

The selection of features in oat pasture identification is relatively complicated. First,
we selected six annual index data and elevation, slope, and aspect data features that
perform well in cultivated land identification, but these features alone cannot distinguish
oat pasture from other forages. Therefore, by analyzing the interannual changes in the
vegetation index of oat pasture and other forages from 2019 to 2021, we found that June,
September, and October were the months with large differences in the growth of oat pasture
and other forages. Therefore, we finally added the monthly NDVI, EVI, NDPI, SR, and
SAVI data in June, September, and October. The addition of this time series feature helped
us to determine the differences between forages well, which is similar to the results of
Luo et al. [28]. Among the features identified by oat forage, some of the features are
from the identification of cultivated land, and some are from the monthly scale vegetation
index we selected according to the key phenological period. Our results show that the
recognition accuracy of oat pasture is much higher than that of cultivated land, which
may be due to the selection of time series features. The contribution rate obtained by the
importance also confirms the value of the monthly-scale vegetation index features to the
classification results. Figure 11 shows that the five vegetation indices in September and
October performed the best (4.40–7.18%), and their contribution rate reached more than
half of the total (58.12%).

4.4. Limitations and Prospects

High-resolution images inevitably cause noise in the results. Although we tried to
use SG filtering to smooth time series images, the noise problem still exists in our results.
Due to our research needs, Sentinel-2 data are theoretically the most suitable data choice
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for our study, but it is undeniable that we did not try to use other data such as Landsat,
Sentinel-1 and GF-1 data. Some studies found that the classification results of multiple data
combinations were better. Chakhar et al. [60] found that the combination of Sentinel-1 and
Sentinel-2 data had higher accuracy, and Blickensdorfer et al. [61] found that combining
Sentinel-1, Sentinel-2 and Landsat 8 data can increase the OA by 6% to 10% compared to
single sensor approaches. Perhaps these data can provide us with more precise results.
This is an important challenge for future research. In follow-up research, we will expand
the research area and identify various types of forage grass, hoping to provide method
support for the area identification of forage grass on the Tibetan Plateau.

5. Conclusions

Based on the GEE platform, Sentinel-2 data and three classifiers, this study successfully
mapped the oat pasture area of the Shandan Racecourse over 3 years from 2019 to 2021 at
a resolution of 10 m after cultivated land identification. This study uses three classifiers
based on machine learning algorithms, the RF, SVM, and CART classifiers. The mean OA
of the RF, SVM, and CART classifiers in cultivated land identification are 0.80, 0.69, and
0.72, respectively; the Kappa coefficients are 0.74, 0.58, and 0.62. The RF far outperforms
the other two classifiers. In oat pasture recognition, RF, SVM and CART all have high
OA and Kappa, respectively, 0.98, 0.97, 0.97; 0.95, 0.94, 0.95. Taken together, RF is more
suitable for our research. The research results show that the identified areas of cultivated
land in 2019, 2020 and 2021 were 449.91 km2 (20.53%), 448.43 km2 (20.46%), and 463.17 km2

(21.13%), respectively, and the interannual variation in cultivated land was small (0.6%).
The oat pasture areas in 2019, 2020 and 2021 were 347.77 km2 (15.87%), 306.19 km2 (13.97%)
and 318.94 km2 (14.55%), respectively, with little change (1.9%) from year to year. In
the identification of cultivated land, the feature with the best performance is elevation
(11.31%). In the identification of oat pasture, the best-performing feature is the NDVI in
September (7.18%), and the five vegetation indices in September and October have the top
ten contribution rates. For annual oat pasture, it is important to identify key phenological
periods through time series analysis to select the most suitable features. This study confirms
the ability of the GEE platform, Sentinel-2 data and RF classifier to estimate the area of
annual forage in alpine regions. The method used in this study can be used to identify the
area of forage on the Tibetan Plateau. The results of this study can provide technical and
methodological support for estimating the status and development potential of artificial
grasslands on the Tibetan Plateau.
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