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Abstract: Land cover classification is a multiclass segmentation task to classify each pixel into a certain
natural or human-made category of the earth’s surface, such as water, soil, natural vegetation, crops,
and human infrastructure. Limited by hardware computational resources and memory capacity, most
existing studies preprocessed original remote sensing images by downsampling or cropping them
into small patches less than 512× 512 pixels before sending them to a deep neural network. However,
downsampling incurs a spatial detail loss, renders small segments hard to discriminate, and reverses
the spatial resolution progress obtained by decades of efforts. Cropping images into small patches
causes a loss of long-range context information, and restoring the predicted results to their original
size brings extra latency. In response to the above weaknesses, we present an efficient lightweight
semantic segmentation network termed MKANet. Aimed at the characteristics of top view high-
resolution remote sensing imagery, MKANet utilizes sharing kernels to simultaneously and equally
handle ground segments of inconsistent scales, and also employs a parallel and shallow architecture
to boost inference speed and friendly support image patches more than 10× larger. To enhance
boundary and small segment discrimination, we also propose a method that captures category
impurity areas, exploits boundary information, and exerts an extra penalty on boundaries and small
segment misjudgments. Both visual interpretations and quantitative metrics of extensive experiments
demonstrate that MKANet obtains a state-of-the-art accuracy on two land-cover classification datasets
and infers 2× faster than other competitive lightweight networks. All these merits highlight the
potential of MKANet in practical applications.

Keywords: semantic segmentation; convolutional neural network; land-cover classification

1. Introduction

Nowadays, various satellite constellations with shorter revisit periods and wider obser-
vation coverage have formed the global earth observation system which can quickly obtain
huge amounts of high-spatial-resolution, high-temporal-resolution, and high-spectral-
resolution remote sensing imagery [1]. For example, China has 30 to 50 high-resolution
remote sensing satellites in orbit, and by a conservative estimation, several hundred TB
of data are acquired every day [2]. However, with regard to the acquisition speed, the
rapid intelligent processing of remote sensing data still lags [3,4]. In the new era of artificial
intelligence, how to realize instant perception and cognition of remote sensing imagery has
become an urgent problem to be solved.

Land cover classification is a multiclass segmentation task to classify each pixel into a
certain natural or human-made category of the earth’s surface, such as water, soil, natural
vegetation, crops, and human infrastructure. The land cover and its change influence the
ecosystem, human health, social development, and economic growth. The last several
decades of years have witnessed the improvement of the spatial resolution of remote
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sensing imagery from 30 m to submeter. With richer details and structural information of
objects emerging in remote sensing imagery, land cover classification methods have shifted
from discriminating the spectral or spectral–spatial information of local pixels to extracting
contextual information and spatial relationship of ground objects [5]. Among them, deep
neural networks (DNN) have been widely used for their strong feature extraction and high-
level semantic modeling ability. However, a large computational resource consumption
brings slow inference speeds and restricts the practical application of DNN in remote
sensing imagery. Meanwhile, the incapability of processing large-size image patches causes
the cropping size to be too small, and the resulting loss of long-range context information
is detrimental to prediction accuracy.

To obtain a high accuracy, conventional semantic segmentation networks, such as
UNet [6], FC-DenseNet [7], and DeepLabv3+ [8], usually adopt a wide and deep backbone
as an encoder at the cost of a large computational complexity and memory occupation.
In the task of land-cover classification, limited by GPU memory capacity, most existing
studies preprocess the original remote sensing images by downsampling or cropping them
into small patches less than 512 × 512 pixels before sending them to a deep neural network.
For example, CFAMNet [9] proposed a class feature attention mechanism fused with an
improved Deeplabv3+ network. To avoid memory overflow, 150 remote sensing images
of 7200 × 6800 pixels were cropped into 20,776 images of 128 × 128 pixels. DEANet [10]
used a dual-branch encoder structure that depended on VGGNet [11] or ResNet [12]; in the
experiments, each image with a resolution of 2448 × 2448 pixels was compressed to half
the size and then divided into subimages with a resolution of 512 × 512 pixels. DISNet [13]
integrated the dual attention mechanism module, including the spatial attention mechanism
and channel attention mechanism, into the Deeplabv3+ network. In the experiments, the
original images were also cropped into small patches of 512 × 512 pixels before being sent
into the network.

However, it takes decades of efforts to improve the spatial resolution of remote sensing
imagery, and downsampling reverses this progress and incurs a spatial detail loss. The
rich details of objects, such as the geometrical shape and structural content of objects, are
blurred by downsampling. It renders small segments hard to discriminate, thus offsetting
the gain enabled by the large backbone.

On the other hand, cropping the original images into small patches less than or equal to
512 × 512 pixels causes a loss of long-range context information and leads to misjudgments.
As shown in Figure 1, a remote sensing image with a resolution of 2048 × 1536 pixels is
cropped into 12 small patches with a resolution of 512 × 512 pixels. If one views the whole
original image, it is clear that the water surface is a lake; however, if one views the individual
small patches, the water surface may be misjudged as a river. Therefore, compared with
images in other domains, such as street view images in the autonomous driving field, the
support of large-size image input is more important for the correct semantic segmentation
of remote sensing images (in Section 4.4.1, we investigate the influence of the input image
size on prediction accuracy, and demonstrate that the loss of long-range context information
caused by a small cropping size would create a misjudgment and yield a lower accuracy).
Another drawback of cropping is that cropping the images and restoring the predicted
results to their original size incur extra latency. Hence, aimed at the characteristics of top
view high-resolution remote sensing imagery, it is necessary to redesign the architecture of
semantic segmentation networks to support large-size image patches.
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Figure 1. A remote sensing image with a resolution of 2048 × 1536 pixels is cropped into 12 small
patches with a resolution of 512 × 512 pixels.

As presented in Figure 1, the abundant small segments, rich boundaries, and small
interclass variance in remote sensing images are all likely to cause semantic ambiguity
near the boundaries and small segments. Meanwhile, the areas where multiple land-cover
categories exist contain richer information and are more prone to be misjudged. In the
other aspect, the number of interior pixels grows quadratically with segment size and
can far exceed the number of boundary pixels, which only grows linearly. However, the
ground truth masks and conventional loss functions value all pixels equally and are less
sensitive to boundary quality. Hence, it is necessary to capture category impurity areas
and implement an effective measure to reinject boundary information into the semantic
segmentation network.

In summary, the slow inference speed, incapability of processing large-size image
patches, and easy misjudgment of boundaries and small segments are three factors that
restrict the practical applications of semantic segmentation networks. To alleviate these
three problems, we present an efficient lightweight semantic segmentation network termed
Multibranch Kernel-sharing Atrous convolution network (MKANet) and propose the Sobel
Boundary Loss for efficient and accurate land-cover classification of remote sensing imagery.
MKANet acquires state-of-the-art accuracy on two land-cover classification datasets and
infers 2× faster than other competitive lightweight networks (Figure 2). The contributions
of this paper can be summarized in three aspects:

1. Aimed at the characteristics of top view remote sensing imagery, we handcraft the
Multibranch Kernel-sharing Atrous (MKA) convolution module for multiscale feature
extraction;

2. For large input image size support and a fast inference speed, we design a shallow
semantic segmentation network (MKANet) based on MKA modules;

3. For an accurate prediction of boundaries and small segments, we propose a novel
boundary loss named Sobel Boundary Loss.
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Figure 2. Speed–Accuracy performance comparison on the DeepGlobe Land Cover dataset of image
size 2448 × 2448 pixels, where the proposed MKANets achieve state-of-the-art speed–accuracy
trade-off.

2. Related Work

In this section, we first present some representative lightweight semantic segmentation
networks and our improvement direction; then, we introduce the original kernel-sharing
mechanism as well as our reasons to adopt it and its limitation.

2.1. Lightweight Semantic Segmentation Networks

Certain semantic segmentation networks employ lightweight backbones, so compared
with large networks, they consume fewer hardware resources. For example, ENet [14]
employs an early downsampling strategy and asymmetric architecture that consists of
a large encoder and a small decoder in pursuit of real-time processing. BiSeNetV1 [15]
and BiSeNetV2 [16] use a two-pathway architecture: the first pathway captures the spatial
details with wide channels and shallow layers, and the second pathway extracts the categor-
ical semantics with narrow channels and deep layers and then fuses the output features of
these two paths to make the final prediction. Hong et al. proposed a deep dual-resolution
network (DDRNet) [17] that consisted of two deep branches between which multiple
bilateral fusions were performed. To guarantee accuracy without drastically increasing
computational consumption, ABCNet [18] replaced the dot-product attention mechanism
of quadratic complexity with a linear attention mechanism for global contextual informa-
tion extraction. DABNet [19] adopted a depthwise asymmetric convolution and dilated
convolution to build a bottleneck structure for parameter reduction. DFNet [20] utilized
the partial order pruning algorithm to obtain a lightweight backbone and efficient decoder.

Although these lightweight networks are computationally inexpensive, there is still
some gap in accuracy between them and large networks. An empirical observation shows
that prediction errors are more likely to occur on boundaries and small segments [21]; this
observation prompted us to propose a novel boundary loss as detailed in Section 3.4 to
bridge the accuracy gap between lightweight networks and large networks.

2.2. Kernel-Sharing Mechanism

The authors of KSAC [22] argued the weakness of the original ASPP [23] structure
was that the kernels in the branch with small atrous rates only learned details and handled
small objects well, while the kernels in the branch with large atrous rates were only able to
extract features with large receptive fields. The lack of communication among branches
compromised the generalizability of individual kernels. To tackle this problem, they
proposed that multiple branches with different atrous rates share a single kernel, so the
shared kernel is able to scan the input feature maps more than once with both small and
large receptive fields. Another benefit is that the objects of various sizes can all contribute
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to the training of the shared kernel, so the number of effective training samples increases,
and the representation ability of the shared kernel is thus improved. KSAC adopted
the architecture of DeepLabV3+, and its modified ASPP structure consisted of a 1 × 1
convolutional branch, a global average pooling branch followed by a 1 × 1 convolution,
and three kernel-sharing atrous convolutional branches with rates (6, 12, 18).

The spatial resolutions of different satellites vary, which makes land objects belonging
to the same category have different scales. On the other hand, lands belonging to the same
category have different areas. The features at multiple scales in remote sensing images
match with the advantages of the kernel-sharing mechanism, so we decided to adopt this
mechanism in the basic module design.

However, the direct introduction of KSAC to the basic module is impossible, because
KSAC can only be applied once as the last stage of the encoder. Firstly, its global average
pooling branch is supposed to obtain the image-level features; secondly, its large atrous rates (6,
12, 18) are not suitable for extracting low-level features, especially for remote sensing images in
which objects have smaller spatial scales than those in general images. Therefore, constructing
a backbone by purely stacking the original KSAC structure is not feasible. Therefore, we
handcrafted a novel multibranch module as detailed in Section 3.1; the newly proposed
module can be stacked in multiple stages as the backbone for semantic segmentation.

3. Proposed Method

In this section, we first introduce the MKA module which constitutes the backbone
of the network; then, we show the network architecture that infers 2× faster than other
competitive lightweight networks; at last, we present the Sobel Boundary Loss that helps
boundary recovery and improves small segment discrimination.

3.1. Multibranch Kernel-Sharing Atrous Convolution Module

Conventional networks usually accumulate contextual information over large re-
ceptive fields by stacking a series of convolutional layers, so they have deep network
architectures that consist of dozens of layers. Some networks even have more than one
hundred layers, for example, FC-DenseNet [7]. However, one of the costs of building a
deep architecture is slow inference speed. For a high efficiency and fast inference speed,
we designed the Multibranch Kernel-sharing Atrous (MKA) convolution module, as illus-
trated in Figure 3. Its parallel structure and kernel sharing mechanism can simultaneously
capture a wider range of contexts for large segments and local detailed information for
small segments and boundaries. Specifically, the receptive field of a typical three-branch
MKA module equals that of five 3× 3 convolutional layers connected in series. Different
from ASPP or KSAC which can only be applied once as the last part of a backbone, MKA
modules can be stacked in series as the backbone for semantic segmentation networks.
Hence, with MKA modules, it is no longer necessary to build a deep network architecture.
Meanwhile, the computation cost of an MKA module is inexpensive, and along with its
parallel structure, the MKA module can greatly boost inference speed.

The MKA module consists of three parts:

• Multibranch kernel-sharing depthwise atrous convolutions;
• Multibranch depthwise convolutions;
• Concatenation and pointwise convolution.
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Figure 3. Structure of the MKA module. The orange square represents the kernel shared by three
depthwise atrous convolutional branches with dilation rates (1, 2, 3).

3.1.1. Part 1: Multibranch Kernel-Sharing Depthwise Atrous Convolutions

Assume that the number of channels of the input and output features is N and that
the number of branches is M. One 3 × 3 kernel is shared by the M depthwise atrous
convolutions with dilation rates of 1, 2, . . . , and M. Next, a batch normalization is applied
in each branch.

Compared with KSAC [22], the MKA module abandons the 1× 1 convolutional branch
and the global average pooling branch. The dilation rates also decrease from (6, 12, 18) to
(1, 2, 3). To further reduce the computation complexity and memory occupation, regular
atrous convolutions are replaced by depthwise atrous convolutions, decreasing the kernel
parameters, computation cost, and memory footprint to 1/N.

This design inherits the merits of the kernel-sharing mechanism. The generalization
ability of the shared kernels is enhanced by learning both the local detailed features of
small segments and the global semantic features of large segments. The kernel-sharing
mechanism can also be considered a feature augmentation performed inside the network,
which is complementary to the data augmentation performed in the preprocessing stage,
to enhance the representation ability of kernels.

3.1.2. Part 2: Multibranch Depthwise Convolutions

Since atrous convolution introduces zeros in the convolutional kernel, within a kernel
of size kd × kd, the actual pixels that participate in the computation are just k× k, with a gap
of r− 1 between them. Hence, a kernel only views the feature map in a checkerboard fashion
and loses a large portion of information. Furthermore, the adjacent points of its output
feature map do not have any common pixels participating in the computation, thereby
causing the output feature map to be unsmooth. This gridding artifact issue is exacerbated
when atrous convolutions are stacked layer by layer. To alleviate this detrimental effect,
for the ith branch (i > 1), a depthwise regular convolution with kernel size (2× i− 1) is
added, followed by a batch normalization. Note that an atrous convolution with a dilation
rate of 1 is just a regular convolution; thus, for the first branch, nothing is added. Again,
depthwise convolutions are applied here to reduce computation and memory costs. With
the exception of smoothing the output feature maps of the preceding part, these depthwise
convolutions can further extract useful information.



Remote Sens. 2022, 14, 4514 7 of 24

3.1.3. Part 3: Concatenation and Pointwise Convolution

After the second part, the output features of each branch are concatenated, and then a
1× 1 convolution is applied to the fused features. This part has two functions: generating
new features through linear combinations and compressing the number of channels of the
fused features from M×N to N to reduce the computational complexity of the next module.

3.1.4. Complexity Analysis

The number of parameters in the first part is 3× 3× N = 9N; in the second part, it is
((4M3 −M)/3− 1)× N; and in the third part, it is M× N × N = MN2. The number of
branches M is suggested to be 3, which is substantially less than the number of channels N.
Hence, the total parameters of the MKA module are approximately MN2, which is even
less than the parameters of one regular 3× 3 convolution.

3.2. Network Architecture

For a faster inference speed and small memory occupation, based on MKA modules,
we designed a lightweight semantic segmentation network named MKANet, as illustrated
in Figure 4. Attributed to the large receptive field of MKA modules, the network architecture
of MKANet is very shallow. It consists of two initial convolutional layers and three
MKA modules as the encoder and two coordinate attention modules (CAMs) [24] as the
decoder to fuse multiscale feature maps from different stages. By horizontal and vertical
extent pooling kernels, CAMs can capture long-range dependencies along one spatial
direction and preserve precise positional information along the other spatial direction,
thus more accurately augmenting the representations of the objects of interest in the fused
feature maps.

As presented in Section 4.2, this shallow but effective architecture makes MKANet
capable of supporting an input image size more than 10 times larger than that supported
by conventional networks. Furthermore, compared with other competitive lightweight
networks, the inference speed of MKANet is twice as fast.

Figure 4. Architecture of MKANet. The blue cuboid represents the 3× 3 convolution with stride 2,
and the green cuboid represents 3× 3 convolution with stride 2 plus one or more MKA modules.
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3.2.1. Encoder

The encoder of MKANet has five stages, with each stage downsizing the feature maps
by 2×. Its structure is detailed in Table 1.

Table 1. Encoder design.

Stage Output Size Operation Output Channels

Input Image 2400× 2400 3
Stage 1 1200× 1200 ConvS2 c/2
Stage 2 600× 600 ConvS2 c

Stage 3 300× 300 ConvS2 c× 2
300× 300 MKA × r c× 2

Stage 4 150× 150 ConvS2 c× 4
150× 150 MKA × r c× 4

Stage 5 75× 75 ConvS2 c× 8
75× 75 MKA × r c× 8

ConvS2: 3× 3 convolution with stride 2, batch normalization, ReLU activation. c: the parameter controlling the
width of the backbone. r: repeating time of MKA module.

Each stage begins with a 3× 3 convolution of stride 2, followed by a batch normaliza-
tion and ReLU activation. MKA modules are then repeated r times in each stage until stage
3. r controls the depth, while c controls the width of the backbone. MKANet has 3 typical
sizes: Small (c = 64, r = 1), Base (c = 96, r = 1) and Large (c = 128, r = 1).

3.2.2. Decoder

The purpose of the first two stages is to extract simple, low-level features and to
quickly downsize the resolution to reduce computations. Hence, the decoder only collects
the deep context feature representations extracted by the MKA modules in stages 3 to 5.

To fuse multiscale feature maps, certain efficient networks, such as BiSeNet V1 [15]
and STDC [25], use squeeze-and-excitation (SE) attention [26] to transform a feature tensor
to a single feature vector via 2D global pooling and rescale the feature maps to selectively
strengthen the important feature maps and to weaken the useless feature maps. Although
SE attention can raise the representation power of a network at a low computational cost, it
only encodes interchannel information without embedding position-sensitive information,
which may help locate the objects of interest. To embed positional information into channel
attention, Hou et al. proposed the coordinate attention module (CAM), which utilizes
two 1D global pooling operations to aggregate features along the horizontal and vertical
directions so that the two generated, direction-aware feature maps can capture long-range
dependency along one spatial direction and preserve precise positional information along
the other spatial direction. The detailed structure of the CAM is shown in Figure 5.

To tell the network “what” and “where” to attend, two CAMs are employed to fuse
the multiscale feature maps output by stages 3 to 5. Specifically, the feature maps output
by stage 4 and stage 5 are compressed from 4c and 8c, respectively, to 2c in the channel by
pointwise convolution, upsampled by 2× and 4×, respectively, and concatenated with the
feature maps output by stage 3. After the feature maps are put through the first CAM to
derive a combination of features with enhanced representation, a pointwise convolution
is employed to promote the communication of information among the channels and to
further compress the number of channels from 6c to 2c. The compressed feature maps pass
the second CAM with the residual connection.
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Figure 5. Structure of coordinate attention module (CAM). “X Avg Pool” and “Y Avg Pool” refer to
1D horizontal global pooling and 1D vertical global pooling, respectively.

3.3. Semantic Segmentation Losses

The semantic segmentation head, as illustrated in Figure 6, converts the output feature
maps of the decoder into class logits, which are then upsampled by 8× to restore them to
the same resolution as the input image. The upsampled class logits are compared with the
ground truth by the main semantic segmentation loss function.

Figure 6. Structure of the semantic segmentation head.

To enhance the feature extraction ability of the MKA modules, three auxiliary semantic
segmentation heads are added on top of the output features of stage 3 to stage 5 in the
training phase. In the inference phase, the three auxiliary heads are discarded, without
additional computational cost. The output class logits of the three auxiliary semantic
segmentation heads are upsampled 8×, 16×, and 32× before being sent to three auxiliary
semantic segmentation loss functions and three boundary loss functions.

3.4. Sobel Boundary Loss

The Sobel operator is a discrete differentiation gradient-based operator that computes
the gradient approximation of the image intensity for edge detection. It employs two 3 × 3
kernels to convolve with the input image to calculate the vertical and horizontal derivative
approximations, respectively.

To strengthen spatial detail learning and boundary recovery, Sobel operator convolu-
tion and dilation operation are performed on the ground truth mask to generate mask pixels
that are within distance d from the contours and to use them as the target of the auxiliary
boundary loss. The procedure is illustrated in Figure 7 and detailed in Algorithm 1. For
a segment with a length or width less than 2d, its whole ground truth is displayed in the
boundary target mask, such as the small rivers, narrow strips of rangeland, and individual
urban buildings shown in Figure 8. Therefore, all the small objects and segments, which
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are more likely misjudged, are selected and penalized again by the Sobel Boundary Loss.
For any object or segment whose width exceeds 2d, only its contour of width d is displayed
in the boundary target mask, such as the vast agricultural land, large rangeland, and urban
residential community shown in Figure 8. By capturing category impurity areas, compared
with the ground truth mask, in the boundary target mask, the pixel number ratio of the
large segment to the small segments drops from quadratic with the segment size ratio to
linear with the segment size ratio. In this way, the Sobel Boundary Loss guides the network
to learn the features of spatial details.

Algorithm 1 Sobel boundary target generation

Input: Ground truth Y, Sobel operator Sx, Sy, dilation rate d.
Output: Sobel boundary target Ŷ.

Xb ← (|Conv(Y, Sx)|+ |Conv(Y, Sy)|) > 0
Xd ← Dilate(Xb)
Ŷ← Y⊗ Xd
return Ŷ

⊗means elementwise multiplication.

Figure 7. The procedure of generating Sobel category boundary target; dilation rate: d = 50 pixels.
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Figure 8. Images, ground truths, and boundary targets generated by the Sobel operator and dilation
operation with d = 50 pixels.

d is a hyperparameter that controls the extent of contour pixels participating in the So-
bel Boundary Loss calculation. It is not advisable to set d too small for four reasons. Firstly,
different from general images in which objects have clear contours, the land boundaries
in land-cover satellite images are comparatively vague. Secondly, setting buffer zones of
width d benefits the network by learning how to discriminate different categories. Thirdly,
if d is set too small, the samples participating in the boundary loss calculation are too scarce.
Last, the margin of human labeling error should be considered. It is suggested to set d
as the value equal to half of the smaller dimension of most small segments, so the whole
bodies of most small segments would remain on the boundary target mask. Without loss of
generality, d was set to 50 pixels in the illustration figures and experiments.

Any conventional loss function, for example the cross-entropy loss function or the
Dice loss function, can be used for the Sobel Boundary Loss. As illustrated in Figure 7, in
the dilated Sobel binary boundary mask, the pixels with value zero are relabeled as the
category Unclassified and ignored in the Sobel Boundary Loss calculation.

3.5. Total Loss

The total loss Lt is the weighted sum of the main semantic segmentation loss Lm,
auxiliary semantic segmentation losses La, and boundary losses Lb:

Lt = w1 × Lm + w2 × La + w3 × Lb (1)

The values of the weights are adjusted according to the values of the loss functions
and practical results. If the interiors of large segments are predicted fairly well but the
boundaries or small segments are not predicted well, it is advisable to increase w3. To
evaluate whether the existence of the auxiliary losses would boost accuracy, without loss
of generality, all the weights were set to 1 in the following experiments to avoid any
hyperparameter-tuning trick.



Remote Sens. 2022, 14, 4514 12 of 24

4. Experimental Results

Since the MKA module specializes in multiscale feature extraction, to evaluate its effect,
we built an image classification network based on the encoder of MKANet and conducted
experiments on a scene classification dataset of multiscale remote sensing images. Then, we
measured the inference speeds of MKANet at various image sizes to validate whether its
architecture design could boost inference speed and support large image sizes. At last, we
conducted experiments on two land-cover classification datasets to examine the accuracy
of MKANet and the effectiveness of the Sobel Boundary Loss.

4.1. Image Classification

We added an image classification head as illustrated in Figure 9 on top of the MKANet
encoder for the task of image classification, and named it MKANet-Class. We com-
pared MKANet-Class with other state-of-the-art lightweight classification networks on the
RSSCN7 [27] scene classification dataset of remote sensing images (Figure 10). RSSCN7
contains seven typical scene categories of image size 400 × 400 pixels. For each category,
400 images were sampled on four different scales with 100 images per scale. A total of 2800
images were resized to 384 × 384 pixels and split into a training set, validation set, and test
set at a ratio of 2:1:1.

Figure 9. Structure of image classification head.

Figure 10. Images and categories of the RSSCN7 scene classification dataset.

Training details: Cross-entropy was selected as the loss function, and AdamW [28]
was selected as the optimizer with a batch size of 32. The base learning rate was 0.001 with
cosine decay. The number of epochs was 150 with a warmup strategy in the first 10 epochs.
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For a fair comparison, all the networks were trained from scratch without pretraining on
other datasets.

Data augmentation: random flipping, random rotation, and color jittering operations
were employed on the input images in the training process.

As shown in Table 2, MKANet-Class Small outperformed other state-of-the-art lightweight
classification networks with better accuracy and a significantly faster inference speed,
which verified the effectiveness of the MKA module and justified the efficiency of the
parallel branch design.

Table 2. Comparison of MKANet with other state-of-the-art, lightweight classification networks on
the RSSCN7 dataset.

Method Accuracy FPS

MobileNetV2 [29] 90.43% 130.2
MobileNetV3 [30] 90.43% 107.9
EfficientNet-B0 [31] 91.28% 80.1
ShuffleNetV2 x1.0 [32] 91.85% 123.5
ResNet18 [12] 91.71% 178.8
ResNet34 [12] 92.14% 97.7
STDC1 [25] 92.43% 143.8

MKANet-Class Small 92.85% 314.3
Inference speed frames per second (FPS) were measured on a computer with an AMD 4800HS CPU, an NVIDIA
RTX 2060 Max-Q 6G GPU, and a Pytorch environment.

4.2. Semantic Segmentation Inference Speed

For the semantic segmentation task, the inference speeds (FPS) of various networks
were measured at four image sizes. As shown in Table 3, all the lightweight networks had
an obvious advantage over large networks in large image size support and inference speed.
On a computer with an NVIDIA RTX 3060 12G GPU, none of the large networks could
process images with a resolution of 4096 × 4096 pixels, but all the lightweight networks
could. MKANet Small was even capable of processing images up to 7200 × 7200 pixels
and was approximately 2× faster than other lightweight networks and more than 13×
faster than the large networks. The large size and fast acquisition speed of satellite images
highlight the value of MKANet in accelerating the cognition speed of remote sensing
images.

Table 3. Inference speed at 4 image sizes; the number of classes was 10.

Inference Speed (FPS)
Method 1024 × 1024 2048 × 2048 4096 × 4096 7200 × 7200

Large Networks:
UNet (VGG16) [6] 4.27 (0.15×) * * *
PSPNet (ResNet50) [33] 5.28 (0.19×) 1.51 (0.16×) * *
DeepLabV3+ (Xception) [8] 7.41 (0.26×) 2.03 (0.22×) * *

Lightweight Networks:
ENet [14] 28.36 (1.0×) 9.31 (1.0×) 2.38 (1.0×) 0.71 (1.0×)
ABCNet [18] 35.24 (1.2×) 10.05 (1.1×) 2.70 (1.1×) *
BiSeNetV1 (Resnet18) [15] 42.94 (1.5×) 11.85 (1.3×) 3.23 (1.4×) *
BiSeNetV2 [16] 43.22 (1.5×) 11.74 (1.3×) 2.99 (1.3×) *
STDC1 [25] 52.05 (1.8×) 15.13 (1.6×) 4.18 (1.8×) *
STDC2 [25] 38.89 (1.4×) 11.59 (1.2×) 3.11 (1.3×) *
DDRNet23 [17] 36.82 (1.3×) 10.04 (1.1×) 2.77 (1.2×) 0.97 (1.4×)
DABNet [19] 43.89 (1.6×) 11.54 (1.2×) 3.05 (1.3×) *

MKANet Small 98.24 (3.5×) 26.98 (2.9×) 7.47 (3.1×) 2.41 (3.4×)
MKANet Base 59.38 (2.1×) 16.51 (1.8×) 4.61 (1.9×) *
MKANet Large 43.77 (1.5×) 12.31 (1.3×) 3.44 (1.5×) *

* means not executable due to GPU memory overflow. Inference speed frames per second (FPS) were measured
on a computer with an INTEL i5-3470 CPU, an NVIDIA RTX 3060 12G GPU, and a Pytorch environment.
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4.3. Land-Cover Classification

To assess the semantic segmentation performance of MKANet, experiments were
conducted on two land-cover classification datasets of satellite images: DeepGlobe Land
Cover [34] and GID Fine Land Cover Classification [5].

The DeepGlobe Land Cover dataset consists of RGB satellite images of size
2448 × 2448 pixels, with a pixel resolution of 50 cm. The total area size of the dataset is
1716.9 km2. There are six rural land-cover categories. Only the labels of the original training
set of the competition have been released; thus, the original training set, which contains
803 images, was split into a training set, validation set, and test set at a ratio of 2:1:1, as
described in a previous study [10].

The GID Fine Land Cover Classification dataset consists of 10 submeter RGB satellite
tiles of size 6800 × 7200 pixels. There are 15 land-cover categories. Due to the limitation of the
GPU memory capacity, the 10 tiles were cropped into 90 subimages of size 2400 × 2400 pixels,
and then the 90 subimages were split into a training set, validation set, and test set at a ratio of
3:1:1, similar to a previous study [35].

Training details: For all the lightweight networks, cross-entropy was selected as the
loss function, and AdamW [28] was selected as the optimizer with a batch size of six,
and the base learning rate was 0.001 with cosine decay. The networks were trained for
300 epochs with the DeepGlobe Land Cover dataset and for 500 epochs with the GID
dataset, using a warmup strategy in the first 10 epochs. For a fair comparison, all the
networks were trained from scratch without pretraining on other datasets.

Data augmentation: Random flipping, random rotation, random scaling of rates (0.7,
0.8, 0.9, 1.0, 1.25, 1.5, 1.75), random cropping into size 1600 × 1600 pixels, and color jittering
operations were employed on the input images during the training process. In the test
process, no data augmentation operations were implemented.

Evaluation metrics: The performance of the networks was evaluated by the mean
intersection over union (MIoU) and the mean F1 score which are defined as:

MIoU =
1
N

N

∑
c=1

TPc

TPc + FPc + FNc
. (2)

MF1 =
1
N

N

∑
c=1

2× TPc
TPc+FPc

× TPc
TPc+FNc

TPc
TPc+FPc

+ TPc
TPc+FNc

. (3)

where N represents the number of categories, and TPc, FPc, and FNc denote the number
of true positive pixels, false positive pixels, and false negative pixels, respectively, in
category c.

4.3.1. DeepGlobe Land Cover Dataset Experimental Results

The DeepGlobe Land Cover Classification dataset provides high-resolution submeter
satellite imagery focusing on rural areas. Due to the variety of land cover types, it is
more challenging than the ISPRS Vaihingen and Potsdam datasets [36] and the Zeebruges
dataset [37]. The image size of this dataset is 2448 × 2448 pixels, and only lightweight
networks can support such large-size images in training and predicting. We selected this
dataset to evaluate the performance of MKANet on high-spatial-resolution remote sensing
imagery with image size beyond 2K pixels.

As presented in Tables 4 and 5, MKANets led other competitive lightweight networks
by at least 3% and even surpassed the large networks with pretrained backbones. In a
previous study [10], to fit the large networks into GPU memory, the authors compressed the
images to half size and then divided them into subimages with a resolution of 512 × 512
pixels. For the large networks, spatial detail loss due to compression offsets their stronger
feature extraction ability enabled by a larger backbone, while long-range context informa-
tion loss due to subdivision weakens their better modeling ability from a more complex
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structure. Hence, for large-sized remote sensing patches, lightweight networks have their
advantage and can have comparable and even better accuracy than large networks.

Table 4. Comparison of MKANets with other state-of-the-art lightweight networks on the DeepGlobe
Land Cover dataset.

Category IoU (%) MIoU Speed
Method Urban Agricult. Range Forest Water Barren (%) (FPS)

Proportion (%) 9.35 56.76 10.21 13.75 3.74 6.14

ENet [14] 71.14 80.86 0.42 75.44 73.10 49.41 58.39 6.96
ABCNet [18] 73.52 82.03 29.03 75.95 72.50 55.94 64.83 7.15
BiSeNetV1 (Resnet18) [15] 72.68 83.91 28.09 78.97 74.71 56.71 65.85 8.41
BiSeNetV2 [16] 72.46 82.23 23.52 77.86 69.37 51.03 62.75 8.42
STDC1 [25] 74.68 85.05 31.75 76.82 75.34 59.11 67.12 11.81
STDC2 [25] 73.48 83.79 30.57 76.27 73.48 58.11 65.95 8.76
DDRNet23 [17] 75.01 84.53 32.62 77.81 77.29 58.50 67.63 7.21
DABNet [19] 74.44 84.69 33.51 79.03 75.57 58.63 67.64 8.04

MKANet Small 76.14 86.04 39.07 80.62 79.28 62.96 70.68 19.18
MKANet Base 76.35 87.30 39.63 81.44 81.16 64.77 71.78 11.51
MKANet Large 76.53 87.30 40.36 81.66 81.04 65.08 72.00 8.59

Inference speed frames per second (FPS) were measured on a computer with an INTEL i5-3470 CPU, an NVIDIA
RTX 3060 12G GPU, and a Pytorch environment.

Table 5. Comparison of MKANets with large networks on the DeepGlobe Land Cover dataset.

Method MIoU (%) MF1 (%)

UNet (Res2Net50) [6] 67.57 79.50
PSPNet (Res2Net50) [33] 69.45 81.07
DeepLabV3 (ResNet50) [23] 68.39 80.27
DeepLabV3 (ResNet101) [23] 68.94 80.55
DeepLabV3+ (Res2Net50) [8] 69.12 80.85
DeepLabV3+ (Res2Net101) [8] 69.39 81.06
EncNet (Res2Net50) [38] 68.53 80.42
EncNet (Res2Net101) [38] 68.60 80.40
PSANet (ResNet50) [39] 68.27 80.13
GCNet (ResNet50) [40] 69.09 80.47
DEANet [10] 71.80 82.60

MKANet Small 70.68 81.69
MKANet Base 71.78 82.42
MKANet Large 72.00 82.62

All the large networks employed the backbones pretrained on ImageNet [41]. For all the large networks, the
experimental results reported by Wei et al. [10] were quoted.

As illustrated in Figure 11, the predicted masks demonstrate that compared with other
lightweight networks, MKANets can better identify land cover of small dimensions, for
example, the river. This superiority is attributed to two factors, one is the MKA module,
which has multiscale receptive fields without losing spatial resolution, so spatial details
can be preserved. As shown in the lower right subfigure, even without any auxiliary loss,
MKANet-NA Large still predicted the river better than other networks. The other factor
is the Sobel Boundary Loss, which benefits the network in small segments recognition
and boundary recovery. As shown in the bottom of Figure 11, MKANet Base and Large
predicted the river more precisely than MKANet-NA Large.

The above observation agrees with the per-category IoUs in Table 4, where MKANets
lead other networks by a large margin in the categories of small segments, such as water
and range.
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Figure 11. Comparison of the masks predicted by different methods on the DeepGlobe Land
Cover dataset.

4.3.2. GID Fine Land Cover Classification Dataset Experimental Results

The GID Fine Land Cover Classification dataset is very challenging due to its small
sample size (only 10 tiles of size 6800 × 7200 pixels) and highly skewed category distribu-
tion, within which the proportions of the three categories are scarce, at less than 1%. We
selected this rich category dataset to assess the discrimination ability of MKANet on fine
and similar land-cover categories, and also evaluate its robustness with regard to highly
unbalanced remote sensing imagery.

As shown in Tables 6 and 7, MKANets outperformed all other lightweight networks
and the large networks by a large margin. The per-category IoUs in Table 6 indicated that
the superiority of MKANets was mainly manifested in minor categories, small dimensional
categories, and hard-discriminating categories. In these categories, MKANet Small sur-
passed the average IoU of other lightweight networks by more than 18%. For example, the
large category of farmland (consisting of paddy land, irrigated land, and dry cropland) was
highly skewed in distribution, the samples of irrigated land were approximately 10 times
greater than those of paddy land and dry cropland. MKANet Small exceeded the average
IoU of other lightweight networks by 37.7% on paddy land and 25.1% on dry cropland.



Remote Sens. 2022, 14, 4514 17 of 24

Table 6. Comparison of MKANets with other state-of-the-art lightweight networks on the
GID dataset.

Category IoU (%) MIoU Speed
Method Indust. Urban Rural Traff. Paddy Irrig. Crop Gard. Arbor Shrub Natur. Artif. River Lake Pond (%) (FPS)

Prop.(%) 7.26 13.96 5.59 4.74 4.38 36.39 2.86 0.82 9.04 0.3 1.68 0.83 5.65 3.16 3.34

ENet 49.98 56.85 45.31 1.08 0.00 67.74 29.29 0.00 86.79 0.00 62.28 0.00 38.78 47.04 3.67 32.59 6.73
ABCNet 47.09 58.88 41.21 34.01 17.47 70.32 7.29 12.05 88.96 16.48 83.43 22.50 39.74 43.10 57.85 42.69 7.20
BiSeNetV1 61.09 63.63 41.75 42.56 16.70 72.72 3.73 11.27 87.82 17.44 84.42 45.18 64.35 50.94 57.10 48.05 8.74
BiSeNetV2 59.26 65.17 49.34 43.99 56.00 79.00 3.13 9.38 93.69 9.32 86.40 55.42 39.37 44.29 50.37 49.61 8.76
STDC1 62.77 64.07 46.37 52.91 13.22 73.72 4.97 9.35 69.36 3.73 86.27 56.94 86.15 75.78 59.21 50.99 12.09
STDC2 57.14 60.13 44.04 45.45 29.12 72.98 13.89 11.69 87.15 6.93 87.53 44.16 62.94 54.08 54.78 48.80 9.04
DDRNet23 63.57 65.11 50.43 59.66 53.26 80.12 11.60 9.87 84.83 0.00 87.22 63.23 86.82 75.92 53.11 56.32 7.46
DABNet 67.52 71.08 59.64 71.10 73.86 83.79 24.44 11.72 95.48 4.15 93.27 56.99 80.38 63.41 66.73 61.57 8.37

MKANet S 67.42 69.68 55.82 70.91 70.12 82.67 37.41 16.44 93.82 10.98 92.30 61.39 86.34 78.90 69.70 64.26 19.77
MKANet B 68.82 71.39 56.83 71.92 76.18 83.43 35.57 13.40 96.00 12.49 92.22 65.08 86.70 74.46 71.93 65.09 12.01
MKANet L 67.90 70.35 60.00 72.88 73.31 84.50 41.20 20.76 96.75 19.66 93.22 68.77 89.30 77.37 73.49 67.30 8.86

Inference speed frames per second (FPS) were measured on a computer with an INTEL i5-3470 CPU, an NVIDIA
RTX 3060 12G GPU, and a Pytorch environment.

Table 7. Comparison of MKANets with large networks on the GID dataset.

Category F1 Score (%) MF1 MIoU
Method Indust. Urban Rural Traff. Paddy Irrig. Crop Gard. Arbor Shrub Natur. Artif. River Lake Pond (%) (%)

Prop. (%) 7.26 13.96 5.59 4.74 4.38 36.39 2.86 0.82 9.04 0.3 1.68 0.83 5.65 3.16 3.34

FCN [42] 68.92 73.99 64.51 68.73 74.08 84.20 68.42 24.34 87.79 4.07 53.04 25.86 83.30 66.66 77.47 62.89 49.52
PSPNet [33] 69.18 74.41 64.87 68.09 74.53 84.69 68.23 25.26 87.84 10.36 51.87 29.07 83.15 66.71 77.40 63.57 49.98
DeepLabV3+ 69.11 75.02 64.96 67.33 75.26 85.68 69.54 18.45 88.25 5.57 49.88 33.01 88.36 79.00 80.21 64.45 51.59
DANet [43] 69.77 74.81 65.62 69.19 75.58 84.99 66.72 20.71 88.33 13.53 59.18 29.45 83.46 67.93 78.10 64.29 50.78
SCAttNet [44] 68.64 73.97 64.63 64.42 71.47 85.25 70.33 22.85 87.57 3.28 56.59 24.30 86.83 73.39 77.23 63.24 50.12
MSCA [45] 69.75 76.58 66.63 68.78 71.22 85.91 66.74 8.41 87.59 8.46 58.55 23.26 89.17 76.68 80.02 63.72 51.15
LANet [46] 69.03 75.62 65.29 68.03 72.21 85.57 67.39 7.83 88.10 10.24 54.51 30.60 87.28 74.29 78.80 63.51 50.60
WiCoNet [35] 69.61 75.32 65.50 67.23 73.92 86.37 72.47 31.80 88.53 13.85 47.71 42.60 87.88 76.55 81.65 65.55 52.48

MKANet S 80.54 82.13 71.65 82.98 82.43 90.51 54.46 28.23 96.81 19.79 96.00 76.08 92.67 88.20 82.14 74.97 64.26
MKANet B 81.53 83.30 72.48 83.67 86.48 90.96 52.47 23.63 97.96 22.21 95.95 78.84 92.88 85.36 83.68 75.43 65.09
MKANet L 80.88 82.60 75.00 84.31 84.60 91.60 58.36 34.38 98.35 32.86 96.49 81.49 94.35 87.24 84.72 77.82 67.30

For all the large networks, the experimental results reported by Ding et al. [35] were quoted.

As illustrated in Figure 12, small-dimensional land covers, such as rivers, streets, and
rows of rural houses, were better classified by MKANets. MKANet Small exceeded the
average IoU of other efficient networks by 27.1% on traffic land, 18.3% on artificial grass,
24% on rivers, 22.1% on lakes, and 19.3% on ponds. As shown in the bottom right subfigure,
even without any auxiliary loss, MKANet-NA Large still outperformed other lightweight
networks in small segment discrimination and spatial detail reconstruction.
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Figure 12. Comparison of the masks predicted by different methods on the GID Fine Land Cover
Classification dataset.

4.4. Ablation Analysis

To validate the effectiveness of each component, ablation analysis experiments were
conducted based on the DeepGlobe Land Cover dataset.

4.4.1. The Influence of Input Image Size on Prediction Accuracy

To investigate the influence of input image size on prediction accuracy, the original
DeepGlobe dataset images with a resolution of 2448 × 2448 pixels were cropped into
patches with resolutions of 512 × 512 pixels, 1024 × 1024 pixels, and 1600 × 1600 pixels.
The prediction accuracies of these three patch sizes were compared with that of the original
image size. As shown in Table 8, the smaller the patch size is, the lower the prediction
accuracy is, which demonstrates that the loss of long-range context information caused by
cropping images into small patches would cause misjudgments.
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Table 8. Comparison of different variants.

Category IoU (%) MIoU
Method Urban Agricult. Range Forest Water Barren (%)

MKANet Large, 2448 × 2448 pixels 76.53 87.30 40.36 81.66 81.04 65.08 72.00
MKANet Large, 1600 × 1600 pixels 76.78 87.38 39.84 81.36 80.92 64.50 71.80
MKANet Large, 1024 × 1024 pixels 76.27 86.78 38.99 80.40 81.15 64.46 71.34
MKANet Large, 512 × 512 pixels 76.04 85.81 36.35 79.24 79.54 59.06 69.34

MANet Large 76.87 86.88 37.63 81.09 83.42 63.68 71.59

MKANet-Concat Large 76.51 86.62 37.53 80.01 81.49 61.33 70.58

MKANet-NB Large 75.71 87.25 35.51 81.83 80.51 62.19 70.50
MKANet-NA Large 75.97 86.48 34.22 80.14 79.50 60.99 69.55

4.4.2. Effectiveness of Kernel-Sharing Atrous Convolution

To evaluate the effect of kernel-sharing atrous convolutions in the MKA module,
a variant network with kernel-sharing atrous convolutions replaced by regular atrous
convolutions was built and denoted as MANet. As shown in Table 8, compared with
regular atrous convolutions, kernel-sharing atrous convolutions had stronger feature ex-
traction ability.

4.4.3. Effectiveness of Coordinate Attention Module

To assess the effect of the two coordinate attention modules (CAMs) in the decoder, a
variant network with CAMs replaced by simple concatenation operations was built and
denoted as MKANet-Concat. As shown in Table 8, compared with simple concatenation
operations, the two CAMs better fused the multiscale features from various stages and
augmented the representations of the objects of interest.

4.4.4. Effectiveness of Auxiliary Losses

To estimate the contribution of auxiliary semantic segmentation loss and auxiliary
boundary loss, a variant network without any auxiliary loss was built and denoted as
MKANet-NA, and another variant network without auxiliary boundary loss was built
and denoted as MKANet-NB. As shown in Table 8, on the DeepGlobe Land Cover dataset,
auxiliary semantic segmentation loss improved the MIoU by nearly 1%, and auxiliary
boundary loss further boosted the MIoU by approximately 1.5%. On the GID Fine Land
Cover Classification dataset, both improvements were broadened to 1.9% (Table 9). The
IoUs of most categories were boosted by the two kinds of auxiliary losses, indicating that
these auxiliary heads could promote spatial detail learning at lower levels and semantic
context learning at higher levels.

Table 9. Comparison of MKANets with and without auxiliary losses on the GID Fine Land Cover
Classification dataset.

Category IoU (%) MIoU
Method Indust. Urban Rural Traff. Paddy Irrig. Crop Gard. Arbor Shrub Natur. Artif. River Lake Pond (%)

MKANet Large 67.90 70.35 60.00 72.88 73.31 84.50 41.20 20.76 96.75 19.66 93.22 68.77 89.30 77.37 73.49 67.30
MKANet-NB Large 69.78 71.11 57.96 70.83 73.90 82.78 39.63 13.49 96.70 15.60 91.38 69.30 84.27 72.38 71.63 65.38
MKANet-NA Large 69.20 69.31 53.34 69.70 70.35 82.32 39.75 10.99 92.09 2.98 90.48 64.59 88.96 82.63 65.88 63.51

To visualize the effect of the auxiliary losses, the predicted labels of the above three
networks are displayed in Figure 13. The results showed that the auxiliary losses, especially
the boundary loss, can guide the networks to better recognize small segments and restore
boundaries, which is in accordance with our design.
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Figure 13. Comparison of the masks predicted by MKANets without any auxiliary loss, without
auxiliary boundary loss, and with both types of auxiliary losses.

4.4.5. Stacking More MKA Modules per Stage

MKANet can be expanded not only in width by increasing the number of base channels
c but also in depth by increasing the repeating times r of MKA modules in each stage. As
shown in Table 10, the performance of MKANet increased by stacking additional MKA
modules in each stage.

Table 10. Comparison of MKANets with different widths and depths.

MIoU Speed
Method (%) FPS

MKANet c = 64, r = 1 70.68 19.18
MKANet c = 64, r = 2 71.70 14.22
MKANet c = 96, r = 1 71.78 11.51
MKANet c = 96, r = 2 71.84 8.47
MKANet c = 128, r = 1 72.00 8.59

Inference speed frames per second (FPS) were measured on a computer with an INTEL i5-3470 CPU, an NVIDIA
RTX 3060 12G GPU, and a Pytorch environment.

4.4.6. The Optimal Value for the Number of Branches

In the MKA module, the number of parallel branches b is a hyperparameter, which
is proportional to the receptive field and computational cost. To determine the optimal
value for b, different values were tested. As shown in Table 11, with one more branch
of a larger dilation rate atrous convolution to sense larger-scale features, MKANet b = 3
performed better than MKANet b = 2 by 0.54% on the MIoU metric. However, as more
branches were added, the MIoU dropped. This negative effect was mainly attributed to
Part 3 of the MKA module, where the output features of each branch were concatenated
and a pointwise convolution was then applied to them to compress the channels to 1/b.
The larger b is, the more information losses there are in the channel compression process.



Remote Sens. 2022, 14, 4514 21 of 24

b = 3 strikes a good balance among the multiscale receptive field, information loss, and
computation efficiency; thus, b defaults to the optimal value of 3 in the MKA module.

Table 11. Comparison of MKANets with a variable number of parallel branches on the DeepGlobe
Land Cover dataset.

Category IoU (%) MIoU
Method Urban Agricult. Range Forest Water Barren (%)

MKANet b = 2, c = 96, r = 1 76.65 87.22 36.79 80.86 81.95 63.99 71.24
MKANet b = 3, c = 96, r = 1 76.35 87.30 39.63 81.44 81.16 64.77 71.78
MKANet b = 4, c = 96, r = 1 76.71 87.20 38.51 81.31 81.77 63.92 71.57
MKANet b = 5, c = 96, r = 1 76.39 87.17 37.10 81.01 81.92 65.15 71.46

5. Discussion

Aimed at the characteristics of multiscale and large image size of top view remote sens-
ing imagery, we merged the specialized multibranch module and the shallow architecture
design into MKANet. Through extensive experiments and an ablation analysis, MKANet
reached our initial expectation and alleviated the three problems (slow inference speed, in-
capability of processing large size image patches, and easy misjudgment on boundaries and
small segments) that restrict the practical applications of semantic segmentation networks
in remote sensing imagery.

In the land-cover classification experiments, the original images of 2448 × 2448 pixels
and large patches of 2400× 2400 pixels were employed as the input of MKANet. Compared
with a cropping size of 512× 512 pixels or even smaller in most existing studies, the number
of subimages was reduced to 1/25. In the inference speed experiments, MKANet Small
could support an even larger image size of 7200 × 7200 pixels on an NVIDIA RTX 3060 12G
GPU and image size up to 10k × 10k pixels on an NVIDIA RTX3090 24G GPU. Its friendly
support of large subimages greatly alleviated spatial detail loss due to downsampling
or long-range context information loss due to cropping. Meanwhile, MKANet Small
was approximately 2× faster than other lightweight networks and 13× faster than large
networks. Both merits highlight the value of MKANet for accelerating the perception and
cognition speed of remote sensing imagery.

In response to the problem that prediction errors are more likely to occur on bound-
aries and small segments, the Sobel operator’s convolution and dilation operation were
innovatively utilized to capture category impurity areas, exploit boundary information, and
exert an extra penalty on boundaries and small segments misjudgment. Both quantitative
metrics and visual interpretations verified that the Sobel Boundary Loss could promote
spatial detail learning and boundary reconstruction.

For the task of land-cover classification, MKANet successfully raised the benchmark on
accuracy and demonstrated that if lightweight efficient networks were properly designed,
they could have comparable accuracy with that of large networks. In addition, due to the
merits of a fast inference speed and a low requirement on hardware, lightweight networks
have immense potential in practical applications and are equally important. Notably,
MKANet outperformed other state-of-the-art lightweight networks with a significantly
better accuracy.

6. Conclusions

Conventional semantic segmentation networks are not able to process large-size
satellite images under mainstream hardware resources. To avoid a loss of spatial resolution
due to downsampling and a loss of long-range context information due to cropping, we
proposed an efficient lightweight network for land-cover classification of satellite remote
sensing imagery. Extensive experimental results demonstrated that the MKANet achieved
state-of-the-art speed–accuracy trade-off; it ran 2× faster than other lightweight networks
and could support large-size images. In addition, the proposed Sobel Boundary Loss could
enhance boundary and small segment discrimination.
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With the increasing demands of onboard autonomous applications, the next generation
of satellites are required to possess the ability to process collected images and execute
intelligent tasks on orbit. Although MKANet consumes much less hardware resources
than other networks, it still cannot satisfy the tight constraints imposed on the onboard
embedded systems. In future research, we will focus on image onboard processing and
explore effective methods, such as network pruning, parallel optimization, and hardware
acceleration, for embedded system adaptation and deployment.
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