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Abstract: Understanding englacial and subglacial structures is a fundamental method of inferring ice
sheets’ historical evolution and surface mass balance. The internal layer continuity index and the
basal roughness are key parameters and indicators for the speculation of the relationship between the
ice sheet’s internal structure or bottom and ice flow. Several methods have been proposed in the past
two decades to quantitatively calculate the continuity index of ice layer geometry and the roughness
of the ice–bedrock interface based on radar echo signals. These methods are mainly based on the
average of the absolute value of the vertical gradient of the echo signal amplitude and the standard
deviation of the horizontal fluctuation of the bedrock interface. However, these methods are limited
by the amount and quality of unprocessed radar datasets and have not been widely used, which also
hinders further research, such as the analysis of the englacial reflectivity, the subglacial conditions,
and the history of the ice sheets. In this paper, based on geophysical processing methods for radar
image denoising and deep learning for ice layer and bedrock interface extraction, we propose a
new method for calculating the layer continuity index and basal roughness. Using this method, we
demonstrate the ice-penetrating radar data processing and compare the imaging and calculation
of the radar profiles from Dome A to Zhongshan Station, East Antarctica. We removed the noise
from the processed radar data, extracted ice layer continuity features, and used other techniques
to verify the calculation. The potential application of this method in the future is illustrated by
several examples. We believe that this method can become an effective approach for future Antarctic
geophysical and glaciological research and for obtaining more information about the history and
dynamics of ice sheets from their radar-extracted internal structure.

Keywords: ice-penetrating radar (IPR); internal layer continuity index (ILCI); roughness; deep learning

1. Introduction

The contribution of the continental ice sheet is the largest uncertainty source in esti-
mating future sea-level rise. Because the potential instabilities of ice sheet dynamics cause
profound indeterminacy, high greenhouse gas emissions can cause massive ice loss of the
Antarctic ice sheet (AIS) [1,2]. The evaluation of ice sheet modeling and the prediction of
the future sea-level rise are the frontiers of ice sheet dynamics research [3–7]. The main
uncertainty of ice sheet evolution is the incomplete knowledge of basal conditions and
englacial processes of the AIS [8,9]. Currently, ice sheet simulations are still limited by
the incomplete knowledge of boundary conditions, such as the subglacial topography,
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geothermal flux, englacial layer structure, and parameterization of the ice flow and ice shelf
calving process [10,11]. Ice-penetrating radar (IPR) imaging of the internal and bottom
layers of ice sheets is an effective method to derive the digital elevation model of the
subglacial topography and obtain the internal isochronous layers of the past ice surface [12];
therefore, IPR can provide an extra constraint for modeling predictions [13,14].

Since the 1960s, IPR has been widely applied in the observation of englacial layers
and subglacial topography in ice sheets. Vast data from radar surveys have been collected,
such as the SPRI/NSF/TUD radar-sounding data from the Scott Polar Research Institute
(SPRI) at the University of Cambridge, the National Science Foundation (NSF), and the
Technical University of Denmark (TUD) [15]; airborne radar data from Princess Elizabeth
Land, East Antarctica, Polar Research Institute of China (PRIC) [16]; NASA’s Operation
IceBridge [17]; the British Antarctic Survey’s Aerogeophysical Data [18]. Several studies
indicate the potential application of IPR data to quantify the ice sheet subglacial topography
and internal layer reflectors.

Basal roughness can be obtained from the radar-derived subglacial topography of
ice sheets [19,20], or by utilizing the electromagnetic scattering properties of bed echo
waveforms [21,22]. In [19,23,24], a Fourier transform method was used to calculate the
roughness parameter ξ, which reflects the vertical irregularity of the subglacial topography,
and the parameter η, which reflects the horizontal variation in the subglacial topography.
Shepard and others (2001) used the root-mean-square (RMS) of the bed elevation to estimate
the basal roughness [25]. This approach allows shorter length scales than the fast Fourier
transform (FFT), which not only facilitates subsequent anisotropic analysis of cross-sections
but also provides finer-scale roughness information. In general, the spatial distribution of
roughness quantified by FFT and RMS height methods is essentially similar [26]. In [21], the
Hurst exponent was calculated by using the self-affine fractal properties of the subglacial
topography at different scales to analyze the radar scattering extent and thus evaluate the
relationship between subglacial roughness and the basal thermal state of the AIS. Lang and
others (2021) proposed a multi-scale self-adaptive two-parameter algorithm for quantifying
the basal roughness, similar to the wavelet transform [27]. Bingham and Siegert (2009)
provided a conceptual framework for studying the causes and controls of smooth or rough
beds in the case of hard and soft beds [28].

Basal roughness is widely used in glaciology. Studies have shown that topographic
roughness can be used as an indicator of subglacial conditions during present and past ice
flow activities, and as a control over current ice sheet dynamics [26,29–31]. Quantitative
basal roughness can be applied to assess the ice velocity of the Antarctic and Greenland ice
sheets [26,32–34]. In [35], it was found that the basal roughness of ice sheets is associated
with contemporary or past ice velocities and geological conditions. A fast flow may be
associated with rougher beds, where areas with a slow flow are smoother. Most studies to
date have quantified large-scale topographic roughness information (approximately 1000 m
in scale); however, the direct relation to basal friction remains unclear [26]. Recently, Franke
and others (2021) suggested a spectral approach combining RMS measurements of bed
elevation to quantify basal roughness for characterizing landscapes and geomorphological
histories preserved in the Jutulstraumen Basin of the AIS [30].

The internal layer continuity index (ILCI) is a parameter for the quantitative assess-
ment of radar-derived englacial reflectors [20,36]. Generally, radar data can be presented
in two forms, namely, A-scope, which records a single pulse signal, and Z-scope, which
consists of multiple adjacent traces [37]. Several methods have been developed to manually
or automatically draw hierarchical englacial continuity, such as manually picking internal
layers [32], iterative peak tracking and pattern matching using ice models [38], automatic
radio echo sounding processing (ARESP) algorithms [39], and englacial-dip estimation
algorithms of continuous wavelet transform peak detection [40,41]. However, most of these
methods are based on peak-tracking analysis, which can transfer the unclear ice layer to the
adjacent ice layer when connecting the poor-quality areas of the radar images and cannot
realize automatic quantitative analysis. ILCI can be used to assess the degree of continuity
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of reflectors by calculating the mean of the absolute values of the vertical power gradient
of A-scope profiles [36]. Studies have shown that ILCI is very sensitive to the number
and intensity of internal reflectors. In general, low values indicate discontinuity, and high
values correspond to high continuity, which shows that ILCI has a good correlation with
the historical change of ice flows [20,36,42]. In addition, the ILCI method can eliminate
the potential subjectivity of layer continuity evaluation and greatly improve efficiency
in processing large amounts of radar data. The ILCI method is currently widely used in
the assessment of internal layer continuity for airborne and ground-based radar data in
Antarctica [20,42–45]; therefore, ILCI is more efficient and reliable where internal layers
can be tracked and has the potential to be applied on a larger scale of ice sheets.

However, the roughness calculation methods above rarely require multiple preprocess-
ing, and most of the englacial layers are manually extracted with high time consumption
and low efficiency. Recently, EisNet and later work [46,47] suggested a radar data process-
ing method fused with conventional geophysical processing and a deep learning network,
which can effectively reduce noise and implement rapid automatic extraction of the bedrock
interface and internal ice layers. In this communication, we first discuss the application
of the geophysical–deep learning fusion method to an airborne radar image to denoise
and extract the bedrock interface and ice layers. Second, we calculate the subglacial basal
roughness and ILCI based on the airborne radar data along the traverse from Zhongshan
Station to Dome A in Princess Elizabeth Land, East Antarctica, and compare the result with
the ground-based radar data [20] to validate the workflow’s performance and capacity
on large-scale airborne radar data. Section 2 introduces the methods, including the deep-
learning-based EisNet, and the calculation of basal roughness and ILCI; Section 3 is about
the radar data and research region; Section 4 presents and discusses the result of the deep
learning method and roughness/ILCI calculation; finally, Section 5 draws conclusions.

2. Method
2.1. Geophysics Preprocessing

IPR is the most widely used geophysical detection method due to its advantages,
such as high efficiency, high resolution, strong penetration ability, and low maintenance
requirements. IPR has been applied in measuring the ice thickness, subglacial topography,
and internal layers of the Greenland and Antarctic ice sheets, and other alpine glaciers.
The IPR system emits electromagnetic waves by a transmitter, and a receiver records the
echo signals reflected from interfaces with different dielectric properties when the signals
propagate in the air, ice, and snow [32,39]; therefore, radar images can be used to determine
the ice surface, bedrock interface, and ice thickness of the ice sheet. Moreover, the radar-
extracted englacial structure is often applied in ice sheet modeling for inversion of the ice
deformation process, past accumulation rate, and age stratigraphy and is further used to
understand the changes in paleoclimate and past ice dynamics [14]. Before these application
studies, extractions of the ice surface, bedrock interface, and internal layers are essential.
Therefore, this paper mainly introduces the application of deep learning in radar image
geometric feature extraction.

2.2. EisNet Model

EisNet is designed to extract the stratigraphy of ice sheets, including ice layers and
bedrock interfaces [47]. As a deep-learning-based method, EisNet is composed of three
subnetworks. The EisNet part in Figure 1 demonstrates EisNet’s structures: a convolu-
tional discriminator (Conv. Disc.) first classifies the input radar image slices, and two
convolutional encoder–decoders (CED-II/IR) then process the classified slices to obtain
the extractions. Each subnetwork is implemented by a multi-layer neural network and is
trained by synthetic radar image datasets [47]. EisNet is trained and applied as follows:
(1) Training dataset synthesis based on the visual features of layer targets, noises, and inter-
ference in observational radar images generates sufficient synthetic radar image datasets.
The distinct layer targets those that are thicker and brighter than two experiential thresholds
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are reserved as extraction labels for the training. Slices from observation radar data are
also collected to enhance the performance of a subnetwork in EisNet. (2) Subnetworks are
trained on corresponding training datasets. Transfer training of the convolutional discrimi-
nator in observational radar slices is suggested to further enhance the performance in field
application. The model files of each subnetwork are saved when training ends. (3) After
loading the trained subnetwork model files, EisNet can extract the internal isochrones from
radar images (as shown in Figure 1). The large-scale radar images are first cropped and
sampled to slices with the same shapes as 512 × 512. The convolutional discriminator
then classifies the image slices into different types. Following this, two extractors: CED-II
and CED-IR, extract layer features from the image slices based on the corresponding type
classification. Finally, after the extractions on all the slices finish, the extracted layer fea-
tures from each slice are merged and resampled to the same size as the input image. The
final product of EisNet extraction is two pixel-to-pixel distributions of both the bedrock
interface and ice layers. After training, EisNet is first quantitatively analyzed with fresh
synthetic data by Dice, MIoU, and PSNR [47] and then applied to large-scale observational
radar images.
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2.3. Basal Roughness

We used a spectral method based on FFT to quantify the roughness of the basal
topography. The two parameters (ξ and η) calculated were used to quantify the vertical
and horizontal irregularities of the topography [19]. In this study, we followed the basal
roughness calculation of Luo and others (2020) [20]. The average along-track sampling
interval of radar data was 20.07 m. A fixed spatial resampling interval of 20 m was used
in the linear interpolation. During resampling, the missing data points with an interval
of more than 200 m were considered as being ‘broken’ and were not analyzed by FFT.
Here, FFT was carried out over a moving window of 2N sampling points, where N = 5
(L = 640 m), which is the suggested minimum value [24]. The specific calculation process
of the two-parameter roughness is as follows:

First, the linear detrending elevation profile was obtained by subtracting the average
value of the subglacial topography elevation within the moving window length:

Z0(x) = Z(x)− < Z(x) > (1)
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where x is the horizontal window (−L/2, L/2); Z(x) is the subglacial topography elevation;
<Z(x)> is the mean subglacial topography elevation of a profile with length L.

A slope profile, Zsl(x), can be obtained from the detrended elevation profile by
Zsl(x) = ∂Z0(x)/∂x. Then, the total roughness parameter (the first roughness parameter
ξ) and slope roughness parameter (ξsl) can be defined by integrating the power spectral
density function (S(k) and Ssl(k)):

ξ =
∫ k2

k1
S(k)dk =

∫ k2

k1

1
l
|Z̃0(k)|

2
dk (2)

ξsl =
∫ k2

k1
Ssl(k)dk =

∫ k2

k1

1
l
|Z̃sl(k)|

2
dk (3)

where Z̃0(k) and Z̃sl(k) are, respectively, the Fourier transforms of Z0(x) and Zsl(x).
The frequency roughness parameter (the second roughness parameter, η) is defined

by dividing the total roughness by the slope roughness:

η =
ξ

ξsl
(4)

Finally, in order to compare with previous studies, we calculated half the mean square
of roughness parameters,

√
2ξ and

√
2η, to quantitatively describe the basal roughness

characteristics [20]. The total roughness parameter, ξ, reflects the main vertical amplitude
information and the vertical irregularity of the subglacial topography. A value of ξ close to
0 reflects a smaller amplitude and smoother bed. The frequency roughness parameter, η,
reflects the advantage of a specific wavelength on the horizontal change. A high η means
that the subglacial topography is dominated by relatively longer wavelengths; a low η
indicates that relatively shorter wavelengths dominate [48].

2.4. Internal Layer Continuity Index

The information about the locations and ice dynamics of current and past ice flows
can be recorded by internal layers [36,43]. Karlsson et al. (2012) proposed the method of
ILCI, which is often widely used to quantify the continuity of the internal reflector from
huge amounts of radar datasets [36]. The ILCI method is based on the observation that the
relative power of the reflected signal from the internal ice layers and bedrock interface in
each A-scope is higher than the relative power without clear layering. That is to say, when
the ice formation contains numerous clear internal layers, the A-scope signal exhibits high-
amplitude fluctuations. On the contrary, when the ice formation contains less clear internal
layers or is absent, low-frequency and low-amplitude oscillating signals are generated. The
quantitative results of a low ILCI can help us quickly understand the historical ice flow
information [36,39,43,45], and internal layering with good continuity can be used for ice
core drilling site selection or provide new strategies for repeated investigation [18,42]. We
calculated the ILCI by the absolute value of the gradient of the A-scopes. That is,

Ψ =
1

2∆rN

L2

∑
i=L1

|Pi+1 − Pi−1| (5)

where Ψ represents the calculated continuity index parameter; Pi is the reflected relative
power (dB) at the time sample point, i; ∆r is the depth (m) and equal to 1; and N = [L1:L2]
is the number of sampling points in the time sub-interval, which is usually set equal to
the middle 3/5 of the ice column for analysis [34,36,47,49]. We followed the calculation of
Luo et al. (2020) and assessed overall layer continuity along the traverse by smoothing the
windows of 100 traces (about 2 km) and 500 traces (about 10 km) [20].
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3. Test Ice Sheet Profile and Radar Data

The radar data applied in the test were from the traverse from Zhongshan Station
to Dome A observed during the airborne geophysical survey in the 32nd CHINARE,
2015/2016. The airborne radar profile is the same as the inland traverse by CHINARE
in East Antarctica, which is also a transect of the International Trans-Antarctic Scientific
Expedition (ITASE) project. It is about 1200 km long and can be used for comparison and
verification of the previous profile from ground-based radar detection. In the previous
ground-based radar study by Luo et al. (2020), long intermittent measurements resulted
in discontinuity section data due to the limited speed of the snow vehicle. As shown in
Figure 2a, the line segments in different colors are the sections collected by the ground-
based deep IPR during CHINARE 29, 2012/2013, and the black line is the complete line path
obtained by the airborne radar. The inland investigation transect starts from Zhongshan
Station along the coast and passes through the west of Princess Elizabeth Land (PEL), the
east of the upper reach of the Lambert Glacier Basin (LGB), the Gamburtsev Subglacial
Mountains (GSM), and the Dome A area [20].
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Figure 2. (a) The distribution of the detection routes on maps. The base map is from Antarctic
BedMachine V2 (Morlighem et al., 2019). (b) Airborne radar images from route A’-A. (c) Ground-
based radar image from Luo et al., 2020 [18]. The locations of the Taishan Station are indicated by red
stars in (b,c). The Yellow * and blue arrow indicate the observation results of similar structures in
different radar profiles.
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The airborne ice radar system used in the airborne geophysical surveys is functionally
similar to the High Capability Airborne Radar System (HiCARS), which was developed
by the University of Texas Institute for Geophysics (UTIG). It is also a phase-coherent
radar system transmitting a 1 µs-wide chirp pulse with a 60 MHz center frequency (see
Tang et al. (2022) for more details on the system parameters [46]). We conducted processing
based on the ‘pik1′ data, which are a field data product [46]. In order to improve the signal-
to-noise ratio (SNR) of the pik1 data, we carried out DC filtering, Karhunen–Loeve (KL)
filtering (eliminating background speckle noise), frequency–wavenumber domain (F–K)
filtering (removing inclined stripe noise), and mean filtering (eliminating angular reflection
and enhancing the horizontal signal) of the A-A’ profile in Figure 2a. An example of the
processed radar image is shown in Figure 2b. Figure 2c is a cross profile of the ground-based
radar that was not continuously detected compared with the airborne radar profile.

4. Results and Discussion
4.1. Radar Detection

Comparisons between the airborne radar segment (Figure 2a) and the ground-based
radar segment (Figure 2b) suggest that the airborne radar complements the incomplete
feature not detected by the ground-based radar (the green line in Figure 2b) and also
supplements the blind detection area of the ground-based radar near 500 m in the shallow
layer. However, as the blue arrow in Figure 2b,c indicates, the main factor is the difference
in the track stacking processing of different radar data that makes the ground-based
radar records more clearly reflected from the inclined internal ice layer above the steep
terrain. The yellow asterisk marks the same manually picked deep layer in two different
radar data. Below this layer, the ground-based radar can observe more deep layers than
the airborne radar, which demonstrates the ground-based radar system’s higher deep
detection capability.

4.2. Bedrock Interface and Internal Ice Layer Extraction

Figure 3 shows the ice surface and bedrock interface extraction from the manual
method (blue curve) and automatic EisNet method. Due to the pixelized resolution limita-
tion in radar images, few experience interventions can be submitted to EisNet extraction.
Therefore, the extracted layers show horizontal discontinuity and high-frequency joggle in
the pixel-scale results. To optimize the result and obtain continuous layer extraction, we
appended the post-processing of EisNet as interpolation and smoothness. We used the trace
number threshold to detect discontinuity. In the EisNet-extracted layers, a discontinuous
range smaller than the threshold is determined to be the temporary discontinuity, which
will be interpolated and smoothed. Meanwhile, a discontinuous range larger than the
threshold will be retained in the final result. We applied linear interpolation to comple-
ment the temporary discontinuity and Gaussian smoothing to reduce the high-frequency
pixelized joggle. The final results after interpolation and smoothing are shown as black
curves in Figure 3a. Figure 3b,c are the pixel-scale images corresponding to the green boxes
b and c, respectively, in Figure 3a. The yellow curves indicate the post-processed EisNet
extractions, which are consistent with the manual extractions. The standard deviation
between the post-processed EisNet and manual extraction was 3.16 m, which is smaller
than the sample interval and shows the reliability of EisNet and post-processing. As the
red curve shows in Figure 3c, the raw EisNet extraction of the bedrock interface was highly
sensitive to the high reflection signal but lacked extraction to the steep interfaces with a low
reflection signal. The blue and black curves in Figure 3a indicate EisNet’s low sensitivity to
the bedrock in the deep valley compared with the manual method. The depth of the valley
was even shallower after interpolation. Figure 3d is the difference histogram of the bedrock
elevation from the manual and EisNet extractions. It shows a Gaussian-like distribution,
in which the maximum elevation difference is about 630 m, and the standard variance is
61.1 m.
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Figure 3. (a) Surface elevation and bed elevation of airborne radar traverse from Zhongshan Station
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the ice surface and the ice–bedrock interface corresponding to the green rectangular slice in (a),
respectively; (d) difference histogram of bedrock elevation after manual and EisNet extractions,
wherein the standard deviation of the bedrock elevation difference is 61.1 m.

In addition to the extraction of the ice surface, we also used EisNet to extract the
internal isochronous layer inside the ice sheet. Figure 4 shows the internal layer extractions
obtained by the EisNet workflow. In Figure 4a,b, the inclined stripe texture caused by
interference at the 1500 trace position is incorrectly extracted, but the effect can be effectively
reduced using the FK filtering method (Figure 4c,d). Comparisons between the subfigures
suggest that the filtering methods in radar data preprocessing can primarily exclude the
specified texture in the radar image but also bring unexpected data loss. EisNet can extract
the internal layers with obvious features with high continuity. However, due to irregular
changes in the brightness and thickness of the internal ice layer in different radar images,
there are also discontinuities and multiple candidate targets in EisNet’s internal layer
extractions. In this complex instance, it is still a challenge to determine the same layer and
further connect the disturbed layer.
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4.3. Basal Roughness and Continuity Index

To further compare the bedrock interface extraction by different methods in the same
dataset, we also applied the final results of the interpolation and smoothing of the bedrock
interface extracted by EisNet to calculate the basal roughness, which was later compared
with the results from the manual method. Figure 5 shows the normalized result of the
basal roughness after the 500 (~10 km) traces’ Gaussian smoothing processing (red line
for manual method; yellow line for EisNet and post-processing). From the comparisons,
we can conclude the following: (1) Two distribution trends of the total roughness (ξ) are
consistent around 30–380 km, 420–740 km, 1040–1100 km, and 1200 km; however, in the
region around 10–30 km, 380–420 km, and 1160 km, the total roughness shows a large
difference and an opposite distribution trend. (2) Because the bedrock interface is poorly
extracted by EisNet near the deep mountain valley, the slope at the steep terrain is reduced
by the interpolation/smoothing process, which results in the total slope roughness (ξsl)
being lower than the result from the manual method. Therefore, the frequency roughness
(η) distribution from the EisNet extraction shows a significant difference from the manual
method, with a larger value. This indicates that the subglacial topography extracted by
EisNet after interpolation and smoothing is dominated by long wavelengths.

Figure 6 shows the ILCI calculated from the middle 3/5 ice column of the airborne
radar profile. To highlight the regional characteristics, the results were averaged by
100 traces (~2 km) and 500 traces (~10 km). Figure 7 is the variation in the ILCI with
depth calculated from the airborne radar profile. As shown in Figure 6, the low ILCI values
indicate low internal layer continuity in the 0–80, 340, 390, 410–440, 550, 770–970, and
1050–1120 km regions; the high ILCI values in the 260–320, 370, 400, 480–530, 600–700,
1020–1070, and 1140–1240 km regions show high continuity of the internal layer. The ice
continuities of 0–20% at the top and 80–100% at the bottom of the ice column are ignored in
the analysis of the ILCI distribution with depth. As shown in Figure 7b–d, the ILCI in the
middle depth (40–60%) at 0–50 km is higher than that in the upper and lower depths; the
ILCI at 50–970 km decreases with the increase in depth; the ILCI at 970–1130 km increases
with the increase in depth; internal layers show high continuity in the 1130–1240 km region.
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4.4. Discussion

The application of the airborne IPR survey profile from Zhongshan Station to Dome
A can supplement the data flaw of the ground-based radar profile [20] and reveal the
potential application of large-scale airborne radar data. The airborne flight route overlaps
with the vehicle-borne route between 0 and 1080 km, where 2333 intersections are affirmed
with a distance smaller than 28 m. In intersections, the corresponding difference between
the manually picked elevation from the ground-based radar data and the EisNet-detected
bedrock interfaces is in the range of 0–600 m, in which the standard variances of the
bed elevation difference are 82.4 m and 95.2 m, respectively. The influence factors of the
bed elevation difference at the intersection include the GPS location accuracy, manual
picking misfit, and radar system resolution. Compared with the results of the ILCI and
basal roughness from Luo et al., 2020 [20], we can conclude the following: (1) In the
area of 0~1080 km, where the detection route is approximate, the total basal roughness
obtained from the airborne radar (red line in Figure 5a) is consistent with the results of the
ground-based radar (purple line in Figure 5a). The frequency roughness distribution trends
between them are consistent, but the ground-based frequency roughness is higher than that
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of the airborne data at 150~220 km and 370~420 km, and lower than that of the airborne
data at 260~320 km and 970~1080 km. The difference in frequency roughness indicates
the difference in the variation frequency of the horizontal fluctuation of the subglacial
topography detected by the two radar data in the same region. (2) In 1080~1240 km areas
with different detection routes, although the distribution of the subglacial topography is
different, both of the data have high total roughness and frequency roughness, which also
indicates that the GSM in the Dome A region are supposed to be mountain landscapes under
the typical continental environment [20]. (3) Because of the different radar systems used in
airborne and ground-based detection, there are large differences in both the acquisition
parameters and data processing detection. To reduce the influence introduced by differences
in systems and data processing when calculating the ILCI, we did not directly compare
the ILCI results specifically. Overall, even though there is also a large difference between
the continuity and discontinuity of the ILCI between the two detections in the local region,
they can still reveal the high continuity of internal layers near Taishan Station (500 km) and
Dome A and the low continuity in the upstream of the Lambert Glacier.

Remote Sens. 2022, 14, x FOR PEER REVIEW 11 of 14 
 

 

 
Figure 7. ILCI graphs of depth range derived from airborne radar profile from Zhongshan Station 
to Dome A. (a–e) show the ILCI results for each fifth ice depth.  

4.4. Discussion 
The application of the airborne IPR survey profile from Zhongshan Station to Dome 

A can supplement the data flaw of the ground-based radar profile [20] and reveal the 
potential application of large-scale airborne radar data. The airborne flight route overlaps 
with the vehicle-borne route between 0 and 1080 km, where 2333 intersections are af-
firmed with a distance smaller than 28 m. In intersections, the corresponding difference 
between the manually picked elevation from the ground-based radar data and the EisNet-
detected bedrock interfaces is in the range of 0–600 m, in which the standard variances of 
the bed elevation difference are 82.4 m and 95.2 m, respectively. The influence factors of 
the bed elevation difference at the intersection include the GPS location accuracy, manual 
picking misfit, and radar system resolution. Compared with the results of the ILCI and 
basal roughness from Luo et al., 2020 [20], we can conclude the following: (1) In the area 
of 0~1080 km, where the detection route is approximate, the total basal roughness ob-
tained from the airborne radar (red line in Figure 5a) is consistent with the results of the 

Figure 7. ILCI graphs of depth range derived from airborne radar profile from Zhongshan Station to
Dome A. (a–e) show the ILCI results for each fifth ice depth.



Remote Sens. 2022, 14, 4507 12 of 14

The EisNet automatic extractions of the internal ice layer and bedrock interface from
the IPR data suggest the capability of synthetic radar images in neural network training
and provide alternative data with a similar number of labels to the conventional manually
picked labels [47]. EisNet can obtain performance after training to extract both types of
layer targets with high sensitivity and efficiency. Meanwhile, the noise and interference
in radar images can be effectively reduced. The basal roughness from Zhongshan Station
to Dome A calculated by the EisNet-extracted layer features shows high consistency with
Luo et al. (2020) [20]. However, there is still optimization space for EisNet’s internal layer
extraction in fast-ice flow regions due to the complex fractures, distortion, and interferences.
EisNet is a relatively capable method in the automatic and rapid extraction of internal
ice layers and subglacial topography, which will bring significant advancements in the
extraction of ice layers from more than 170,000 km airborne radar lines obtained by the
Polar Research Institute of China.

5. Conclusions

In this research, we proposed a fusion method based on the ice radar data process and
deep learning method to extract the internal/bottom geometric features of the AIS and
calculate the basal roughness and ILCI. We used the airborne radar images from Dome
A to Zhongshan Station to validate the workflow of the application. The result indicates
that this method can effectively extract the internal layers and bedrock interface from
radar images of the ice sheet. Based on the extracted layers and interface, we further
quantitatively calculated and verified the basal roughness and ILCI results from a previous
study intermittently measured by ground IPR [20] and thus demonstrated the method’s
reliability. The deep learning method showed high capability when extracting layers
from the high-continuity radar images, but it remains to be improved when fractures or
high interference exist in radar images. The automatically extracted layer features have
a potentially important impact on the basal roughness and ILCI calculated in large-scale
radar data. This fact directly relates the detection in the AIS to the glacial parameters and
makes a unique contribution to effectively quantitating ice sheet dynamics. In addition, this
method integrates the conventional radar data preprocessing denoising and deep learning
geometric feature extraction and has an obvious advantage in efficiency over the manual or
semi-automatic extraction of layer features from radar images.
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