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Abstract: With the rapid development of the remote sensing monitoring and computer vision
technology, the deep learning method has made a great progress to achieve applications such as earth
observation, climate change and even space exploration. However, the model trained on existing
data cannot be directly used to handle the new remote sensing data, and labeling the new data is also
time-consuming and labor-intensive. Unsupervised Domain Adaptation (UDA) is one of the solutions
to the aforementioned problems of labeled data defined as the source domain and unlabeled data as
the target domain, i.e., its essential purpose is to obtain a well-trained model and tackle the problem
of data distribution discrepancy defined as the domain shift between the source and target domain.
There are a lot of reviews that have elaborated on UDA methods based on natural data, but few of
these studies take into consideration thorough remote sensing applications and contributions. Thus,
in this paper, in order to explore the further progress and development of UDA methods in remote
sensing, based on the analysis of the causes of domain shift, a comprehensive review is provided
with a fine-grained taxonomy of UDA methods applied for remote sensing data, which includes
Generative training, Adversarial training, Self-training and Hybrid training methods, to better assist
scholars in understanding remote sensing data and further advance the development of methods.
Moreover, remote sensing applications are introduced by a thorough dataset analysis. Meanwhile,
we sort out definitions and methodology introductions of partial, open-set and multi-domain UDA,
which are more pertinent to real-world remote sensing applications. We can draw the conclusion that
UDA methods in the field of remote sensing data are carried out later than those applied in natural
images, and due to the domain gap caused by appearance differences, most of methods focus on how
to use generative training (GT) methods to improve the model’s performance. Finally, we describe
the potential deficiencies and further in-depth insights of UDA in the field of remote sensing.

Keywords: unsupervised domain adaptation; remote sensing data; a survey; deep learning

1. Introduction

Earth observation, climate change and even space exploration have been prominent
human concerns in recent years, since they have an impact on human life and produc-
tion [1–3]. As satellite and imaging technology advance, we are able to collect vast amounts
of data from multiple satellites for a variety of uses and detection methods. In general,
accurate human annotations for cognitive remote sensing data must rely on expert knowl-
edge, which comes at a significant labor cost. Deep learning algorithms [4–8] have made
enormous strides in this area, but the majority of them are data-driven, meaning that the
only way to train models for higher performance is with labeled data. However, the present
conundrum is that increasing data and annotation capabilities lead to a number of conflicts
and contradictions, leaving a lot of data unlabeled and making it challenging to imple-
ment practical applications. In order to address the aforementioned issues, Unsupervised
Domain Adaptation (UDA) research [9–12] based on deep learning techniques aims to
improve the performance of the models learned by labeled data defined as the source
domain and inferred in unlabeled data defined as the target domain.
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The performance of models noticeably deteriorates when it is directly trained on la-
beled data and tested on new data, since a significant discrepancy of data distribution exists,
which is called the domain shift or domain gap in the unsupervised domain adaptation
methods that may be caused by different devices, data modalities, detection areas, seasons
or others factors. Thus, the goal of UDA is to distill data and knowledge of different
domains to mitigate the effect of domain shift. Our discussion of the influencing factors
of domain shift aiming to remote sensing data is summarized into three categories: those
related to data acquisition and imaging, those related to tasks and annotations and other
factors. In order to illustrate these categories, we provide image examples based on various
remote sensing datasets and tasks.

Transferring appearances of data from other domains to be with a similar look [13–20]
or a standard style [21,22] is the simplest way to accomplish the goal of UDA, and then a
pre-trained model may perform well as a result. We collectively refer to these kind of meth-
ods acting on representation as Generative training methods, abbreviated as GT methods.
However, the majority of these systems rely on generative methods that sometimes are
unstable, making it difficult to guarantee semantic consistency. Thus, adversarial training
(AT) and Self-training (ST) are two brand-new learning methodologies to further solve
semantic consistency issues. Numerous methods based on Adversarial training (AT) try to
identify multi-level domain-invariant features between different domains through calcu-
lating distances to narrow margin distribution or joint distribution [23–26], or designing a
domain discriminator to achieve domain confusion [27–33]. However, it is difficult for these
methods to align same category across domains so that may cause negative transfer on the
target domain due to excessive learning of the source domain knowledge. Additionally,
Self-training (ST) methods [34–36] can be utilized to achieve unsupervised domain adapta-
tion, such as using pseduo labels generated from a model trained on the source domain,
which are used to train or fine-tune a target model using various training approaches.
However, pseduo labels may be imprecise due to the lack of class recognition for hard
examples. Because there are benefits and drawbacks to each above-mentioned individual
training mode, the current trend in unsupervised domain adaptation is to combine them
to iterate continuously on the performance of the target domain model [37,38], which are
defined as Hybrid training (HT) methods, but these approaches are limited because most
of them are designed with multiple stages, causing parameter growth and slow speed.

In real-life or industrial scenarios, unsupervised domain adaptation methods may face
more and more complex problems, such as inconsistency in the category space between
source and target domain due to the emergence of unknown categories [39–42], multi-
domain migration [43–46] due to data collection from different devices, the impediment
of weakly supervised learning [47,48] due to rough annotation of source domain data
and feature extraction problems [49,50] caused by spectral and temporal shift and so on.
Therefore, based on the above problems, the standard UDA methods have some certain
extensions, such as Open-Set Domain Adaptation (OSDA) and Partial Domain Adaptation
(PDA) under the inconsistent setting of label space and Multi-Domain Adaptation (MDA)
for migration between multiple domains.

Despite the fact that numerous publications [9,10,51–53] have already concentrated on
unsupervised domain adaptation on real scenes using natural imaging datasets and several
works [11,12,54–56] combined deep learning techniques with data from remote sensing area,
these works lack a clear description of the domain gap and suffer from the drawbacks of a
systematic approach. Besides, there has not been much conversation centered on remote
sensing data and specific questions in the field of remote sensing. Therefore, in this paper,
we present a comprehensive assessment of unsupervised domain adaptation approaches
and applied tasks based on remote sensing data from various satellites or aircraft.

The following are the main contributions:

• This paper clarifies and reviews the idea of unsupervised domain adaptation in
remote sensing area. In a nutshell, this paper provides an overview of unsupervised
domain adaptation methods divided into four categories: (1) Generative training
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methods, (2) Adversarial training methods, (3) Self-training methods, (4) Hybrid
training methods. This paper also explores the benefits and potential drawbacks of
various training methods by contrasting the statistics of experimental results.

• This paper elaborates on the domain shift based on a thorough review of large remote
sensing datasets used in unsupervised domain adaptation research and analyzes its
influencing factors, which vary from factors of data acquisition and imaging to factors
of tasks and annotation.

• Remote sensing applications with some case studies using unsupervised domain
adaptation in remote sensing data are introduced in this paper. Besides, we also
concentrate on unsupervised domain adaptation methods based on practical dilemma
with remote sensing data, such as multi-domains, partial and open set issues, including
task definition, and solution approaches.

• The possible hazards and future development directions of unsupervised domain
adaptation methods in remote sensing images are also analyzed in depth through a
comparison of methods for natural images.

2. Overview
2.1. Notations and Definitions

Some fundamental concepts relating to data distribution and task function in unsu-
pervised domain adaptation based on remote sensing data should be defined. For deep
learning models based on the data domain D, based on task T with the label space Y,
the following components need to be formulated: the feature space X with the marginal
probability distribution P(X) and a conditional probability distribution P(Y|X). Consider-
ing that remote sensing tasks are greatly affected by resolution and detection channels, we
have provided definitions for terms such as resolution τ and number of detection bands B.

Aiming for descriptions and definitions of the source domain Ds, we labeled instances
{xs

i , ys
i }

ns
i=1 with resolution factor τs in source domain data Xs and label space Ys, where

{xs
i } ∈ RBs×Hs×Ws and ys

i , depending on the task definition. For example, for a segmentation
task, ys

i is described as ys
i ∈ {0, 1}bs×hs×ws , where bs is the number of classes and hs and ws

represent the height and width of the image. Moreover, aiming to descriptions and definitions
of target domain Dt, we unlabeled instances {xt

i}
nt
j=1 with resolution factor τt in target domain

data Xt and label space Yt, where xt
j ∈ RBt×Ht×Wt , where Bt, Ht and Wt represent the number

of channels, height and width of the image. It is important to keep in mind that in contrast
to natural images Bs or Bt may be more than three and not equal, since many bands are
frequently detected at the same time in the field of remote sensing, such as with multi-spectral
and hyper-spectral satellites.

The goal of unsupervised domain adaptation is to find a function F : X → Y, which is
obtained by using the source domain data with labels and transferred to classify the target
domain with a good performance. Generally, standard unsupervised domain adaptation
refers to single-source and single-target domain adaptation when they are shared same
label space, as shown in Figure 1a. Besides, in the face of more complex practical scenarios,
for example, unknown category or multi-domain transfer is common challenges in realistic
applications, we also provide the definition of the above issues as follows.
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Figure 1. Visualization samples of different definition and setting of unsupervised domain adaptation
based on AID, NWPU and PatternNet datasets. (a) Standard unsupervised domain adaptation of
a single-source and target domain, which share the same label space. (b) Open-set unsupervised
domain adaptation with two different settings, where unknown instances are seen in the source
domain and unknown classes that are not the same between two domains and another are un-
seen. (c) Multi-domain unsupervised domain adaptation divided into multi-source or multi-target
domain adaptation.

Closed, partial or open set unsupervised domain adaptation.
Most of the current unsupervised domain adaptation methods are oriented to the same la-

bel space, i.e., Ys = Yt. Source and target domain data share the same semantic category and
the unknown classes do not exist during model computation and inference process. However,
in the wild, it is common to be faced with the situation that source domain and target domain
do not share the same label space; thus, Open Set Domain Adaptation (OSDA) and Partial
Domain Adaptation (PDA) came into being. In OSDA settings, the difficulty of OSDA is to
isolate unknown categories to avoid misjudgment. In PDA methods, the classes of the target
domain constitute a subset of the classes of source domain, that is to say Yt ⊂ Ys, and the
key of PDA is to avoid negative transfer due to the mismatch classes through identifying the
source instances that belong to the same class in the target domain. The classes of target domain
contain certain classes and unknown classes that do not exist in the source domain, that is
Ys ⊂ Yt; the source domain and target domain only share some common classes and they have
private classes in their own domain, that is Ys ∩ Yt = Yc, Ys = Ysp ∪ Yc, Yt = Ytp ∪ Yc, where
Yc, Ysp , YtP represent the common label space, private source label space and private target
label space, respectively. Methods are often divided into two categories according to whether
unknown classes are unseen during an unsupervised domain adaptation training process in
source domain following OSDA [41] and OSBP [42]; the sample based on the AID and NWPU
datasets is as shown in Figure 1b.

Single-domain or multi-domains unsupervised domain adaptation.
In reality, it is possible to be faced with a multi-source domain or multi-target domain

to improve the generalization performance of the model and to be applied broadly. The key
problem of multi-domain adaptation is mitigating the domain shift between sub-source or
sub-target domains. One direct approach is to select samples similar to target domain data
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rather than giving up other samples. The sample based on the AID and NWPU datasets is
shown in Figure 1c.

2.2. Remote Sensing Datasets and Tasks

Through extensive research of unsupervised domain adaptation in remote sensing
data, we selected basic 30 datasets and divided them into 5 categories according to different
tasks, namely Regression, Classification, Detection, Segmentation and Generation tasks,
with or without class-aware annotations. The dataset descriptions and related works are
shown in Table 1. In this paper, we only focus on remote sensing imagery data applied by
unsupervised domain adaptation methods containing optical images (Opt), multi-spectral
images (MSI) or hyper-spectral images (HSI) and Synthetic Aperture Radar (SAR) images.
Because the generation task is not class aware and the regression task contains continuous
ground-truth, the Types in the description are marked with ‘-’ in Table 1. From Table 1, we
can draw the conclusion that it has a lot of variance across different datasets, although below
the same task setting or same detection band, which is also the root cause of the domain shift
of data distribution. Besides, different types of remote sensing data are suitable for different
tasks; for example, SAR imagery data are more applicable for scene classification or an
object detection task, although a few SAR datasets are applied to segmentation task due to
the difficulty of image regression with optical imagery. Some samples of classification and
segmentation task are shown in Figure 2.

AID_Agriculture AID_Forest ISPRS_Data ISPRS_Label

(a) Classification Task (c) Segmentation Task

FARADSAR

(b) Detection Task

Figure 2. Some samples of unsupervised domain adaptation based on remote sensing data.
(a) Samples of the classification task based on the optical AID datasets. (b) Samples of the detection
task based on the FARADSAR dataset. (c) Samples datasets of segmentation task, which are the data
and labels of ISPRS Vaihingen, respectively.

From the perspective of remote sensing applications [57], unsupervised domain adap-
tation methods based on deep learning methods are also widely used in scene recognition,
object detection, land-cover classification, change detection and 3D reconstruction and
other aspects, which have achieved remarkable results to tackle common problems faced
by whole humankind, such as climate change, impact of human activities and so on.
The following reviews different tasks and shows some application miniature, including
Local Climate Zones (LCZ) classification, Vehicle Detection, Change Detection and Dehaz-
ing or Decloud, based on unsupervised domain adaptation methods used in the remote
sensing circumstance.
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Table 1. Some remote sensing datasets used in unsupervised domain adaptation (UDA).

Tasks Dataset
Description

Works
Bands Types Device Size-I Size-D Resolution Region

Regression SARptical [58] SAR-2 - TerraSAR-X 112 × 112 20,216 1 m BerlinOpt-3 UltraCAM 112 × 112 0.2 m

Classification

NWPU [59] Opt-3 45 Google Earth 256 × 256 31,500 0.2–30 m -

[60–63]
PatternNet [64] Opt-3 38 Google Map 256 × 256 800 0.062–4.693

m -

AID [65] Opt-3 30 Google Earth 600 × 600 10,000 0.5–8 m -
Merced [66] Opt-3 21 Map 256 × 256 2100 0.3 m -

Eurosat [67,68] Opt-3 10 Sentinel-2 64 × 64 27,000 0.2–30 m -
MSI-13 10 Sentinel-2 64 × 64 27,000 0.2–30 m -

MSTAR [69] SAR-2 10 SAR Sensors 128 × 128 17,658 0.3 m - [70]

So2Sat LCZ42 [71] SAR-8 17 Sentinel-1 32 × 32 400,673 10 m 52 citiesMSI-10 Sentinel-2 32 × 32 10 m

Detection

DOTA [72] Opt-3 15 Google Earth, GF-2, JL-1 800 × 800–4000 × 4050 2806 - - [73]
Dior [74] Opt-3 20 Google Earth 800 × 800 23,463 0.5–30 m -

Optical-SAR [75] Opt-1 5 Google Earth 192 × 192 10,000 0.3 m VisakhapatnamSAR-1 TerraSAR-X
Simulation Data [75] SAR-2 6 3D-CAD - 10,800 - -

Measured DataSet [75] SAR-2 5 Sentinel-1,TerraSAR-X 192 × 192 17,500 5/1 m -

FARADSAR [76] SAR-1 10 Radar 1300 × 580–1700 × 1850 106 0.1 m

The
University

of New
Mexico

[37]

miniSAR [77] SAR-1 10 Radar 1638 × 2510 9 0.1 m Kirtland Air
Force Base

Segmentation

Skyscape [78] Opt-3 31 Camera System 5616 × 3744 16 0.13 m Munich

LoveDA [79] Opt-3 7 Spaceborne 1024 × 1024 5987 0.3 m
NanJing,

ChangZhou,
WuHan

ISPRS Vaihingen [80] Opt-3 5 - 2500 × 2000 32 0.09 m Vaihingen
ISPRS Potsdam [80] Opt-3 5 - 6000 × 6000 38 0.05 m Potsdam
Beijing Dataset [81] Opt-3 4 DigitalGlobe, SpaceView 1800 × 800 202 0.3 m Beijing [81]
Massachusetts [82] Opt-3 3 - 1500 × 1500 1171 1 m Massachusetts

SpaceNet [83] SAR-5 2 Aerial Sensor 406–439 6000 0.5 m Rotterdam
Opt-3 2 WorldView-2 406–439 6000 0.5 m Rotterdam

DeepGlobe [84] Opt-3 2 DigitalGlobe, Vivid 1024 × 1024 8970 0.5 m
Thailand,
Indonesia,

India
CHN6-CUG [85] Opt-3 2 Google Earth 512 × 512 4511 0.5 m 6 cities
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Table 1. Cont.

Tasks Dataset
Description

Works
Bands Types Device Size-I Size-D Resolution Region

Indian Pines [86] HSI-224 16 AVRIS Sensor 145 × 145 10,249 20 m
North-

Western
Indiana

Salinas [87] HSI-224 16 AVRIS Sensor 512 × 217 54,129 3.7 m Salinas
Valley

HSI-224 16 AVRIS Sensor 86 × 83 5348 - Salinas
Valley

Botswana [88] HSI-145 14 NASA EO-1 1476 × 256 3284 30 m Okavango
Delta [81]

HSI-145 14 EO-1 Satellite 1476 × 256 2494 30 m Okavango
Delta

Kennedy Space Center [89] HSI-176 13 Spectrometer 512 × 614 1 18 m Kennedy [90]
Washington DC MALL [91] HSI-191 7 Sensor 1280 × 307 1 - Washington [92]

Generation

RICE [93] Opt-3 2 Google Earth 512 × 512 1000 - -
Opt-3 4 Landsat 8 OLI/TIRS 512 × 512 450 sets - -

SEN12MS-CR [94,95]
SAR-2

-
Sentinel-1 256 × 256

472,563
10 m

-MSI-13 Sentinel-1 256 × 256 10 m
MSI-13 Sentinel-2 256 × 256 10 m
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2.2.1. Classification Task

A classification task based on image level is the classic research both in the field of
remote sensing and deep learning that is the basis of detection and segmentation task.
With the development of data acquisition and imaging technology, taking the aerial scene
classification task as an example, many mature UDA techniques [60–63], varying from
single-domain transfer to multi-domains, have been developed based on diverse datasets,
such as NWPU [59], PatternNet [64], AID [65] and Merced [66] datasets, as shown in Table 1.
The focus of these works is how to find domain-invariant features to ensure semantic
consistency. Despite to common classification tasks, such as land type classification, ship
classification, etc., in the field of remote sensing, it is worth following with interest the Local
Climate Zones (LCZ) classification [71], which was originally proposed for urban heat
island studies. As mentioned by [96], transfer of an LCZ task may cause the degradation of
model performance due to a domain shift and encourages most advanced UDA methods
applied in this area. Subsequently, CPDA [97] presented a circled similarity propagation-
based domain adaptation method, while [98] used the co-training approach with self-paced
learning to achieve good performance of the LCZ task.

2.2.2. Detection Task

The detection task not only requires the model to recognize the semantics of the
multi-class object, but also need to mark the location with coordinate information using
a bounding box. Moreover, it has more subdivided applications in the field of remote
sensing, such as ship or vehicle detection [99–102], used for national defense security,
and oil palm tree detection [103–106], used for economic production, and can even give
cross-temporal change detection to make people understand the world more macroscop-
ically. We take Vehicle Detection [99–102] based on unsupervised domain adaptation
methods as one case study. Even though the vehicle detection task has become a hot
topic and application in remote sensing imagery, model performance trained on a certain
amount of labeled data based on deep learning methods [6,107] would degrade when
faced with new data collected from new areas or satellites [100]. References [100,101] used
distance-based and hierarchical-level adversarial training strategy to further extract more
discriminative features, respectively. Besides, many works [99,102] also focus on other
factors that cause model performance to degrade in the vehicle detection task; for example,
reference [102] focused on the discrepancy between daytime and nighttime images and
reference [99] transferred the model trained on satellite images to Unmanned Aerial Vehicle
(UAV) images.

Besides, in the field of remote sensing, Change Detection [108–113] is worthy to be
mentioned, since changes usually occur in earth observation as time passes, inevitably
leading to differences in geographical appearances. Faced with changes, domain adap-
tation methods can provide an approach to detection area discrepancy. For example,
DSDANet [108] is the first method in which unsupervised domain adaptation is introduced
to change detection, and reference [113] proposed an unsupervised domain adaptation
method based on CycleGAN [114] to alleviate the domain shift on the deforestation detec-
tion application. Based on this work, many works explored this inspiration to multi-source
change detection [109] or specific applications, such as monitoring the deforestation or
growth of forests [110–112]. For building change detection task, FODA [115] addresses the
pseduo-change problem through feature space alignment and adds more effective and dis-
criminative feature extracted by output space by reducing the difference between prediction
and the ground truth.

2.2.3. Segmentation Task

Compared with the classification task, the segmentation task is supposed to achieve the
meticulous recognition of each pixel and it shows a huge application value and potential.
In various segmentation tasks, including road extraction, building extraction, agriculture,
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vegetable segmentation and so on, Land Use or Land Cover Classification [49,81,116–118]
based on pixel-level is a common but hot topic. Taking road extraction as a case study,
some methods [32,119,120] utilize adversarial training methods to narrow the gap between
source and target domain; in particular, reference [31] converted the deep features extracted
by the convolutional network to 2D features, such as curves, to more effectively ensure
domain-invariant features. Recently, a lot of works [121,122] attempted to implement
road extraction on target domain with a two-stage network or the hybrid training mode.
In addition, some works [79,123] paid attention to the discrepancy brought by different time
or space to remote sensing data, such as the differences in urban or suburban areas due to
the degree of economic development. Furthermore, we review the adaptation development
of the Land Use Classification task based on the ISPRS Potsdam and Vaihingen datasets in
detail in Section 5, in which the performances using different training mode methods are
listed and compared.

2.2.4. Generation Task

With the rapid development of image translation and multi-modal technology, espe-
cially the proposal of Generative Adversarial Network (GAN) methods, generative tasks
canz not only achieve style transfer under the condition of invariant semantics, but they
can also synthesize, generate or create new images according to potential learning prin-
ciples under the guidance of semantics. However, in the actual data acquisition process,
the Generation task is often faced with the inability to obtain paired data, and the existing
data and the generated data are quite different, so they cannot obtain a good generation
performance. We take the Dehazing or Decloud [124–126] task as an example to introduce
how unsupervised domain adaptation methods are developed and applied in reality. Due
to fog, haze and other bad weather conditions, the contrast and color fidelity of remote
sensing images degrades, which makes it is hard to obtain a model with good general-
ization. The most common solution is using image translation methods to achieve the
image dehaze or decloud process [95,127], such as CycleGAN or conditional GAN. How-
ever, in the face of complex and diverse weather conditions and data, sometimes, image
translation makes it difficulty to ensure semantic consistency. Thus, domain adaptation
methods provide a new approach [124] to solve hazy or foggy remote sensixng data recog-
nition problems, where clear images can be defined as source domain and hazy or foggy
data as target domain, although without labels. For example, SkyGAN [126] proposed
a domain-aware hazy-to-hyperspectral (H2H) module based on cycle-consistency and a
domain classifier to achieve image dehazing, while TA3N [125] achieves degraded remote
sensing classification through adversarial training of conjunction with effective image-level
and region-level features.

2.3. The Key Problems: Domain Shift

It is easy to reach a consensus on that the core problem that the unsupervised domain
adaptation needs to solve is how to narrow the domain shift between the source and target
domain. However, it is unclear what factors cause the domain shift that may involve
completely diverse color distribution, texture characteristics and contextual information.
In accordance with the data generation process and labeling process, we mainly divide the
influencing factors into three categories as follows. We provide some samples based on
remote sensing data, as shown in Figure 3, for illustration.
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top_potsdam_5_11_RGB (5cm) top_potsdam_5_11_IRRG (5cm)

top_mosaic_area1 (9cm) top_mosaic_area1_label (9cm)

top_potsdam_5_11_IRRG (9cm)

ISPRSVaihingenDataset

ISPRSPotsdamDataset

top_potsdam_5_11_IRRG (9cm)

Detection Bands Discrepancy

Resolution Discrepancy

Detection Area Discrepancy

Task Discrepancy (Semantic)

Impervious surfaces

Buildings

Low vegetation

Trees

Cars

Clutter

Undefined

Legends

top_potsdam_2_12_label (9cm)top_potsdam_2_12_data (9cm)

Area Discrepancy

Details Details

Figure 3. Some samples of an unsupervised domain shift based on the ISPRS Vaihingen and Potsdam
dataset. Arrows denote differentiating factors between images and rectangles denote different
semantic categories in label masks.

Factors related to data acquisition and imaging. The difference between remote
sensing image data acquisition and imaging mainly affects the data distribution, that is, it
involves source and target domain data Xs, Xt under the marginal probability distribution
P(Xs), P(Xt) and a conditional probability distribution P(Ys|Xs), P(Yt|Xt).

• Detection Areas. There are huge differences between areas or countries due to the
discrepancy of economy level and human activity influence. For example, roads in
urban and suburban areas have different characteristics, such as color, connectivity
and contraposition with background, as mentioned in LoveDA [79]. From the two
images pointed at by the purple arrow in Figure 3, we can also make a sense of the
diversity between different areas collected from Potsdam through the density of the
building marked in blue in the label images.

• Illumination. Imagery is captured at different times of the day as a result of the
illumination difference, which may increase the instability of the training model.
In particular, visible bands are not available in some all-day monitoring missions at
night, which causes discrepancies compared with daytime data.

• Resolution or Ground Sampling Distance (GSD) [15,31], taking the Postdam Dataset
with 5 cm resolution and 9 cm resolution as an example, as shown in the two images
pointed at by the blue arrow in Figure 3. High resolution and wide coverage may
cause images containing redundant information or noises. Reference [60] uses five
diverse remote sensing datasets to discuss characteristics through transfer learning,
the conclusion of which indicates that multi-resolution is helpful to affect generic
representation.

• Devices and detection bands [128]. This is quite different between wavelength, type
and the number of bands. The two images and details pointed at by the green arrow
in Figure 3 show appearance diversities, although they are selected from the same
area and satellite but different bands, where one consists of RGB bands and another of
IRRG bands. Reference [128] noticed the discrepancy caused by various multi-spectral
bands and built domain adaptation methods using RGB images to other types of
multi-spectral images. As shown in Figure 4a, we also display the pixel value statistics
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for various channels across the two datasets. It is clear that the two datasets’ pixel
value distributions are very dissimilar. Additionally, the IR-Band differs significantly
from the visible light channel after being translated to the 0–255 range.

• Inconsistency in class distribution. Even if we collect data from different domains for
the same category, the proportion of a certain category may be different, as shown
in Figure 4b, where the ’Building’ class has the highest proportion of pixels in the
Vaihingen dataset, while ’Impervious surface’ is higher in the Potsdam dataset.
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Figure 4. (a) The pixel value statistics of the ISPRS Vaihingen and Potsdam datasets. (b) The
proportion of different categories from two datasets. Both of these statistic values indicate large
differences between the two datasets, which make data migration difficult.

Factors related to tasks and annotations. Different tasks determine the type and form
of annotation, and the distribution of categories is also one of the important factors affecting
data distribution, that is, it involves source and target label space Ys, Yt. The source and
target domain often do not share the same label space so that unseen or unknown class
samples may appear in the target domain, that is, the ’Clutter’ category does not appear in
the Vaihingen image, as shown in Figure 3 and details pointed at by the orange arrow.

Other factors. Different from images in natural scenes that are mainly affected by
human activities, such as object detection and autonomous driving data, remote sensing
images are easily affected by factors such as solar activity and atmosphere, so accurate
detection wavelength data cannot be obtained.

• Atmospheric effects. Sometimes even images collected by the same satellite sensors
might have quite different radiometry, which makes them hard to annotate and
recognize.

• Position of the sun and satellite observation direction. The imaging quality of Un-
manned Aerial Vehicles (UAV) are influenced by position of sun mentioned in [129],
such as the incorrect exposures and distortion. The relative position between the sun
and the satellite affected the quality of the satellite image in reference [130].
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The factors that cause a domain shift need to be discussed in detail according to the
setting of the task and the selection of the dataset. For example, building extraction is influ-
enced by the regional differences caused by different climates; however, road extraction is
affected by the level of economic development and the impact of topography. Besides, tasks
are influenced by seasonal variations as mentioned in SeCo [63]. The predictions for certain
tasks, such as land-cover classification, remain the same, even though seasonal factors
differ, while others tasks, such as change detection, are easily affected by seasonal factors.

3. Approaches of Domain Adaptation in Remote Sensing

When faced with a new dataset or new circumstances, the fine-tuning [131–133]
method is an easy approach to improve the transferability of the model, especially with
data-driven algorithms such as deep learning methods. However, generally, it is hard
to fine tune due to unavailable annotations for the target domain, and it shows poor
performance when there is a much larger domain shift between the source and target
domains. Thus, in this section, we mainly provide a systematic overview of existing
generative training methods, adversarial training methods, self-training methods and
hybrid methods. The methods in this section are basically based on a single-source and
target domain, and the multi-domain methods are described in Section 4.

The relevant statistics for UDA used in the natural and remote sensing dataset are
shown in Figure 5. These methods take the training mode as the x-axis and the task as the
y-axis, and each cluster of methods displayed is sorted by publication year. In addition,
we create quantitative histograms from various perspectives on the right and above to
compare methods for the two scenarios.

Single Source
Multi Source

UDA in Remote Sensing
UDA in RGB Imagery

Figure 5. Relevant statistics of unsupervised domain adaptation methods sorted by published year,
task and training mode, where geometric shapes in yellow and blue represent methods used in
remote sensing and nature scenes, respectively. Circles and stars represent the single-domain and
multi-domain methods, respectively. The horizontal axis of the bottom-left figure represents different
training modes, where FT, GT, AT, ST and HT are Fine-tune, Generative, Adversarial, Self- and Hybrid
training methods, respectively. The vertical axis of the bottom-left figure represents different tasks
in the field of remote sensing, where Gen, Cls, Dec and Seg represent the Generation, Classification,
Detection and Segmentation tasks, respectively.
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3.1. Generative Training Methods

Generative training (GT) methods mainly focus on discrepancy of appearance, such
as color and texture. The goal of these methods is to generate visually similar images in
order to use labels from the source domain to develop a high-performing model that is
also adopted in the target domain. Thus, the key issue of generative methods is how to
generate fake images under the guidance of semantics and constraints. These methods
with formulations are mainly divided. Besides, many methods [134,135] are based on GT
methods and combined with other training methods introduced in Section 3.4, such as AT
or ST, which have a multi-stage structure, and as a result, they can use the transferred fake
image as an intermediate result in other training stages.

• Target-stylized methods. The main purpose of target-stylized methods is to convert
the source domain image into a fake image with a similar style to the target domain
image so that the semantic consistency of data and labels can be preserved to the
greatest extent. The general pipeline is designing a Generator GS→T tozz generate
target-stylized images GS→T(s), and then utilizing GS→T(s) and L(s) to train or fine-
tune a model M = Ms = Mt. Some representative papers are ColormapGAN or
Neural Style Transfer (NST) methods methods [13,14], GAN methods [15,16,20,116]
and so on. Matching methods only consider color distribution matching and do not
consider semantics, but migration can be implemented quickly and efficiently when
the domain gap is small, such as Graph matching [136], Histogram matching [137], etc.

• Source-stylized or mid-domain transferring methods. Different from target-stylized
methods, the biggest advantage of these methods is that they can ensure that the
data and labels of the training model are precisely aligned, which can guarantee the
accuracy of the semantics. These methods are mainly for transferring target images to
source-styled images or to find an intermediate domain between the source and target
domain, such as Inverse DA and other multi-domain methods [19,21,22]. The pipeline
is similar to the target-stylized pipeline but the data flow is opposite and a Generator
defined as GT→S.

3.1.1. Target-Stylized Methods

Target-stylized methods mainly focus on how to convert the original style of source
domain imagery to the style of target domain, which can be divided into three parts as
follows. The most direct way to change the style is to adjust the image color representation
of different domains to be consistent, as introduced in the first part. However, after a
lot of practice, it can be found that the difficulty of Target-stylized methods lies in the
consistency of image semantics before and after the transferring process. Thus, the methods
that consider cycle-consistency and identify the constraints generally are mostly selected as
baselines, and the preliminary migration effect can be achieved as introduced in the second
part. In addition, utilizing other information, such as geometry information, can contribute
to the semantic invariance.

The first part: Non-GAN methods.
Traditional data augmentation methods are mainly based on matching methods, such

as Histogram matching and its variants [137,138], Graph matching [136], color constancy
algorithm [139], gray world [140], etc. Although these methods can quickly achieve trans-
ferring, they are insufficient when faced with a huge domain shift and new data; besides, it
is hard to obtain a good performance when faced with multi-target domains. For example,
Randomized Histogram Matching (RHM) [138] matches the histogram of a source-target
pair randomly selected from a different domain instead of matching each histogram of the
source to the whole target domain data.

ColormapGAN [13] proposes to generate fake training images by learning transferring
color features. Different from GAN [141], this paper does not have any any convolution
or pooling layer in Generator, where the Generator consists of one element-wise matrix
multiplication and one matrix addition operations. By training the initial classifier, Col-
ormapGAN and Fine-tuning, classification is achieved.
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SemI2I [14] introduced a new data augmentation method by using a style transfer
method, such as AdaIN [142], to transfer the style of the target domain data to the training
data, whereas in the AdaIN module, σ and µ carry style information of two domains. This
method can promise style similarity and semantic consistency at the same time. In this
paper, the segmentation network [7,143] firstly trains on original data and then fine-tunes
on stylized data.

The second part: GAN methods.
Image-to-image translation applied in domain adaptation [144] source images mainly uses

unpaired images, which are similar target images in color or texture or style. An image-to-image
translation task based on GAN [141] methods is mainly divided into two parts based on whether
data are paired. Since unsupervised domain adaptation does not satisfy the demand that target
domain annotation is available, GAN methods based on image translation use unpaired data.
It is necessary for source domain data to convert a style-like target domain. From the point
of view of data flow, the GAN methods can be divided into single methods [141,145] or cycle
methods [114,146]. However, we divide the method from the perspective of unsupervised
constraints as follows, because they are related to methods designed for the domain gap.

The adversarial constraint [141] from a basic single Generative Adversarial Network
containing a Generator GS→T and a Discriminator DT , with corresponding GAN loss, is
as follows, where p̂S, p̂T are the discrete distributions sampled from the source and target
domain, respectively:

Ladv(GS→T , DT , p̂S, p̂T) =

ExT∼ p̂T [logDT(xT)] +ExS∼ p̂S
[log(1− DS(GS→T(xS)))]

(1)

When the data flow is bi-directional or multi-directional, GAN loss is supposed to
be calculated twice or more times according to the number of data flow; for example,
in CycleGAN, GAN loss should be defined as Ladv = Ladv(GS→T)

+ Ladv(GT→S)
.

Cycle-consistency constraint [114]. During the translation process, for a source domain
sample, after target-stylized and source-stylized transfer, the style of sample is not changed,
and vice versa. Cycle-consistency loss is defined as follows:

Lcyc(GS→T , GT→S) =

ExS∼ p̂S
Dis(GT→S(GS→T(xS))− xS) +ExT∼ p̂T Dis(GS→T(GT→S(xT))− xT)

(2)

where the function Dis can be defined according to different task, such as L1 distance, L2
distance and KL divergence. Taking L1 distance as an example, the above formula can be
described as:

Lcyc(GS→T , GT→S) =

ExS∼ p̂S
‖(GT→S(GS→T(xS))− xS)‖1 +ExT∼ p̂T‖(GS→T(GT→S(xT))− xT)‖1

(3)

Identity constraint [147]. Although the style of the source domain sample is changed,
the semantics of the sample are maintained, as described as follows, where Dis is defined
as above:

Lidt(GS→T , GT→S) =

ExS∼ p̂S
Dis(GS→T(xS)− xS) +ExT∼ p̂T Dis(GT→S(xT)− xT)

(4)

Reference [15] proposed a method for unsupervised domain adaptation in the ISPRS
dataset, which contains two steps: the first step is to convert the image of the source domain
to the target domain and the second is to fine-tune the model trained on the source domain.
Reference [116] firstly trained a base model with encoder-decoder architecture based on
SegNet [148]. This paper hoped to achieve adaptation to target domains according to
two steps; one is using CycleGAN [114] to achieve translation between the two domains,
another is continuously fine-tuning the task network during the translation process.
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UST-DG [16] firstly developed DualGAN [149] to achieve unsupervised style transfer
to generate target-stylized images for source domain images to alleviate the disadvantage
influence of the data shift. Then, a model adapted to the target domain was trained by
using pseduo images with labels, obtaining a good performance during the test. In addition,
in this paper, what causes the domain shift is discussed through two experiments based on
different settings, P(IR-R-G) to V(IR-R-G) and P(R-G-B) to V(IR-R-G).

BiFDANet [20] proposes an unsupervised domain adaptation method based on a
bi-direction image-to-image translation method to take full advantage of both domains
and overcome poor performance due to unidirectional domain adaptation, while this
method uses Deeplab v3 [8] and ResNet [4] as backbones. To keep semantic consistency,
three constraints are designed as follows, which are a cycle-consistency constraint [114],
an identity consistency and a semantic consistency inspired by papers [43,150]. For the test,
a linear combination is designed to merge the prediction results.

Reference [151] proposed a method for Synthetic Aperture Radar (SAR) ship instance
segmentation based on cross-domain transfer learning and a res-pyramid Network, where
cross-domain transfer learning contains a sample transfer module and a knowledge transfer
module. Knowledge transfer of the data is used to train the instance segmentation model,
and then the parameters are cropped to retain the relevant parameters at the feature level.

The third part: combination with other constraints.
GcGAN [17] proposed a method for unsupervised domain mapping, which combines

the cycle-consistency constraint [114] and geometry-consistency constraint. UGCNet [18]
added geometry information proposed by GcGAN [17] to unsupervised domain adaptation
methods to alleviate the challenge of obtaining sufficient training data, which consists of
a Cross-domain Adaptation Network (CAN) and a Geometry-Consistent Segmentation
Network (GSN). The geometry constraint is as follows. It can be assumed that there exists
a geometric transformation function Fgeo(x) with an inverse function F−1

geo(x) that satisfied
Fgeo(GS→T(x)) = GS→T(Fgeo(x)), where x ∈ {xs, xt} and x = F−1

geo(Fgeo(x)), so that it can
be achieve geometry consistency during domain adaptation. The detailed definition is as
follows using L1 distance loss marked as ‖·‖1:

Lgeo(Fgeo, GS→T) =ExS∼ p̂S
‖GS→T(x)− F−1

geo(GS→T(Fgeo(x)))‖
1

+ExS∼ p̂S
‖Fgeo(GS→T(x))− GS→T(Fgeo(x))‖1

(5)

Based on UGCNet [18], V2RNet [120] is proposed by adding a semantic discriminator
in style transfer net named SegGAN to unify the source domain semantic structures and
target domain image style. Besides, this work also proposes a U-B-Net to achieve road
extraction aiming to the slender shape and uneven distribution of the road. Contempora-
neous work [117] also used geographic information, although only the rotation function
was used, and explored the differences in the transfer performance between images of
different modes.

Besides, there are also some constraints that are not introduced into the domain
adaptation methods, such as distance constraint from Distance GAN [152], which is not
complete for methods to construct a multi-level constraint system. The distance constraint
defined as follows assumes that if two samples obeyed the same distribution and if they
are mapping to the same space.

Ldis(GS→T) =

ExSi ,xSj∼ p̂S
| 1
σS

(‖xSi − xSj‖1 − µS)−
1

σT
(‖GS→T(xSi)− GS→T(xSj)‖1 − µT)|

(6)

3.1.2. Source-Stylized or Mid-Domain Methods

Differently, Inverse domain adaptation [19] thinks transferring target data to source
domain style can uses more comprehensive features of source domain. During the trans-
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lation process, it is necessary to preserve the image details and semantic consistency, for
which CycleGAN and AdaIN are used in this paper.

Similar to FCAN [134] consisting of two main components, that is, the Appearance
Adaptation Networks (AAN) and the Representation Adaptation Networks (RAN), transfer-
ring the appearances of different domains to be domain-invariant by searching a mid-source
can achieve domain adaptation, but this idea is frequently used in multi-domains adapta-
tion, since the distance between target domain to different sub-source domains is not the
same, such as StandardGAN [21] introduced in detail in Section 4.

3.2. Adversarial Training Methods

The goal of Adversarial training (AT) methods is to extract information on feature-level
or pixel-level or both levels to reduce the discrepancy between different domains. Some
feature-level domain adaptation methods narrow the domain gap between the source and
target domain, e.g., aligning second-order statistics [25,153], contrastive domain discrep-
ancy [34], maximum mean discrepancy [24,154] or Wasserstein metrics [26], while other
methods use adversarial training. Compared with generative methods, although pixel-
level domain adaptation methods focus on every pixel but not generate mid-output results
during the transferring process.

3.2.1. Feature-Level Adversarial Training Methods

The first part: Distance-based methods.
There are two main aspects of distance-based methods that are worthy to be explored:

one considers at what level or feature the distance can be measured, and the other considers
how to measure the distance. Therefore, we explore the above from the three directions of
data consistency, label consistency and joint distribution consistency.

How to consider the distance based on consistency of data or features? Maximum
Mean Discrepancies (MMD) [24] and Multi-Kernel Maximum Mean Discrepancies (MK-
MMD) [154] are firstly introduced into domain adaptation methods, and reference [155]
proved the effectiveness of minimizing the distance between source and target domain.
Due to the difficulty of MMD for controlling class distribution, paper [156] proposed a method
by learning the manifold embedding and migrate domain gap by embedding space based
on class-wise MMD that considers category distribution by adding class indicator function.
A two-stage Deep Domain Adaptation (TDDA) [157] method is proposed to achieve hyper-
spectral image classification based on three criteria, including MMD and margin-based
loss in the first stage, and pairwise loss in the second stage. Besides, a Deep Siamese
Domain Adaptation Convolutional Neural Network (CNN) called DSDANet [108] used
MK-MMD [154] of calculating distance between spatial-spectral features extracted by a
siamese CNN from different domains; this paper claims that it is the first time domain
adaptation method used on change detection application.

For different scenarios and applications, a lot of work has carried out function op-
timization and improvements on the MMD or MK-MMD function. For example, the
Class-wise Distribution Adaptation network named CDA [158] proposes the probability
Maximum Mean Discrepancies (PMMD) in conjunction with adversarial adaptation to
obtain an unsupervised classifier for hyper-spectral remote sensing data, where PMMD
uses the probability predictions of target data instead of distribution embedding to Re-
producing Kernel Hilbert Spaces (RKHS) in MMD [24] when estimating the means of
each class during the adaptation process. In addition, paper [159] used style transferring
and Local Maximum Mean Discrepancies (LMMD) proposed by DSAN [160] to achieve
fine-grained ship classification. Compared with MMD, LMMD is further supposed to
capture fine-grained feature by considering weights between different samples.

In addition to MMD, many methods [25,153] also use other metrics to measure the dis-
tance between two domain features. For example, inspired by Coral [153], Deep Coral [25]
constructs a loss function with a non-linear transformation named the CORAL Loss
based on covariance matrices to minimize the correlations between different domains.
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Reference [100] applied correlation alignment and adversarial domain adaptation to im-
prove the accuracy of target domain vehicle detection, and in order to learn semantic
features, it utilizes reconstruction loss. Reference [161] introduced domain-level and class-
level correlation alignments (CORAL) to the graph neural network (GNN), since GNN can
extract spectral information and relations among neighboring pixels.

How to consider the distance between label consistency? Inspired by ADA [162],
CPDA [97] presented a circled similarity propagation-based domain adaptation method for
the local climate zones (LCZ) classification task, which proposes an adaptation loss based
on circled similarity matrix calculated by cosine similarity. The experiments show the effec-
tiveness of the CPDA method on the LCZ42 Dataset [71] using different backbones [4,5,163].
In addition, the Augmented Associative Learning-based (AAL-based) domain adaptation
network [164] achieved the hyper-spectral remote sensing image classification by utilizing
source classification loss, walking loss and visiting loss.

How to consider the distance between joint distribution consistency? Reference [165]
incorporated the label information to align the joint distributions between feature and
labels. DTJM [166] is proposed as a domain adaptation method for hyper-spectral images
classification through embedding label information of the source domain and designing a
discriminative transfer joint method.

However, MLADA [75] mentioned that these methods fail in unsupervised domain
adaptation task based on synthetic aperture radar data due to its considerable variations of
SAR images in different frequency bands; thus, there are application defects for distance-
based methods.

The second part: GAN-based methods.
DANN [27] proposed an architecture including a deep feature extractor, a label pre-

dictor and a domain classifier and uses Gradient reversal layer to achieve an end-to-end
trainable network. ADDA [28] combined discriminative modeling, untied weight sharing
and an adversarial discriminative loss to be trained on unlabeled data from the target
domain. Faced with a sea fog detection task based on satellites and meteorological obser-
vations, SFGUDA [167] presented a two-stage method which contains an unsupervised
domain adaptation module and a seeded region growing module, considering the feasibil-
ity of obtaining abundant visible information over the land and the similarity between land
fog and sea fog. This work [168] used CycleGAN [114] to capture the transferable features
in a same feature subspace. A two-way mapping of source and target domain features
is designed and a cycle-consistency is used to minimize the discrepancy of reconstructed
features in different domains.

Reference [70] introduced simulated SAR data to asynthetic aperture radar automatic
target recognition (SAR-ATR) task to solve insufficient labels using adversarial domain
adaptation with Wasserstein distance [26] to replace unstable adversarial loss. A neural
network trained on an SAR image set of one band is not suitable for the classification of
another band images due to the discrepancy of the frequency band. Thus, MLADA [75]
proposes a multi-level domain adaptation method based on adversarial learning to solve
the domain shift between different band domains, which demonstrate better performance
than ADDA (three-feature-level adaptation).

Besides, some works [169] combined GAN-based methods and attention mechanism
to improve the models’ transferability. For example, MADAN [169] designed a BIN-
based feature extractor and introduced a multi-level attention mechanism, which included
a feature level attention generated by shallow features and an entropy level attention
produced by a deep discriminative feature.

A few work considered characteristics of remote sensing data and tasks so that the
features extracted by convolution networks are further transformed to obtain a better
performance. For example, Reference [31] converted deep features extracted by a CNN
structure into a 2D feature curves and reduces the discrepancy between two curve domains
based on a conditional generative adversarial networks (cGANs) model.
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3.2.2. Pixel-Level Adversarial Training Methods

Different from Generative training methods migrating discrepancy of appearances
and feature-based Adversarial training methods adapted in semantic differences, pixel-
level domain adaptation mainly effects on output space to narrow the gap between the
prediction of each pixel from the source and target domain. The direct method to solve the
above-mentioned problems is designing a domain discriminator for output space to judge
where the output is from source or target domain, such as AdaptSegNet [29].

Reference [170] used a fully-convolutional segmentation network as the generator to
extract semantic features, and utilizes a discriminator structure to distinguish the prediction
results from the target domain based on a binary cross-entropy loss. Besides, papers [32,119]
used a similar CLAN method [30] to achieve in road detection for remote sensing data,
which defines the category-level feature after element-wise addition and multiplication as
global features and decides how well a feature is category-level aligned between source
and target by co-training practice.

3.2.3. Hierarchical Adversarial Training Methods

Based on the mining of more effective information, many papers are devoted to
realizing multi-level feature adversarial training, including image, region, pixel or semantic
level. For example, TA3N [125] utilizes image-level and region-level domain discriminative
features to migrate domain discrepancy and adds transferable attention mechanism in
order to focus more on salient objects and less on background. Reference [171] proposed
an adversarial adaptive detection network and achieved hierarchical feature adaptation,
including image level and semantic level. For the final prediction matrix of the detector,
this work combines the Faster-RCNN [6] detector prediction and three Context Modules to
enhance feature extraction.

In addition, many works construct a conjunction between distance-based and GAN-
based training to achieve adaptation. CsDA [118] embeds GcGAN into a co-training
adversarial learning network for land cover mapping using very-high-resolution (VHR)
optical aerial images to emphasize the importance of aligning of category-level consistency
and global domain consistency.

In recent years, more and more papers have considered different levels fusion from
the feature level and pixel level, such as CyCADA [150], AdaptSegNet [29], Advent [172]
and so on. Besides, following the transfer of the segmentation output level, there are also
many methods for the detection task to use multi-level adversarial training strategy to
achieve unsupervised domain adaptation. For example, reference [101] uses prediction
and feature alignment to achieve vehicle detection avoiding performance deficits caused
by only feature-level migration. CaDA [33] not only considers a joint local and global
feature adversarial adaptation on feature and output space, but entropy minimization is
also restored in the coastal land cover mapping task.

3.3. Self-Training Methods

With the rise of self-supervised methods, for the self-training method in UDA, there
are two main issues worthy of attention, one is how to get better and more effective pseudo
labels from models trained on the source domain, and the other is how to use pseudo labels
for self training of the target domain.

At present, the acquisition of pseudo labels in unsupervised domain adaptation is
mainly following previous works, such as CBST [35] and IAST [36], but most of these
methods directly use the idea of pseudo label generation when applied in remote sensing.
LoveDA [79] demonstrates the effectiveness of self training methods [35,36,173] with
better performance compared other adversarial training methods [23,30] for rural to urban
transfer, and vice versa. In addition, it is worthy to mentioned that LoveCS [123] proposed
a multi-scale pseudo labeling method to tackle the scale dilemma problem based on CBST
and improve the accuracy of segmentation on the LoveDA Dataset.
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As for how to utilize the pseduo labels to perform precisely in the target domain, most
works train or fine-tune the model obtained from the source domain and some works, such
as [121,122], design an easy-hard mechanism to place extra emphasis on the training model.

3.4. Hybrid Training Methods

In order to pursue better model performance to solve the label dilemma and domain
differences, most of the current UDA methods in the field of remote sensing images are in
the form of a mixture of multiple methods defined as Hybrid training (HT) methods, that
is, they are not limited to using only Generative training (GT), Adversarial training (AT) or
Self-training (ST) methods. Most of these are multi-stage methods and connect different
training parts via input images after style transfer or pseudo labels. Although this type
of method can obtain high model accuracy, it is usually accompanied by defects, such as
high computational load and low running speed. In practical applications, it is necessary to
compromise between accuracy and speed. According to the method of combining two or
more ways, we roughly divide the hybrid training method into the following three types
and expound in detail the GT-AT, AT-ST and GT-AT-ST methods.

3.4.1. GT-AT Methods

Inspired by FCAN [134], JPRNet [135] consists of a pixel adaptation network (PAN)
using CycleGAN [114], in order to transfer one domain image to another domain, and a
representation adaptation network (RAN), which contains a similar FCNNet [134], a Segnet
and a Discriminator. Experiments demonstrate that the similar images reconstructed by
CycleGAN is helpful to learn good representation. Paper [174] presented a novel approach
relying on adversarial training of an appearance adaptation network (AAN) jointly with
the classification network, which requires only a single adaptation network from DS to DT .
Besides, a new regularization term and a new criterion for selecting the optimal parameter
values are introduced in this paper. Dcan [175] used adaptive instance normalization to
achieve Channel-wise Feature Alignment, because the mean and standard deviation of
each channel causes image style discrepancy [176].

ResiDualGAN [38] proposes a two-stage method utilizing a residual inspiration and
resize module, considering the scale discrepancy of RS images datasets and a scene of the
real-to-real translation, where one stage is to carry out an unsupervised neural transfer to
obtain fake images through XS−T = ResiGS−T(XS) = ResizeS−T(GS−T(XS) + (XS)) and
another stage is to train a semantic segmentation model.

Concurrent works [150,177] added two domain-specific task networks named FT
and FS to ensure their predictions maintained semantic consistency based on leveraging
image-to-image translation methods.

3.4.2. AT-ST Methods

Paper [161] used combination of coral correlations and self-training and demonstrated
the effectiveness of the proposed method for multi-temporal and hyper-spectral remote
sensing images. Similar to paper [178], RoadDA [121,122] proposed an unsupervised
inter-domain and intra-domain adaptation method for road detection, which first separates
the target domain into easy and hard splits using an entropy-based ranking function,
and then decreases the inter-domain or intra-domain gap via an adversarial mechanism.
Coincidentally, TriADA [81] is conducted adversarial training on feature and output space
and class-aware self training methods to generate pseduo labels for the target domain and
retrain classification model for very high resolution (VHR) images. Besides, after image
style transfer in the first stage, paper [45] used four images to train a segmentation network
in a second stage concluding a source image, a target-stylized source image, a reconstructed
source image and a target image.
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3.4.3. GT-AT-ST Methods

A few of the methods use all three training modes at the same time due to the high com-
plexity of the model and the instability of training. Paper [37] introduced an unsupervised
FasterRCNN-based [6] approach on the miniSAR and FARADSAR dataset, containing pixel
domain adaptation on data appearance, multi-feature level adaptation and self training
using an iterative pseduo label.

4. Other Concerns of UDA in Remote Sensing

In actual remote sensing applications, there are still many practical problems to achieve
accurate ground observation. For example, unknown categories may need to be identified
during the observation process, or it could be combined with multiple satellites to achieve
comprehensive judgment. In this section, the solutions to the scale difference caused by
different resolutions is first introduced specifically and then we introduce the methods ded-
icated to solving open-set and multi-domain unsupervised domain adaptation problems.

4.1. Scale Divergence Problem

Due to the planar nature of the scene and the nadir viewpoint, in the same satellite,
the size or resolution of different objects could not change. However, data from different
satellites suffer from non-uniform object size because of different resolution and satellite
orbit. It is necessary to alleviate the discrepancy caused by the resolution from various
satellites or remote sensing data.

Most methods utilize multi-level feature extraction to minimize the negative effects
of the resolution. Reference [171] combined the super-resolution module and Adversarial
Adaptive Detection Network (AADN). Reference [179] proposed a dual discriminator
network with a Scale Attention Module (SAM). Similarly, this paper chose Deeplab v3+
network [8] with the ASPP module as a backbone to reduce the influence of scale changes.
Besides, LoveCS [123] used a multi-scale pseduo labels to narrow the domain gap caused
by scale divergence through a dense multi-scale decoder.

4.2. Partial or Open-Set Unsupervised Domain Adaptation

The aforementioned domain adaptation methods are mostly shared the same label
space, but in reality, there still exist some unknown categories in the recognition or de-
tection task. Thus, partial unsupervised domain adaptation (PDA) [39,40] and open-set
unsupervised domain adaptation (OSDA) [180–182] are also challenging tasks based on
remote sensing data. The key of PDA methods is to avoid negative transfer due to the
mismatch classes. Massive PDA methods achieve this goal through identifying the source
instances which belong to the same class in the target domain. For example, Coordinate
partial adversarial domain adaptation (CPADA) [39] transfers relevant samples in the same
label class with the help of coordinate loss, while the Selective Adversarial Network (SAN)
[40] attempts to avoid negative transfer through eliminating the outlier source classes and
maximally matching the data distributions in label space. Under the setting of OSDA, it is
difficult to align the same and known categories and separate an unknown class from a
known class and source domain data. OSDANet [180] designed a network with a Q + 1
dimensional classifier used to separate known and unknown classes based on adversarial
training methods. Paper [182] proposed a domain adaptation based on paper [181] in
a spherical space instead of the prior Euclidean feature space under open set condition.
Besides, this paper combines an adversarial training module and pseduo labels to coverage
the ship detection network for two benchmark SAR datasets.

4.3. Multi-Domains Unsupervised Domain Adaptation

Most of the existing methods focus on the circumstances that achieve transfer from a
single-source to a single-target domain introduced in Section 3, but it is an ideal situation,
while in reality, there are many circumstances faced with more than one source or target
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domain due to the need for using multiple detection methods or remote sensing data of
different modalities.

Multi-source domain to single-target domain adaptation.
The most straightforward solution of multi-source to single-target domain adaptation

is to achieve pairing and narrowing differences between each sub-source and target do-
main, whether it is a difference in appearance or a difference in features. For the feature
alignment, MB-Net [183] was the first to use multi-source domain adaption in the field of
remote sensing images and proposed a new multiple domain dataset created from four
heterogeneous scene datasets. This paper mainly proposes a multi-branch network, which
accepts each source domain and target domain pair, respectively, and narrows the distance
between different domains by the mean feature.

Besides, some methods treat different source domains as an aggregated overall source
domain and implement unsupervised domain adaptation based on this. The core of the
aggregation methods is how to generate an aggregated unified domain through target-
stylized images from different sub-source domains, such as MADAN [43], or learnable
fusion for classifiers and prediction results, such as references [44,184]. MCSN [44] pointed
out that it is difficult to achieve the same source domain and target domain categories in
MDA, so it proposed multi-complementary source-domain adaptation (MCSDA), which
is a union of multi-source domains that share the same categories with the target domain.
MCSN [44] firstly performed feature alignment on the source and target domains. After-
wards, it aggregated the results of the source domain as pseudo labels to train the model,
such as DCTN [185]. Reference [184] adopted the Minmax entropy approach to achieve
the effect of narrowing the discrepancy between the source domain and the target domain,
which avoided discriminators in adversarial training with the help of gradient reversal
layers. Reference [184] introduced a learnable fusion layer to fuse the prediction results
and obtain the final classification result in the target.

Much work has also been devoted to unifying different source domain styles into a
standardized style between source and target domains. StandardGAN [21] is a generative
lightweight multi-source domain training framework and first uses AdaIN [142] to unify
the multi-domain data styles from different cities so that the model can be trained and
tested on the data after standardization. Unlike StandardGAN, which has a module
for image standardization that needs to be designed separately for each source domain,
DaugNet [22] is also based on AdaIN but only uses one common encoder, one decoder and
one discriminator to achieve multi-source domain adaptation.

In addition, a few papers discuss the factors causing degradation of performance of
multi-source domain models and propose solutions. For example, AMDA [186] is a simple
multi-source domain adaptation (MDA) framework to solve the Local Climate Zone (LCZ)
problem in remote sensing imagery, which utilizes a weighted loss function to solve the
imbalanced problem of data distribution of multi-source domains.

Single-source domain to multi-target domain adaptation.
There are different methods to transfer the multi-source domains to a single target

domain, caused by a lack of mature and rich identification experience and knowledge for
single-source to multi-target domains adaptation. Paper [46] was the first work discussing
the issue for multi-target domain adaptation in remote sensing and building a challenge
based on four dataset [59,65,66,187]. In order to avoid negative transfer due to dataset
discrepancy and no target annotations in mixed-multi-target domains, this paper used the
meta learning method [188] with an encoder-decoder architecture to design a sub-target
domain loss. Based on paper [46], reference [189] extended the multi-target domain adapta-
tion conception to single-source-mixed-multiple-target domain adaptation and designed a
two-stage network including sub-target adaptation and the source to target adaptation.

Besides, reference [190] thought that the best base classifier for different datasets
is hard to select, so Multiple Domain Adaptation Fusion (MDAF) and Multiple Base
Classifier Fusion (MBCF) are proposed based on a neighborhood consistency using adaptive
weighting mechanism.
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4.4. Domain Generalization in Remote Sensing

Domain generalization (DG) is a brand new and more challenging task that requires
the target domain to be unseen, which means completely inaccessible. The problem of DG is
how to learn generalized and precise feature representation from a number of related source
domains where training data is available, and to then successfully apply it to an “unseen”
target domain [191–193]. However, there is a rare attention to Domain generalization in
remote sensing. MMD-DRCN [193] attempts to solve large-scale and cross-regional oil
palm tree detection by DG. Reference [193] uses both classification loss and reconstruction
loss to extract more representative features from multiple source domains and aligns these
latent features by MMD loss, so as to obtain a model with stronger generalization. Besides,
reference [194] proposes a novel feature-selection method utilizing the measure based on
kernel embedding of conditional distributions to provoke generalization capabilities, which
include the feature relevance term and domain invariance measure.

5. Discussion
5.1. Comparisons of Different UDA Training Methods

In order to discuss how to choose a more suitable unsupervised domain adaptation
method faced with new unlabeled data, we obtained experimental results based on the
ISPRS Potsdam and Vaihingen datasets for six categories segmentation task, as shown in
Table 2, based on different training methods, including Generative training, Adversarial
training, Self-training, Hybrid training and other methods. We also provide the results with
different backbones, only trained on the source domain and directly tested on the target
domain, or directly trained and tested on the target domain. We can draw the conclusion
that at present, GT and HT methods mostly perform better compared to other methods. We
argue that it is possible that the discrepancy of remote sensing data is larger than nature
images. Besides, it is also migrated from the Potsdam dataset to the Vaihingen dataset, but
the channel composition of the source domain data used is different; one is merged by the
Red, Green and Blue (RGB) band, while another is merged by tge Near Infrared, Green and
Blue (IRGB) band, and the performance of the same method is also different. Moreover,
the results of the IRGB adaptation are slightly better than the RGB adaptation, since the
domain gap between the near infrared and visible bands is larger than between different
visible bands.

As can be observed from the above results, the discrepancy across domains defined
as domain shift are diverse so that they are addressed by different training methods.
For instance, the Adversarial training (AT) method mostly resolves the discrepancy in
category and feature characteristics caused by the semantic margin, whereas the Generative
training (GT) method primarily resolves the discrepancy in data appearance brought about
by various detection regions and bands. Therefore, it is necessary to select an appropriate
domain adaptation method for different data, considering many factors, such as algorithm
performance, computing resources and inference speed. If the source and target data are
selected from the same satellite, they show some discrepancy in color performance or pixel
distribution; thus, it is not necessary to choose the generative domain adaptation method,
as the proposed model can achieve better performance.

Although many works have achieved very good experimental performance on the
ISPRS dataset, there is still a certain gap between the model performances. Moreover,
in natural datasets and scenes, the effectiveness of the method is generally proved by
bidirectional transfer, that is, two sets of experimental performances from Potsdam to
Vaihingen and from Vaihingen to Potsdam are given at the same time. However, many
works in the field of remote sensing have ignored this aspect.
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Table 2. The experimental results based on the ISPRS Potsdam and Vaihingen datasets for six types
of segmentation task using different constitution and resolution bands. Bold text represents the best
performance in our statistical experimental results, while underlined text represents the second best
performance in a certain class of methods.

Method or Ref
Settings V9-P5 P5-V9

IRRG-RGB RGB-IRRG IRGB-IRRG

Baseline Ep F1 Score mIou F1 Score mIou F1 Score mIou

Source Only [15] BiSeNet 80 - - - - 0.32 0.17
Source Only [16] BiSeNet - - - 0.287 0.167 0.438 0.245
Source Only [16] Deeplabv3+ - - - 0.449 0.245 0.491 0.253

GT CycleGAN [118] Deeplab - 0.270 0.215 0.298 0.233 - -
GT Method [15] - BiSeNet 80 - - - - 0.49 0.30
GT UST-DG [16] - Deeplab v3+ - - - 0.509 0.359 0.606 0.416
GT PRC-GAN [117] - Deeplab v3+ 45 - - 0.561 0.407 0.661 0.482
GT Method [116] - SegNet - - - 0.7740 0.6132 - -

AT CyCADA [118] Deeplab - 0.433 0.326 0.452 0.363 - -
AT Method [31] - Deeplab v3+ - - 0.3870 - - - -
AT AdaptSegNet [117] - - - - 0.401 0.321 0.523 0.352
AT CLAN [118] Deeplab - 0.487 0.408 0.517 0.426 - -
AT CsDA [118] - Deeplab 200 0.528 0.423 0.545 0.449 - -

ST CBST [118] Deeplab - 0.452 0.374 0.460 0.388 - -

HT Method [45] - MA-FCN - - - - - - 0.437
HT DACST [49] - VGG-16 - - - - - - 0.444
HT TriADA [81] - Deeplab v3 - - - 0.656 0.497 0.698 0.551

HT TriADA-
CAST [81] - Deeplab v3 - - - 0.665 0.514 0.712 0.568

HT FCAN [174] - - 50 - - 0.669 0.535 - -

Other SEANet [117] - - - - 0.468 0.278 0.557 0.377

Target Only [195] Deeplab v3+ - 0.9212 0.8432 - - 0.8957 0.8147
Target Only [195] DC-Swin - 0.9325 0.8756 - - 0.9071 0.8322

5.2. Comparisons of UDA Methods between Natural and Remote Sensing Data

By comparing the unsupervised domain adaptation methods applied to natural images
and remote sensing images, for which the statistics are shown in Figure 5, we can find that
most of the methods applied in the remote sensing field are inspired by the methods of
natural images, and make use of the characteristics and inter-domain differences of remote
sensing data to design the method extension and to improve the model transferability.
However, similar methods represented in a nature scene applied in remote sensing are
usually delayed by about two years, since these methods are sorted by publication date
and application task. As a result, compared to the growth of techniques in natural datasets,
the development of UDA in remote sensing scene is still relatively modest, and there is still
much potential for exploration.

The adversarial training method is the cornerstone underpinning UDA research, while
the Self-training method is the rising star, especially in segmentation tasks. The hybrid
training method is currently the mainstream development direction of UDA, especially
when faced with a large domain shift, and a method based on a single training mode
cannot obtain a good performance model. Generative training methods applied in a remote
sensing scene are more frequent than in a nature scene due to the larger discrepancy of
remote sensing imagery compared with that of natural imagery, where the discrepancy is
due to various factors, i.e., detection satellite, band, area and other factors.

The UDA method in the remote sensing field compared with the natural scene needs
to pay more attention to the multi-domain problem, not only because the obtained data are
different due to the limitation of the detection level and the annotation cannot be obtained
immediately, but also because by using multi-modal or multi-source data, a more thorough,
accurate identification be reached.
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6. Conclusions

Unsupervised domain adaptation based on deep learning has shown excellent ad-
vantages in a variety of tasks and applications in the remote sensing scene, which can
deal with the dilemma that the model performance will deteriorate when faced with un-
labeled data from new areas or detection sensors. From the literature databases, such as
the IEEE/SCI/Spring database, according to multiple keywords, including remote sensing,
unsupervised domain adaptation, deep learning and other related search terms, more than
200 related works published in journals or conferences after 2012 were retrieved. Based on
a detailed reading and analysis of these works, we conducted this review of unsupervised
domain adaptation methods for remote sensing scenarios.

In this paper, a comprehensive and fine-grained taxonomy for UDA methods is pro-
posed according to different training modes, namely Generative training (GT), Adversarial
training (AT), Self-training (ST) and Hybrid training (HT) methods; these methods can
effectively solve the domain gap between the source and target domain. Besides, the defi-
nitions and methods of partial, open-set, multi-domain UDA and domain generalization
are introduced in this paper in order to attract more academic attention and solve practical
remote sensing scene problems. Furthermore, we focus on exploring the causes of the
domain shift specific to the remote sensing scene, which is divided into factors related
to data acquisition and imaging, tasks and annotations and others. Before selecting var-
ious and suitable UDA training approaches, it is vital to assess and analyze the factors
and outcomes for the domain shift based on different remote sensing data. For instance,
if appearance varies between source and target domain, a Generative training method or a
Hybrid training method applying GT at a particular stage could be selected as the training
process to obtain a satisfactory model.

Limitations. This paper may have some possible limitations. Regarding the applica-
tions in remote sensing selected for this review, there are still many practical applications
that have not been introduced in detail in this paper. Moreover, in addition to the rapid
development of UDA methods based on Deep Learning (DL), non-DL methods have also
made many contributions to this field, such as Transfer Component Analysis [155] and
other methods. Besides, in the statistical process of model performance of different methods
on the ISPRS dataset, we find that sometimes the same method has a different reproduction
accuracy in different works and can even have a large domain gap, which may be due to
hyper-parameter settings or test data selection. Even though in this paper we choose to
analyze the experimental results with open code as much as possible to ensure the accuracy
of the experimental results and inductions, this may still have a small impact.

Deficiencies. Although UDA methods in remote sensing have achieved some success,
there are still many key issues that remain unsolved in the current UDA. From the perspec-
tive of data, UDA still has certain requirements for the data volume and the correlation
of datasets from two domains; otherwise, the performance will be considerably compro-
mised. In addition, because the UDA method relies on the supervised information of the
source domain, if there is a large gap between in some categories between two domains,
the model may eventually have a weak ability to recognize these categories, or even cause
the catastrophic forgetfulness, that is, it cannot recognize them at all.

Future Directions. Based on this review, there are still a lot of topics worth exploring,
and we provide a few expectations for future work in this field: (1) Try more self-training
methods. At present, self-trained UDA has shown sufficient advantages for natural images,
but it has not received much attention in the field of remote sensing. (2) Apply multi-modal
data or some low-cost annotated data. Due to the lack of sufficient label information, there
is still a large gap between the UDA and full supervision. Fortunately, the rich multi-modal
data and some semi-supervised or weakly supervised data in the remote sensing field
can help us alleviate this problem. If we can utilize them smartly, the performance of the
model can be effectively improved. (3) Try to join continuous learning or test-time learning.
For continuous earth observation tasks, the model can be updated automatically over
time to better solve the problem of domain gap between observations at different times.
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(4) Design the specific UDA method for a type of remote sensing satellite. As mentioned
above, the domain shift problem in remote sensing is related to the optical and imaging
parameters of the sensor, so the specific satellite situation can be considered in the algorithm
design. The explanation of the UDA method can also be explored from this point of view.
(5) Establish standardized and comprehensive large-scale datasets. Most existing methods
are tested on their own datasets and it is not convenient to compare them with each other.
Standardized datasets are more conducive to the development of research. (6) Construct a
pre-training model based on a large data scale. A good pre-trained model is very important
for UDA. A model with rich prior knowledge and strong generalization can better achieve
domain adaptation.

Overall, we believe that these practical issues will receive further attention and devel-
opment in the future.
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