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Abstract: Landslides (LS) represent geomorphological processes that can induce changes over time
in the physical, hydrogeological, and mechanical properties of the involved materials. For geohazard
assessment, the variations of these properties might be detected by a wide range of non-intrusive
techniques, which can sometimes be confusing due to their significant variation in accuracy, suitability,
coverage area, logistics, timescale, cost, and integration potential; this paper reviews common
geophysical methods (GM) categorized as Emitted Seismic and Ambient Noise based and proposes
an integrated approach between them for improving landslide studies; this level of integration
(among themselves) is an important step ahead of integrating geophysical data with remote sensing
data. The aforementioned GMs help to construct a framework based on physical properties that may
be linked with site characterization (e.g., a landslide and its subsurface channel geometry, recharge
pathways, rock fragments, mass flow rate, etc.) and dynamics (e.g., quantification of the rheology,
saturation, fracture process, toe erosion, mass flow rate, deformation marks and spatiotemporally
dependent geogenic pore-water pressure feedback through a joint analysis of geophysical time series,
displacement and hydrometeorological measurements from the ground, air and space). A review of
the use of unmanned aerial vehicles (UAV) based photogrammetry for the investigation of landslides
was also conducted to highlight the latest advancement and discuss the synergy between UAV and
geophysical in four possible broader areas: (i) survey planning, (ii) LS investigation, (iii) LS dynamics
and (iv) presentation of results in GIS environment. Additionally, endogenous source mechanisms
lead to the appearance of deformation marks on the surface and provide ground for the integrated
use of UAV and geophysical monitoring for landslide early warning systems. Further development
in this area requires UAVs to adopt more multispectral and other advanced sensors where their data
are integrated with the geophysical one as well as the climatic data to enable Artificial Intelligent
based prediction of LS.

Keywords: landslides; seismic measurements; UAV; geohazard

1. Introduction

The technical development of landslide (LS) investigation and monitoring methods
has enabled the management of their environmental and social impacts more effectively [1].
Over the years, the data collected by these methods have shaped the fundamental un-
derstanding of LS processes (triggering and failure mechanism) and hence, improved the
identification, mapping, modeling, and prediction of landslides.

A wide range of data collected by various methods are used for quantitatively investi-
gating LS; these data could be classified into three categories (Figure 1):
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(i) Subsurface data, e.g., geological, geophysical, hydrological, and geotechnical engi-
neering properties of deposits (soils and rocks),

(ii) Surface data, e.g., topographic/geodetic data related to terrains, slope angle and
geometries, as well as land use changes (spatial data),

(iii) “Beyond-surface” data, e.g., other data related to weather (meteorological data),
climate conditions, and natural activities such as earthquakes and volcanic eruptions.

Figure 1. Overview of the data acquisition phase and categories of data collected for landslide studies
and relevant approaches.

Such a wide range of quantitative knowledge is best obtained through an interdisci-
plinary approach involving a combination of methods targeting each data type [2]. For
example, geotechnical/geophysical methods (for collecting the subsurface data about the
ground conditions) are used in combination with topographic/geodetic surveying methods
(for collecting the geographical/spatial data of LS surface). The latter can be either per-
formed by terrestrial (i.e., ground-based) approaches or by remote sensing (i.e., airborne or
space-borne) [3]. Monitoring of features of LS activity (spatiotemporal behavior) requires
a regular update of a selected range of these data with time as indicators of stability and
state of activity.

Whether the LS study aims to conduct a one-time investigation or continuously
monitor the landslide-borne areas, there is a high demand for exploring the integration
potential between the existing methods, especially following technological advancements in
recent years; this integration will not only improve the efficiency of the techniques but will
also enable a better understanding of the stability mechanisms and more reliable kinematic
evolution, particularly when the available information is limited. However, selecting the
right combination of techniques is often challenged by their significant diversity in scope,
accuracy, suitability, coverage area, logistics, timescale, cost, and integration potential.
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Geophysical methods and remote sensing potentially complement each other as both
have been widely used in landslide studies in small to medium-scale areas, and their data
are integrated within a Geographical Information System-GIS [4–7].

The geophysical methods and their applications in LS studies have been improved in
recent years (e.g., [8–12], including subsurface characterization, localization of shear planes,
evaluation of emergence and growths of fractures, understanding of water dynamics and
possible reactivation by rainfall as well as evaluation of an incoming critical state of stabil-
ity [13]; these applications have benefited from the improved resolution produced by the
development of innovative techniques. A considerable number of geophysical methods
have been developed; however, each has certain strengths and weaknesses with varying
degrees of potential for detailed characterization of landslides and their dynamics. There-
fore, integrating these geophysical techniques represents a promising tool for landslide
studies [14,15]; this level of integration (among themselves) is an important step ahead of
integrating the geophysical methods with remote sensing.

The landslide displacement monitoring and structure characterizing also require a de-
tailed representation of the surface morphology of the area, as this is a key factor influencing
the stability condition; these data have been traditionally acquired by terrestrial-based tools,
e.g., total station and, more recently, by laser scanners. Recent years have also witnessed the
increasing use of air- and space-borne remote sensing tools, offering a different approach
for acquiring spatial data. Remote sensing techniques demonstrate significant advantages
for landslide assessment compared to conventional approaches by field surveys, which are
costly, time-consuming, and sometimes barely possible due to poor site accessibility [16].
Following the recent advancements in the geoinformation domain, (semi-)automated work-
flows using unmanned aerial vehicle (UAV) platforms can enable landslide documentation
and inventorization [17]. UAV-based photogrammetry with remotely piloted drones of-
fers high capabilities of topographic mapping [18], showing depletion or accumulation of
material [19]. To monitor tempo-spatial landslide dynamics, it may also be combined or
integrated with other advanced terrestrial or remote sensing techniques, such as Terrestrial
Laser Scanner [20] or Synthetic Aperture Radar (SAR) Interferometry [21]. UAV data can
be processed using structure from motion (SfM) photogrammetry and the generated high-
detailed orthophotos and digital surface models (DSMs) to determine landslide kinematic
behavior [22]. Additionally, the UAV instrument could be transported and operated to the
study site simultaneously while conducting the geophysical survey.

At a local scale, combining geophysical techniques with UAV-based photogrammetry
may present a relevant solution in terms of cost-effectiveness due to several advantages,
such as flexibility, efficiency, easiness of instrument deployment, and quickness of data
processing. Hence, these potentially allow investigating the area in a relatively short time
and provide information on the internal structure of soil or rock unstable masses as well as
the topography of the region through non-invasive surveys.

In this paper, a wide range of common geophysical methods applied for LS investiga-
tion and monitoring are reviewed regarding their fundamental principles and prominent
applications to enable better integration between them in terms of their dynamics and
site characterization. The study then reviews the use of UAV-based photogrammetry for
the investigation of landslides to highlight the latest tools and limitations and discuss the
synergy between UAVs and geophysical methods. The study has practical relevance to
scientific and engineering communities who are involved in LS studies as it provides some
insight into the integration process between geophysical and UAV approaches highlighting
challenges, opportunities, and future directions.

2. Overview of GM Applied for Landslides

This section reviews the principles, tools, procedures, and outputs of the commonly
used geophysical methods (GM) applied for investigating (static) and motoring (dynamic)
LS processes. In principle, a wide range of GMs is applied to evaluate fundamental features
of slope involved in landslide processes. Multichannel Analysis of Surface Waves (MASW),
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Seismic Refraction Tomography (SRT), signal-station HVSR, Electrical Resistivity Tomogra-
phy (ERT), and Ground Penetrating Radar (GPR) are the most common methods applied
in landslide investigation. All these methods have been used mainly for defining dimen-
sions, geometry [23], slip surface [24], groundwater table [12], recharge pathways [25],
rock fragments [26], degree of compaction [27], and in some cases, the velocity of seismic
waves within the landslide body [28]; these static properties are also related to the dynamic
properties estimated by time-lapse seismic methods, therefore useful for susceptibility
landslide analysis and hazard and risk management.

Based on the classification proposed by [29]—see Figure 2, the geophysical methods
are divided into two sub-categories: seismic and other (including electrical methods).
Geophysical seismic methods, which measure the rigidity of LS, can be split into two
main groups: (1) Ambient Noise-based (ANb) methods and (2) Emitted Signal-based
(ESb) methods. In the first type (ANb), changes in wavefield properties are detected as
a consequence of variations in the landslide mass properties, which occur over time in
the case of active processes. In the second type (ESbs), seismic signals are monitored
in response to landslide dynamism (i.e., debris rearrangement, microcracking or joint
slipping). The ANb uses an ambient noise wavefield and includes several methods such as
HVSR, ambient noise spectral and polarization analysis, and Ambient Noise Interferometry
(ANI); these are reviewed in the following section.

Figure 2. Classification of geophysical methods applied for landslide displacement monitoring,
structural characterization and morphology.

2.1. Emitted Signal-Based (ESb) Method

The landslide dynamics have been studied in terms of the detection and localization of
weak energy signals, referred to as slidequakes (SQs), released because of rainfall-induced
brittle failure in the landslide mass [30,31]. Previous experimental studies have provided
vital information about the presence of brittle failure in the rainfall-triggered clay-rich
landslide, which is contradictory to the commonly held assumption of the absence of brittle
material that doesn’t support microseismic emission [32–34]. The effects of rainfall-induced
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pore-pressures and mechanical parameter variations (density, saturation, and stiffness)
on the dynamics of landslides have been discussed in the literature [29,32,33,35], where
NM is used for the analysis of landslide dynamics. The SQs are produced because of
heterogeneous soil conditions, variable degrees of saturation, and surface deformation. The
other possible source mechanism could be the scratching and grinding of landslide material
and thermomechanics strain effects in the case of rock slope [32,36,37]; these SQs are of
earthquake type having short-duration and found discernable, traceable wave packets
were observed by [38], which are used as benchmarks in the clarifying of microseismic
signals [33]. The detailed typological characteristics of these slidequakes are presented
by [39]. With the application of NM, the site of microseismic emissions is localized using a
jackknife-based approach. NM is a specialized combination of acquisition array design,
characterization of microsignal and their localization. On the other hand, microseismic
and nanoseismic monitorings are the most applied, considering the several ESb techniques
used for the analysis of seismicity emitted by landslides. A detailed review of NM has been
provided by [39].

2.2. ANb Techniques

The ANb methods such as HVSR, ambient noise spectral and polarization analysis,
and Ambient Noise Interferometry (ANI) have been gaining popularity [28,29,35]; these
techniques are used for landslide site characterization and dynamics, as well as their
vulnerability to different triggering factors such as earthquakes and rainfalls. The dV/V
and modal parameters out of these techniques are related to the LS geometry and its elastic
properties (stiffness and density) [40]. ANb makes use of seismic ambient noise, which is
composed of ground vibrations originated by random and uncontrolled sources, natural or
related to human activity, such as tides, sea waves striking the coasts, wind turbulence and
its effects on trees or buildings, industrial machinery, road traffic, trains, human activities,
etc. There are many advantages of using ambient noise for monitoring purposes: (i) it
excludes the need for a source; (ii) it provides a dense and continuous data availability,
which leads to high temporal coverage and (iii) it is a nondestructive method [41].

2.2.1. HVSR and Polarization

Among the ANb techniques, HVSR has been extensively used in landslide hazard
assessment and vulnerability to different triggering factors such as earthquakes and rainfalls
(e.g., [42–45], among others). Compared to traditional seismological techniques, it offers a
logistically efficient and cost-effective method to map a landslide and its dynamics. Data
processing and interpretations are carried out easily, and the peak observed on the HVSR
curve is linked with the soil resonance frequency and impulse response of the media, a
proxy for time-lapse changes in the geologic material [46].

The successful application of the HVSR technique for landslides is related to the
presence of strong impedance contrast in the subsurface [47–49]; such a contrast often
depends on the noise measurement location with respect to the landslide mass, as was
proved in the case of very extended translational earth slide (i.e., up to 1.5 km) by [50,51]
in the case studies of the earthquake-triggered landslides of Salcito and Cerda (Italy),
respectively. In both these cases, the higher impedance contrasts that can be assumed in the
crown areas of the landslide masses concerning the toe zones correspond to more evident
amplification effects revealed by the HVSR approach. However, the rainfall-induced
saturation in the case of a clayey landslide reduces impedance contrast by inducing changes
in the rheology of the upper unconsolidated material; it is the base for applying HVSR for
analysing seasonal dynamics of rainfall-triggered landslides.

Ref. [52] introduced in the seismological community the concept of polarization of
the particle motion and a method to analyze it based on principal component analysis of
the coherency matrix (i.e., complex covariance matrix), which is computed from analytical
signals of a three-component seismogram and without time averaging. Some works on
landslide investigation have applied several tools to study the polarization of the Fourier
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spectra as well as of the HVSR function for obtaining the distribution of their values on the
horizontal plane in landslide-involved slopes [48,53,54]: the horizontal components of the
ambient noise records are rotated from 0 and up to 180◦ by 10◦ in each step and computed
the HVSR for each pair of azimuth. The contour maps of the HVSR as a function of the
frequency and rotation angle are plotted. Based on the hypothesis that wavefield within an
intensely jointed rock mass due to ongoing deformations is dominated by normal mode
vibration rather than horizontal propagation of seismic waves, ref. [55,56] implemented an
analysis code (WAVEPOL) to perform polarization analysis on seismic noise measurements
by adopting a Continuous Wavelet Transform (CWT), by carrying out a time-frequency
domain analysis on a time history. In this way, results are produced because of the path
effects of geomorphological features of the area and not because of the non-stationarity of
the noise sources; hence, the spatio-temporal variabilities of noise sources in the area can
be tested easily. Landslide-affected areas can show marked directional effects in the case of
well-defined anisotropic rock mass jointing, evidencing a polarization roughly normal to
the fracture directions as well as a high degree of linearity of the particle motion for some
specific frequencies [55–59] that are often characterized also by a significant peak in the
HVSR function; this frequency can be associated with the main resonance frequency of the
unstable blocks. On the contrary, polarization results are negligible in the case of landslide
processes involving large rock mass volumes or soil slopes [60,61].

2.2.2. ANI

Based on the typologies of ambient noise sources, ANI is divided into active and
passive categories. However, in this study, only passive ANI is discussed, which was
introduced by [61], and was used for the calculation of Green’s functions. The changes in
seismic velocities are monitored in a more suitable way. The Green’s function/impulse
response of the material is calculated by cross-correlation of the ambient noise wavefield
that travels between a virtual source and receiver. The traveling ambient noise wavefield
presents the elastic state of the material and can be calculated by three mathematical
operations, autocorrelation, deconvolution, and cross-correlation. The most widely used
method is cross-correction which is a proxy for time-lapse changes in the medium. If
the medium exhibits a spatially homogeneous relative velocity change dV/V, the relative
travel-time shifts (dτ) between the perturbed and reference Green’s function is independent
of the lapse time (τ) at which it is measured, and dV/V = −dτ/τ = constant [35,41].

After pre-processing, which aims at balancing the effects of high-energy spiky events,
the ambient noise is gone through one of the following mathematical operations to be
converted into empirical Green’s functions. The most commonly used processing schemes
are autocorrelation, cross-correlation, or deconvolution at various temporal scales. The first
application of ANI was based on cross-coherence, but the most widely adopted algorithm
is cross-correlation [62] (Wapenaar, 2003). In ANI, cross-correlation is a procedure that
provides the travel times of seismic phases between two sensors. The recorded signals
represent the same wavefield shifted in time that it takes to reach from one sensor to the
second. Therefore, the cross-correlation function contains a peak corresponding to the
travel time of the wavefield between the sensors. The cross-correlation operation measures
the wave similarity at different locations using travel-time lag (τ) between the sensors. All
the above-mentioned methods for impulse response construction based on ambient noise
interferometry have their own merits and demerits, and their applications are dependent
on the quality of data and the study objectives. A detailed review of ANI has been provided
by the other authors, e.g., [35,63,64]; this technique has also been used in LS tomography,
where cross-correlation is used to obtain the dispersion properties of Rayleigh waves which
are then inverted to obtain velocity structures of LS mass [28].

2.3. Other Geophysical Techniques

This category of geophysical techniques is usually used for mapping the space of
landslide area that includes delineation of fractures and cracks, slip surface, soil salinity
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and moisture contents, and the presence of rock fragments in the soil landslide, topography
and fractures in the bedrock and depthwise propagation of fractures that can affect the
water dynamics of the landslide. In addition to these, the techniques can also be applied
for time-lapse monitoring. In soil landslides, the techniques can also be applied for the
detection of subsurface layering with different permeabilities that can affect the landslide
dynamics; these techniques include ERT [65,66], MASW [67] and refraction [29,68].

The DC electrical resistivity method is one of the most adopted geophysical methods in
near-surface investigations and also specifically on landslides; it is based on measuring the
electrical potentials between one electrode pair while transmitting a direct current between
another electrode pair [69]. ERT targets the variable groundwater content, degree of com-
paction, recharge pathways and signature inside/outside landslides. Ref. [70] provided a
detailed review of the electrical resistivity method. Among the electrical methods, ERT
can allow defining of the thickness and boundaries of soft landslides in soil or debris. In
contrast, the Spontaneous Potential (SP) method can be useful for defining dimensions and
the presence of groundwater levels in large landslides [71]. Additionally, the recent devel-
opment of the time-lapse ERT technique has enabled dynamic monitoring of landslides,
allowing the study of water table variation as a function of rainfall events, moisture and
delineation of preferential water infiltration pathways [72].

GPR is another geophysical technique in which a subsurface image is obtained by
passing electromagnetic waves of various frequencies through the earth; these energies
are radiated from the antenna, which are either absorbed or reflected from the underlying
material properties such as fractures, moistures, and clay contents. The energy reflected
by the surface discontinuities is received by the receiver, which helps in subsurface image
construction. GPR is largely applied to evaluate the thickness of shallow landslides due to
its good resolution and light instrumentation [73]. Instead, gravimetric and electromagnetic
analyses are quite rarely used to define the failure surface of landslides [74]. A detailed
description of the theory and application for landslides can be found in the works of [75].

The surface waves are dispersive since different frequencies behave differently while
passing through a layered subsurface; each constitutes a distinct impedance contrast; this
property of surface waves is used for subsurface site characterization (such as stratigraphy,
shear velocity, and depth to bedrock); this method is used in the determination of soil
stiffness, especially in a case where subsurface characterization is required over undisturbed
conditions and coarse grain material such as gravel, as is the case with landslide-affected
areas. MASW analysis includes surface waves, body waves, reflected waves, and higher-
order harmonics. In the final stage, the dispersion curve is inverted, which results in
shear wave velocity outlining lower Vs typically found inside disrupted landslide material
contrasting with stronger undisturbed material outside [25]. In the Refraction method,
the arrival time of p-waves is used for the subsurface geological information retrieval;
the details of the method, along with its applications, have been documented elsewhere
(e.g., [29,68]).

Using these methods, some physical variables are directly measured in situ, and
other dependent physical parameters, such as geotechnical parameters, can be deduced
indirectly only after the elaboration of the first ones. Since geophysics provides indirect
information on relevant geotechnical parameters, its tools must always be integrated and
calibrated with other geological and geotechnical data for a reliable interpretation; often,
different geophysical methods are jointly used to better constrain a landslide characteriza-
tion. Most of the geophysical techniques are applied only if marked geophysical contrasts
exist (i.e., slip surface and boundaries of landslides involve soft slopes or open fractures
in rock slopes), which is the first and essential condition for assessing dimension, water
content, and movement of unstable mass according to [8].

3. Overview of UAV-Based Photogrammetric Techniques Applied for LS

The spatial distribution of slope geometries and their progression over time are essen-
tial to setting up field campaigns to study landslides. Many remote sensing technologies
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and data acquisition strategies have been applied for geomorphic mapping to investi-
gate and understand the flowing behavior of landslide processes. Satellite-based and
ground-based Synthetic Aperture Radar (InSAR) provides high-resolution imagery [76].
Furthermore, Light Detection and Ranging (LiDAR) can be applied either from satellites
and airborne systems or terrestrial platforms [77]. Table 1 presents the typical spatial
resolution, fields-of-view, and maximum flight altitudes of different platforms (i.e., re-
mote sensing, close-range and ground-based platforms). Finding a good compromise
between the required spatial resolution and the area to cover is, therefore, necessary to
study unstable slopes.

Table 1. Typical spatial resolution, fields-of-view, and maximum flight altitudes of remote sensing,
close-range and ground-based platforms.

Platform Typical Spatial
Resolution

Typical
Field-of-View

Max. Flight
Altitudes

Spacecraft 0.5–15 m 10–50 km 200–1000 km

Aircraft 0.2–2 m 2–5 km 3000–4000 m

UAV 1–50 cm 50 m to 1 km 150–300 m

Ground-based <1 cm <150 m Not Applicable

In terms of the flying mechanism, two types of mini-UAVs are currently available:
multicopters and fixed-wing UAVs [78]. Most mini or micro-UAV systems available nowa-
days integrate a flight control system as well as an autopilot which permits autonomous
flights based on predefined waypoints—often in combination with programmable image
acquisition [79].

The use of close-range remote sensing technology enabled by small UAVs for landslide
studies has grown in the last decade due to the low cost of aircraft [6] and the dramatic
advances in digital image analysis; this advancement has made photogrammetry applicable
to a broader field of users [80] and using a terrestrial digital camera instead. Indeed, an
automatized stereo-camera system can be designed to produce three-dimensional models
of a defined area with a scheduled frequency of acquisition and processing [81]. Figure 3
summarizes field data acquisition principles for UAV, Laser Scanner and Terrestrial Pho-
togrammetry while each sensor or technique comes along with specific setups.

In earlier studies, it has been reported that the use of UAVs is practical for areas of
less than 0.5 km2, which corresponds to relatively small landslides [82] (see example in
Figure 3d). However, the resolution and coverage capabilities have increased over the years
due to further advancements in sensor resolution, computing capacity, and the availability
of longer battery life. In small-scale studies, the use of the DEM data obtained from low-cost
UAVs was found to give much better results than the 30 m SRTM DEM. GPS-guided UAVs
usually have high spatial resolution 3D images [83,84] with review times determined by
the operator.

While it has long been used to control landslides’ evolution, UAV photogrammetry
usually requires a high-quality camera/lens system, stabilization, dense image overlaps,
sufficient intersection angles, and a suitable distribution of control points, just as with aerial
photogrammetry. Several new modern approaches in photogrammetry can be applied, such
as structure from motion (SfM), Object-Based Image Analysis (OBIA) [85], simultaneous
localization and mapping (SLAM) or visual odometry, combined with classical photogram-
metric methods. SfM photogrammetry from ground-based stations and UAVs [86] allows
the acquisition of large amounts of data from inaccessible areas, aiding in the identification
of past, current and potential landslide structures and associated geometries, processes and
affected lithologies. Numerous SfM methods now address the determination of the 3-D lo-
cation of matching features in multiple photographs taken from different angles to identify
features in individual images and find tie points [87]. UAV-SfM 4D mapping of landslides
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is also possible with a multi-temporal comparison of geomorphometric indicators and
feature extraction [88].

Figure 3. Data acquisition principles of the considered platforms/sensors as well as field set-up
modes for UAV (a,d), Laser Scanner (b,e) and Terrestrial Photogrammetry (c,f). Example from the
Corvara landslide (adopted with permission from ref. [20]).

As shown in Figure 3, adaptive sensors are designed for UAVs for hyperspectral imag-
ing, LiDAR, synthetic aperture radar and thermal infrared units [6]. Ref. [89] provided a
summary of airborne SAR instruments and imaging techniques. Indeed, the UAV system is
adaptable to different kinds of onboard sensors ranging from RGB cameras to multispectral
ones, thermal sensors, or even LiDAR [84]. However, most studies have been limited to
photogrammetric flight, where RGB images are collected and processed to obtain Digital
Elevation or Surface Model (DEM/DSM). Identifying fissures and landslide inventory can
be accomplished through orthoimages and DSM generation [79]. Terrestrial Laser Scanning
(TLS) remains a solid technology coupled to methods for point-cloud-based deformation
analysis for rock face or slope deformation monitoring [19]; however, occlusions and shad-
owed areas may affect results in complex morphology (Figure 3b). Figure 4 provides an
overview of airborne systems according to the sensor types, possible processing techniques
and available outputs.

Table 2 summarizes the recent use of UAV-based surveys for landslide studies. In
these studies, the technology has been applied for identifying and monitoring areas with
slope instability, and the accuracy reached 5–10 cm [90].
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Figure 4. Summary of airborne systems used for landslide mapping according to the sensor types,
possible processing techniques and available outputs.

Table 2. Recent landslide studies that adopted UAV-based photogrammetry.

Reference Type of UAV and What Used For On-Board Sensor/Camera &
Analysis Techniques Limitation and Accuracy

[83]

Falcon 8 Asctec and FV-8 Atyges
used for multi-temporal analysis

of an earthflow affecting an
olive grove.

Falcon 8 = Sony Nex 5N (APS-C format,
16 Mpx, pixel size 4.9_m).

FV-8 Atyges = Canon Powershot G12
camera (CCD sensor 1/1.7, 10 Mpx, pixel

size 2_m).
AscTec Navigator for the Falcon 8 and the
MikroKopter-Tool free software for the

ATyges FV-8 drone.
The dense point clouds were generated

with PhotoScan.

Difficulties in automatic
identification and matching of
points between multi-temporal

images due to changes in
vegetation, sun illumination and

the landslide movement itself.
Accuracy: about 10 cm in XY and

15 cm in Z.

[85]

DJI Phantom 4 Pro V2.0 was used
on two landslide-prone/rockfall
areas (in Greece) to examine an
object-based mapping approach

(OBIA) to detect and characterize
landslide and

non-landslide objects.

Stabilized built-in camera (1” CMOS-20
megapixel). Structure from

motion-multi-view stereo (SfM-MVS)
algorithm was applied using Pix4D S.A.

software to generate 3D point clouds,
DSMs, and orthophotos supplying data

for the OBIA phase (eCognition®

Developer 9.0 software).

The final spatial level of detection
(LoD) based on the proposed

method was 0.5 m. The proper
choice of segmentation scale is

tricky for an accurate and optimal
classification stage and most of
the time, this is site-dependent.

[90]

MikroKopter OktoXL was used to
acquire three-band

high-resolution images for
monitoring a large landslide.

Canon EOS 650D DSLR Camera with a
resolution of 18 megapixels and a fixed

focal distance of 20 mm.
Agisoft PhotoScan, the images were

georeferenced utilizing the GCPs
provided by WLV.

A comparison of both models
(GCP-referenced vs. multicopter-
referenced) showed a deviation of

11.3 m ± 1.6 m.
The battery life restricted the size

of the coverage conducted in a
single flight.

[91]

DJI Phantom 2 unmanned aerial
vehicles (UAV).

Automated approaches to detect
and extract the geomorphological

features of landslides scarps.

LFOV digital camera (GoPro Hero
3 camera).

Simultaneous Multi-frame Analytical
Calibration (SMAC) used to generate a

dense 3D image-based point cloud; both
Structure from Motion (SfM) and SGM

techniques are utilized

The RMSE values (accuracy
assessment) of the Eigenvalue

ratio, topographic surface slope
and topographic surface

roughness index methods were
11.98 cm, 9.05 cm, and 10.45 cm,
respectively. Due to the inherent

excessive lens distortions, a
camera calibration and stability

analysis procedure was essential.
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Table 2. Cont.

Reference Type of UAV and What Used For On-Board Sensor/Camera &
Analysis Techniques Limitation and Accuracy

[92]

Oktokopter (eight rotors)
multi-rotor micro-UAV

To apply the image correlation
techniques for surface motion
detection to a multi-temporal

dataset of UAV imagery.

Canon 550D Digital Single Lens Reflex
(DSLR) camera (18 Megapixel, 5184 ×

3456 pixels, with Canon EF-S 18–55 mm
F/3.5–5.6 IS lens. Shutter speed (typically

1/1250–1/1600 s).
Analysis used Mikrokopter autopilot, a

Photoshop One camera gimbal;
and Photoscan.

Typical RMSE values are around
4–5 cm in the horizontal direction

(XY) and 3–4 cm in the vertical
direction (Z). Co-registration

errors between subsequent DSMs
based on comparing non-active

areas of the landslide, minimizing
the alignment error to ±0.07 m

on average.

[93]

OktoKopter
To illustrate a workflow
(landslide) showing how

UAV-acquired images can be
processed into high-resolution

DEMs and orthomosaics used for
quantifying landslide dynamics

based on multi-temporal
image correlation.

Canon 550D DSLR camera on a
motion-compensated gimbal mount. A

Canon 18–55 mm f3.5–5.6. Focal length of
18 mm with a fast shutter speed of

1/1200. Analysis used Package Agisoft
PhotoScan. And GeoSetter freeware to
write the UAV GPS coordinates to the

corresponding JPEG EXIF headers,
i.e., geotagging.

The accuracy of the SfM
technique was tested with

39 DGPS ground control points
resulting in a horizontal RMSE of

7.4 cm and a vertical RMSE of
6.2 cm. The algorithm

successfully quantified the
movements of chunks of ground
material, patches of vegetation,

and the toes of the landslide but
was less successful in mapping

the retreat of the main scarp.

[94]
Quad-rotor system used for

making high-resolution
measurements of landslides.

Camera: Praktica Luxmedia 8213.
Analysis used OrthoVista software. DTM

generation was carried out using VMS
close-range photogrammetry software

and an image-matching algorithm,
GOTCHA (Gruen Otto–Chau), from the

University College London.

The manual data acquisition and
processing procedures required a

significant amount of time.
Despite the high-resolution of the
imagery, errors resulting from the

plane-rectification degrade the
georeferencing accuracy to ~0.5 m

over most of the landslide.

[95]

DJI Phantom 4 Pro was used to
describe the recent behavior of the
Maierato landslide (Italy) and to

assess residual risk.

Several: 1” CMOS (20 MPixel) Lens FOV
84◦ 8.8 mm/24 mm; and Micasense

RedEdge™ Sensor (5 bands). Agisoft
Metashape and SfM algorithm to

post-process the images and reconstruct
the 3D model. Using an open-source GIS
environment, several DEM of differences

(DoD) were computed.

Ground resolution = 0.05 m and
point cloud density = up to

419 point/m2.
Using the multispectral sensor,
quantifying the morphological

variation induced by the landslide
in the last 10 years.

[96]

DJ Pro4 used to study geometric
and kinematic features of the

Mabian landslide
(China)—combined with video

taken by local residents.

Unknown digital camera.
The orthographic data and

high-resolution DEM of the landslide
were obtained by the SfM method.

DEM with resolution 0.15 m was
obtained and used to recover and
correct the pre-landslide contours.

[97]

Multicopter drone named Saturn,
developed by University of

Florence and used to survey a
village (in Italy) which was
strongly affected by active

landslides.

Sony digital RGB camera with
8-MP resolution.

Multiple photogrammetric surveys
provided multitemporal 3D models of
the slope. Digital orthomosaics were

processed in Agisoft Photoscan.

Two mass movements were
detected and characterized with a
ground resolution of 0.05 m/pix.

[98]

DJI S1000 octocopter
This research used point cloud

and spectral data to digitize
structural features such as joints,

faults, and bedding planes for
kinematic analysis of the sea cliffs

at Telscombe, UK.

Nikon D810 FX DSLR 36 mega-pixel
camera was used for the surveys with an
AF Nikkor 24 mm f/2.8D lens, aperture
f/8, ISO 1250, and shutter speed 0.002

(1/5000) sec.
Image analysis used ADAM 3DM
Technology Mine Mapping Suite.

UAV systems using this method
are heavier and, therefore, less

portable than those suited to SfM.
The point density and accuracy
that is similar to those produced

using TLS.
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Table 2. Cont.

Reference Type of UAV and What Used For On-Board Sensor/Camera &
Analysis Techniques Limitation and Accuracy

[99]

Mini fixed-wing UAV
(Quest UAV 300); Vertical
measurement sensitivity

(accuracy) is quantified for a
real-world landslide over 2 years.

Panasonic Lumix DMC-LX5 with a 5.1
mm nominal focal length Leica lens for

visible image acquisition. The camera has
a 1/1.63” (8.07 mm × 5.56 mm) CCD
sensor with 2 µm × 2 µm pixel size.

Analysis used PhotoScan, TerraSolid
TerraScan, and Cloud Compare.

Seasonal vegetation influences
(grass, trees and hedgerows)
created elevation differences.

This research derived a value of
±9 cm vertical sensitivity for the

SfM-derived change
measurement.

4. Applications of GM and UAV Integration

In this section, the LS site properties and possible triggers are discussed, along with
case study examples from the literature. The geophysical techniques would distinguish
the determination of time-invariant or LS static properties (LSSP) (i.e., geometry, volume,
sliding surface location, recharge pathways etc.) and time-changing (i.e., saturation, me-
chanical properties, rheology) features. The same techniques have been applied in several
studies to achieve various goals; possible applications include seasonal landslides, dams,
volcanoes monitoring, reservoir characterization, earthquake relocation, stress monitoring
in mining, and rock physics.

4.1. GM and LS Investigation

In the case of landslide time-invariant study, the following surficial and geological
properties are measured with the aid of time-invariant geophysical and remote sensing
approaches as complimentary (wherever possible):

(i) Geometry: Landslide boundary delineation is a challenging task when boundaries
are eroded or covered by dense vegetation. The HVSR ANb methods can be used as a
reconnaissance tool. In this case, single station (HVSR) measurements taken inside and
in the adjoining areas may help. As a result, multiple peaks (low and high frequency)
may be observed on HVSR curves, one ubiquitous linked to the stratigraphy (bedrock).
The second peak is attributed to the impedance contrast created by the landslide slip
surface; this landslide peak disappears outside the landslide mass (Figure 5). In this
way, a rough estimation of the landslide boundary is obtained, which requires other
geotechnical techniques of detailed investigation; this happens to be discussed in detail
by [23]. Landslide-affected areas can show marked directional effects in the case of well-
defined anisotropic rock mass jointing, evidencing a polarization roughly normal to the
fracture directions as well as a high degree of linearity of the particle motion for some
specific frequencies [55–59] that are often characterized also by a significant peak in the
HVSR function; this frequency can be associated with the main resonance frequency of the
unstable blocks. On the contrary, polarization results are negligible in the case of landslide
processes involving large rock mass volumes or soil slopes [60,61]; this can also be identified
with HV, ERT, GPR, MASW, and SRT. However, a deeper slip surface can be determined
by ambient seismic noise, where active seismic is unsuitable [100]. Dispersion curves of
lower frequency (3 Hz) were used for the deeper sliding surface depth estimation. Similarly,
ERT, GPR, refraction and passive MASW help in delineating the significant subsurface
architect of the landslide mass. For example, ref. [101] proposed an integrated approach
among UAV, GPR and geological techniques. The UAV images and field surveys have
been utilized for geomorphic characterization. At the same time, profiles were taken for
the reconstruction of subsurface architecture, such as the morphology of bedrock and its
internal structures, which included the depth distribution of cracks running through the
overburden and bedrock; these cracks, along with bedrock tomography, are discussed in
terms of their profound impacts on the geohazards in the area.
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Figure 5. Sobradinho LS geometry using HVSR, a high-frequency peak emerged at LS mass (a) which
disappeared outside the LS (b) (adopted after permission from ref. [23]).

The landslide volume calculation methods apply multiplication of surface area with
average depth and provide results in cross-sections [102]. Comparatively, with the applica-
tion of HVSR having a potential of large areas coverage, the depth can easily be obtained
over the entire landslide mass; this provides a possible synergy between the use of RS and
ANb as reported by [103]. The analysis started with the division of landslide mass into
three different blocks based on slope aspects and field observations. The InSAR provided
the sliding geometry of each sub-block, and then HVSR peaks were assigned to these blocks
irrespective of their Vs values as high peaks with shallower slip surface/interface and vice
versa; this information is used for the volume estimation covering the entire LS body [43].

(ii) Remote detection: There have also been efforts in the past for remote seismic
detection, characterization, and localization of landslide events. There is a significant
development in LS remote characterization, which includes the estimation of occurrence
time and location of landquakes (LQs) using remote sensing [104] and seismic-based
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analysis [105]. The previous studies documented the detection of large events (>1000 m3) at
distances up to hundreds of kilometers both in clayey and rock slopes using remote sensing
and seismic individually or a combination of both; this has been made possible because of
the freely available dataset on a global scale [106]. Typologically, the LQs are broadband
signals as amalgamations of short-period (<1 s) and intermediate to long-period (20 to 150 s)
with their own attenuation characteristics and demand for seismic networks as local dense
and regional networks, respectively. As surface waves are primary constituents of LQs in
the intermediate-to-long-period range, which make their detection on regional networks
feasible [107]. Some case studies represented the LS (displace ≥2 × 1010 kg) with Rayleigh
waves of amplitudes equivalent to those of M ≥ 4.6 earthquakes. However, detecting the
small landslide events is challenging due to the small energies of the respective LQs and
making their understanding poor [107]; these locally affected (single slope) LSs, require
dense seismological networks for their understanding which in the case of developing
countries are non-existent. As advancement in the seismic records increased the possibilities
of detecting small LS events on regional seismological networks [105] and it demands
further analysis in various geological settings testing different methodologies. The regional
seismic networks have been reported to detect landslide main and post-collapse events on
the waveform and spectral analysis [105]. The force inserted on the ground by the mega
landslide was also determined using the force-time inversion approach [108,109]. The
landslide event catalog so formed helps in the estimation of the probabilistic occurrence
of such an event referred to as landquake (LQ) at a site, as well as an understanding of
the triggering mechanism inferred by the correlation of meteorological factors with the
so-formed catalogs [110,111].

A synergy between the LQ detection using seismological networks and Sentinel-1 SAR
imagery has been reported previously. The LQs provide evidence about the time and space
of events without any details involving mechanisms [112]; their complete understating
requires information about both location and time of occurrence. As seismic provides
only the time of the event, but it still requires some independent verification for further
confirmation and classification, so the space information can be determined by Remote
Sensing. In this way, seismic-RS can be used in a complementary fashion for LQs detection
in remote areas [105]. Another case example was reported by [106], where a rockfall event
and a controlled scale event were detected by integrated use of RS and seismic stations.

(iii) Recharge pathways: The recharge pathways, a geological material of contrasting
hydrogeological properties, are essential agents in creating pore-water pressure inside
the landslide mass and acting as drainage, where other geophysical methods can help in
this regard; these pathways are sometimes composed of coarse-grained material having
different degrees of compaction than the surrounding strata; they are identified based
on the contrast in measured physical properties (Figure 6). The ERT is the best suitable
method to delineate subsurface hydrogeological architectures of the landslide mass [25];
these pathways can also be created by the erosion effects of groundwater that may enhance
the permeability of the subsurface materials.

(iv) Fault locations: The fault can be attributed to the presence of discontinuity (dor-
mant) and the site of some seismic emissions in case of active. In the former case, it is
treated as a landslide mass where the subsurface strata have been displaced by the onset
of the landslide. All three categories of geophysical techniques (NSb, ESb and others) can
be benefited in this regard. A connection has been reported in the literature between the
resonance frequency and the presence of fracture networks and faults [113]. Fault creates a
deformed zone ready to erode by rainfall; they can also be attributed to the presence and
connectivity of fractures in the bedrock [114]. An example of polarization effects because of
landslide disturbance is shown in Figure 7.
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Figure 6. Internal architect of a shallow rain triggered Sobradinho LS indicating: (A) hypothetical
landslide boundary, (B) compacted and dry landslide material might be labeled with previous
landslide slip surface, (C) a continuous low resistivity material might be related with a possible
permeable path through the water, and (D) Saprolite layer. The color scale represents resistivity
values in ohm.m (adopted after permission from ref. [25]).

Figure 7. Example of HVSR and polarization analysis carried out on single station seismic ambient
noise measurements at the Selmun Promontory (Malta, Central Mediterranean Sea) showing an
HVSR peak with polarization roughly normal to the fracture direction, related to the main resonance
frequency of an unstable rock block (modified after ref. [115], reproduced with the permission of
Springer Nature, Journal of Seismology 2020). Legend: (1) Upper Coralline Limestone; (2) Blue Clay;
(3) Globigerina Limestone; (4) debris slope deposit; (5) open joint (dashed where inferred).

(v) Rock fragments and blocks: The presence of rock fragments in the landslide mass
affects the water dynamics by creating pore-water pressure. The dimensions of these
fragments can be delineated by other geophysical methods; these are bodies of contrasting
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properties such as hardness and can be detected as anomalies on the inverted geophysical
cross-sections. GPR can be used to mark the presence of rock fragments as well as their
dimensions [73,101]. An integration example of UAV and GPR is presented in Figure 8.
More, in particular, HVSR functions obtained analyzing single-station seismic ambient
noise measurements on jointed rock mass evidenced a strict dependence on the type and
dimension of the landslide process. In this regard, two response schemes have been very
recently proposed [116]: a first one linked to deposits having a strong impedance contrast
with the underlying substrate and therefore able to generate an amplification of the seismic
action mostly connected to the relationship between thickness and seismic wave velocity
in the most deformable medium (depth controlled condition); a second one linked to the
mobility of portions of subsoil isolated from the surrounding by open and well-defined
discontinuities (volume controlled condition) through the oscillation of volumes with
peculiar shapes to which correspond resonance modes (eigenmodes).

Figure 8. (a) GPR profile (EF), (b) zoomed photograph and (c) a cross-section of landslide architecture
derived from UAV and GPR integrated application from a landslide in Pakistan. C1, C2, and C3
denote the cracks; red dotted lines and black solid represent landslide slip surfaces and joint systems,
respectively (from ref. [101]).

HVSR functions present very marked peaks where discontinuities are well developed
and separate rock blocks from the undeformed zone [54,57,117], while very weak peaks
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can be observed in the case of landslide processes that involve large rock masses and
characterized by the absence of well-defined structural elements such as Mass Rock Creep
(MRC) processes [60].

The other GM can be enhanced by integrating with UAV, i.e., survey planning and
constraining inversion results. The UAV application has been reported in the acquisition as
well as the processing and interpretation of active MASW results. In the data acquisition
phase, the sources of energy are dropped at the specific targets using drones [118]; this may
reduce the need for extra personnel required for the MASW data acquisition and make
the technique less labor intensive and cost-effective. The accurate interpretation of the
data obtained from MASW required an understanding of fracture patterns, discontinuity,
roughness, and material structure below the profile (at each CMPCC) from 2D imagery. In
contrast, layer thickness and fracture spacing are retrieved from 3D point clouds which
cannot be from 2D imagery; this information can be obtained from camera images using
photogrammetric techniques; this provides qualitative and quantitative information on
the rock mass and helps both 2D imagery and the scaled 3D point cloud in the visual
classification of stratigraphy [119,120].

4.2. GM and LS Dynamics

Following is a detailed explanation of different source mechanisms influenced by
various triggers and possible geophysical precursors such as dV/V (internal shear wave
velocity changes (dV/V) can be detected from noise cross-correlation), change in natural
period (resonance frequency) and micro-seismic emission, which were analyzed by appli-
cation of time-lapse geophysical methods. The effects of rainfall-induced pore-pressures
as well as of mechanical parameters variations (among which density, saturation, and
stiffness) on the dynamics of landslides were already discussed in the literature [29,35],
where ESb and ANb have been used for the analysis of landslide dynamics [121]; these
source-triggers-detection triplet mechanisms are described in detail as under:

(i) Fracture process: The presence of open fractures, stress-relief mechanism, grinding
with bedrock, bedrock topography, degree of weathering and roughness, and dry-wetting
periods may cause the fracture process. In this way, the deformation marks such as
fissures, fractures, joints, and tension marks may appear on the landslide surface [32]. The
monitoring of associated geophysical precursors helps in developing some early warning
systems. The seismic signals observed over a landslide can be caused by two possible source
mechanisms referred to as endo- and exo-seismic. The exo-seismic source mechanisms
include the activities generated by other than the internal mechanics of the landslide
body, such as the movement of stones, vegetation, river dynamics, activities of animals or
humans, etc. The endo-seismic mechanisms created inside the landslide body are triggered
by different agents of deformation, which may trigger the activity. For details, the readers
are referred to [33]; these deformation marks lead to the trapping of the ambient noise
wavefield for a longer time which leads to a reduction in the relative change in velocity as
measured with ANI. For details, the readers are referred to [63]. In this way, outcomes of
ESb and ANI in reference to deforming slopes can be compared.

(ii) Saturation: The effect of changes in the saturation on failure can be discussed
in two possible ways: a change in pore pressure which causes internal sliding leading
to collapse [34], or it causes the material to change its state from solid-plastic to fluid,
referred to as fluidization [122]; this fluidization is the primary cause of many landslides
in clayey formations [123]. In the case of rainfalls, the cracks/pores of the landslide
material are filled with water compared to cracks with air, so the velocities are expected to
increase. As propagation of the Rayleigh wave is 10% slower than the shear wave velocity,
and Vs is zero as material changes in its state. Therefore, variations in Rayleigh wave
velocity are a possible indicator of mobility as studied by [122,124]. The HVSR curves
are affected by the fluid-resonance caused by fluid-filled cracks [125]; this resonance also
affects the propagation of waves and may disappear because of the fluid drain, as is the
case with well-developed recharge pathways or opening of conduits in the landslide mass;
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this information (characteristic seismic frequency f 1 and quality factor Q) can also be
utilized for the estimation of fracture length and width using the method derived by [126].
Another possible utility of time-lapse seismic resonance measures is the determination
of the compressive strength of the material as studied on specimen samples by [27]. In
other words, these fluid-induced changes cause variations in shear wave velocity (Vs),
leading to modification in the natural resonance frequency and the natural period (inverse
of frequency) of the landslide mass; these changes in Vs can be used in predicting the
overall mobility of landslides using Newmark’s rigid body simulation approach. More
water increases the LS density leading to a change in fundamental frequency (f0) of LS as
f0 and density are related [127].

(iii) Geogenic pore-water pressure: The same is the case with rising pore pressure due
to water infiltration after rainfall which reduces the shear strength of the porous medium
by counteracting normal stress. A slight increase in applied stress to a porous medium
near its critical value can drive toward a slope collapse [128], which can be identified again
by the time-lapse changes in the velocity of the surface wave using ANI. Therefore, the
relative time-lapse changes in surface wave velocities obtained from ANI can help in the
quantification of rainfall-induced changes in the landslide mass, such as rheology and
rigidity (described in the above section) and pore pressure-induced stresses. The extremely
heterogeneous geological conditions (with layers of various permeability) lead to the
exfiltration of water/groundwater discharge (GWD) sites stored temporarily in the clayey
formation, which may create perched aquifer conditions or fissural suspended aquifer. The
fracture flow or impact of GW in bedrock can possibly trigger the landslide in the following
two ways: (i) in cases where pore pressure in confined bedrock exceeds the overlying low
permeability strata that may decrease the ‘mobilized shear strength’ at the slip surface, and
(ii) exfiltration in the soil layer created by the upward movement of groundwater through
fractures networks or upward pathways; this vertical migration is more hazardous than
the slope-parallel seepage and causes LS reactivation at the places having high intensity
and connectivity of bedrock fractures. The delineation of this near-surface fracture network
is a challenging task [129]. The water dynamic of bedrock exfiltration of water through
a fracture network triggered instability at the soil-bedrock interface leading to shallow
translational landslides, as reported by [26]. The authors used GPR for the delineation
of fracture networks and the presence of some rock fragments that can cause pore water
pressure, a predominant trigger for the landslides in Rio de Janeiro, Brazil.

(iv) Degree of deformation: The different brittle failure modes of deformation (>1 cm) in
unsaturated clay (solid-state), such as (1) crack formation/propagation, (2) soil block falls,
and (3) complex failures, are studied by a dense seismometer array using spectral analysis
under controlled experiment reported by [130]). In this experiment, the deformation in
tropical clayey was created by applying loading to a vertical excavation (Figure 9). The same
experimental setup was repeated by [41], where an attempt was made for the identification
of the same failure modes, especially the pre-failure mode (stress accumulation), using a
change in seismic velocity (dV/V from ANI). The results were compared with time-lapse
images of slope surfaces using terrestrial laser scanning. A reduction in dV/V was observed
at the end of the experiment. However, DEM could not detect fractures on the surface
because no fractures emerged at the slope face. A similar approach for rock slope failure
using seismic and remote sensing datasets was adopted by [106].

(v) LS velocity/kinematics: The change in velocity of motion of landslides has been
studied using change in f0 as an indicator of such kinetics by [35,44]. In this sense, such
seismic velocity changes may be considered an ANb landslide precursor [127,131]. The
evolution of resonance is related to the failure of mechanical properties. For instance, the
changes in f0 have been reported both in limestone rock columns, 30% decrease in f0 two
weeks before the collapse [131] and over a clayey landslide; approximately 25% drop was
found uncorrelated with metrological change preceding failure [132,133]. However, the
reversible changes in f0 are associated with the changes in the noise wavefield brought by
meteorological factors and sometimes sources of local noise [127].
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Figure 9. Reduced-scaled experiment using seismic (ESb) monitoring of a vertically scaled excavation
(normal) seismic detention of various modes of failure in unsaturated tropical clay (from ref. [130]).
The white arrows, circle and rectangle indicate the emergence and growth of fractures.
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The SQs identified from NM are created by the ex-genic mechanisms; their accurate
identification required a high-resolution image of the landslide surface for the entire
recording period. In this way, SQs due to endo-genic mechanisms are identified. Ref. [134]
adopted this fusion; the details can be accessed at [64]. The zones of LS mass are calibrated
with the detection of SQs in these zones. The results showed a good correlation between
the high ground velocities zones and the SQ emissions rate. In another study [135], LS
displacement derived from the GNSS and internal kinetic by ANb spectral and polarization
analysis were used. The application-based categorization of LS in active and dormant
zones. The polarization analysis shows the horizontal motion, which coincides well with
the GNSS results. Thus, polarization is found to be related to internal kinetics [135].

(vi) Toe erosion and piping: The hydro-gravitational processes involved in the overall
development of morphogenesis of the site. Compared to the dynamism created by the
change in rheology, this is dynamism created in the solid state. In the active fluvial valleys,
landslides are triggered by the toe erosion created by the erosive potential of the bottom-
flowing rivers; this erosion potential is a function of rainfall in the basin and the amount
and type of sediment loads in the river; this toe cutting causes the movement in the LS mass
leading to the emergence of deformation marks (fissures, fractures, and tension cracks) on
the surface of the LS mass. Large size trenches develop at the surface in certain geological
conditions because of the extreme dryness conditions. In the rainy season, the water can
easily enter through these trenches and contribute a hydrological trigger for LS as described
above [136]; these fracture patterns can be identified using GM, as described in the above
section. In a laboratory-scaled experiment, dV/V was used to monitor piping phenomena
in the sand [137].

In light of the main results obtained applying the technique mentioned above, the
usability of geophysics to rock slopes is strictly related to the type and size of the analyzed
LS. In fact, different gravity-induced processes can interest rock slopes, from complex MRC
processes or lateral spreading phenomena that involve up to hundreds of meters of slopes,
to single unstable rock blocks detaching by typical gravity-induced instability mechanisms,
i.e., planar sliding, wedge sliding, toppling or falling; different gravity-induced processes
are characterized by other landforms that influence the suitability of geophysical techniques
and reliability of the obtained outputs. In the case of MRC processes, the deformation
is widespread; it produces an intensely jointed rock mass, often without a significant
detachment surface, making all the geophysical methods less functional based on 1D
assumptions. For example, ref. [59,61] carried out single-station seismic ambient noise
measurements on several MRC-involved rock slopes in Italy, evidencing as only very
weak HVSR peaks without polarization can be observed; these HVSR peaks are probably
related to a resonance effect of the whole deforming rock mass. On the contrary, ESb
approaches are reliable for studying and monitoring MRC process evolution. In fact, the
above-mentioned studies evidenced that the use of specifically designed seismic networks
can be useful to detect and characterize microseismic events, analyze their occurrence
and energy parameter variation over time, identify clusters related to slope zones with
high deformation and assess their hazard, manage infrastructures exposed to the risk.
Continuous seismic measurements in an area involved in a landslide process can evidence
the presence of events similar to very-weak earthquakes, known as microseismic events,
related to the progressive failure and detachment of unstable masses. Analysis of the
occurrence of microseismicity in rock masses has been primarily used for monitoring
mining processes in quarry and mine areas (e.g., [137–143]), and its application became
popular also for monitoring landslides in the last two decades using different Emitted
Signal-based (ESb) approaches.

Starting from the characterization of large energetic landslide events by regional and
national seismic networks [110,144,145], the spread of seismic sensors with high sensitivity
(i.e., microseismometers or microaccelerometers) and their employment in specific networks
evidenced an increase in the occurrence of microseismic events before the main event of
slope instability, as testified by [30,37,146–149].
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In the case of unstable rock blocks having well-developed fracture patterns, the ANb
techniques are useful to define LS-involved slope portions, evaluate and monitor their
fundamental resonance frequency and define internal shear wave velocity changes. In fact,
by analyzing single-station seismic ambient noise measurements, it is possible to observe
very marked HVSR peaks with polarization representing the main resonance frequency of
the unstable blocks [57–59,117,150]. Considering the dynamic monitoring, variations of this
main resonance frequency evaluated by continuous seismic ambient noise measurements
can allow for observation of a worsening of the stability conditions of the monitored rock
blocks [30,59,151,152].

4.3. UAV Applications

Aerial photogrammetry techniques have been widespread recently as a complemen-
tary technique used to increase the reliability of geophysical results. The UAV has been
effectively applied to estimate LS time-invariant parameters such as geometry, analysis of
volume, and other geomorphological features [153–155]; it has also been carried out to aid
geophysical investigations, including survey planning and tomographic correction for the
other geophysical techniques. There is another interesting application where drones were
used to drop weight as a source of surface waves in the case of active MASW. The fissures
and cracks at the surface of LS that cause variation in the HVSR curve can also be seen in
photographs taken using UAVs. The potential of emerging techniques involving seismic
full-waveform inversion (FWI) and UAVs are also considered to delimit the structure and
emplacement of ancient magma plumbing systems using numerical modeling [156]. Still,
limited studies have assessed and described the cutting-edge structural geology applica-
tions along active faults, possibly due to difficult logistic conditions [157]. Regarding other
geological hazards, UAVs are used to monitor urban areas damaged after earthquakes [158]
and soil liquefaction [159], as well as to detect deformation and lava flows characteristics
during and after volcanic eruptions [160]. By use of high-resolution UAV_based optical
and radiometric infrared cameras, distinct thermal spots may also be identified, while
underwater cameras reveal fracture control at depth [161].

In photogrammetry, the orthomosaic photos (Figure 8a) taken at different angles are
used for the construction of a high-resolution Digital Elevation Model (DEM) or DSM. The
DEMs calculated at different time steps are compared to detect time-lapse changes. The
magnitude and direction of the displacement vectors can be derived from correlating two
hill-shaded DEM layers corresponding to a visual interpretation of landslide change; this
way, the growth of fissures and cracks on the surface of deforming slopes can be detected
and related to the results obtained using time-lapse ESb and ANI [162].

On top of geophysics, various methods, tools and approaches are used to identify
and monitor LS dynamics: total stations or Global Navigation Satellite Systems (GNSS)
receivers, LiDAR systems, TLSs, photogrammetric techniques using aerial, UAV or high-
resolution optical satellite images and InSAR [163,164]. When integrating approaches,
the aim is to improve the topographic representation of landslide features to enhance the
quality of the assessment of landslide-induced changes. Dense image matching methods
can be applied to determine pixel-based correspondence information (i.e., deriving dense
point clouds with a voxel-based approach); they may be chosen as an integration technique.
When using data of the sensor located significantly below the other sensors regarding the
minimum elevation, mostly UAV points are kept (Figure 10b). Minor differences emerge
between the spatial coverage of the displacement vectors when comparing the results of
the integration rules shown (see an example using image matching with the ‘minimum
elevation’ rule in Figure 10c).

In comparison with airborne platforms and expensive, very high-resolution (VHR)
satellite data, classification results based on UAV data indicate a high potential for site-
specific landslide zoning using an object-based ML classification workflow [17]. Indeed,
creating DSMs and their derivatives are critical for accurate and precise mapping in site-
specific zoning of the landslide’s extent. Whilst these 3D models and derived DSMs are
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geo-referenced with ground control points (GCPs) coordinated with geodetic GPS receivers,
the geometric accuracy may vary by a couple of cms to ~7 cm between authors. According
to [20], resulting point clouds feature a mean spatial resolution of about 2.0 cm in the case of
the UAV-based datasets (Figure 10a) and approximately 0.5 cm for the terrestrial datasets.

Figure 10. Example of photogram cloud points integration technique to retrieve ground surface
deformation. UAV-based orthophotograph (a), dense image matching integrating UAV, TLS and
terrestrial photogrammetry (b), and Displacement vectors greater than 0.25 m between 2016 and 2017
resulting from image correlation of the shaded reliefs ‘minimum elevation’ rule (c) Example of an
active area of the Corvara landslide (adopted with permission from [20]).

Detailed morphometric patterns and signatures can be highlighted and mapped pre-
cisely to characterize the intensity of the hazard and eventually propose some emergency
scenarios [165]. In fact, UAVs can quickly help to evaluate structural damage and perform
preliminary impact assessments, remaining precious tools in all phases of disaster man-
agement. UAV photogrammetry technology enables us to describe accurate geometric
features and analyze the formation mechanism, movement process, and volume changes of
landslides [96]. InSAR technology can also be used to detect the surface deformation signal
and UAV aerial surveys to quickly obtain ground morphology and texture information after
a disaster [166]. Whilst SAR imaging remains complex and time-consuming, image correla-
tion techniques are primarily evaluated to quantify and map terrain displacements. For
instance, the COSI-Corr algorithm can accurately map displacements of the toes, chunks of
soil, and vegetation patches on top of the landslide but is not capable of mapping the retreat
of the main scarp [93] in comparison with InSAR [3]. More recently, thermal infrared (TIR)
sensor apparatuses have allowed a relevant improvement of UAVs capability in acquiring
data for evaluating the stability of coastal cliffs and their short-term evolution [167]. The
difference between temperature (DT) and the Apparent Thermal Inertia (related to the
albedo in the visible band) are retrievable through remote sensing and successfully utilized
for soil moisture monitoring [168], which could be useful for landslide early warning. UAVs
also enable the detection of some slope portions prone to failure and evaluate the area and
volume of the involved masses.

Detailed UAV-based spectral data enable new approaches to characterize various geo-
materials from their spectral signatures, providing 2D surface mapping and 3D lithology
unit information [169]. Ref. [170] identified fault zones with the combination of archive core
data, UAV, and TLS with GCPs and analyzed the structural geological by visualizing the
faults in the 3D surface model. According to [17], random forest is a powerful method for
classifying landslides with UAV-derived datasets; it generally showed better performances
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compared to neural networks and decision tree trees. On the whole, UAV-based imagery,
in combination with 3D scene reconstruction and image correlation or classification al-
gorithms, provides flexible and effective tools to map and monitor landslide dynamics
(see Section 5).

5. Suitability of GM and UAV Methods

The use of multispectral and other UAV sensors has been limited, and further research
is required in this area to overcome many issues, such as mitigating the influence of plants
and trees on heavily vegetated unstable slopes [85]. A good example is presented by [171],
where UAV-based integrated multispectral-LiDAR is characterized by the advantage of
mitigating the influence of vegetation. However, such advanced techniques are challenged
by several difficulties, including (i) precise data co-registration between multiple sensors,
(ii) handling the inconsistency between resolutions, and (iii) integrated hyperspectral 3D
data generation. Addressing these issues will not only achieve satisfactory performance of
the UAV-based survey but can also improve its potential integration with the geophysical
survey methods.

While UAV datasets are intensively used, it is important to underline some limitations
related to the instruments or techniques and the field conditions. For instance, the precise
detection and characterization of geomorphic characteristics will always remain a challenge
in landslide mapping due to the dynamic nature of the phenomena [17]. Before creating the
DSM, isolated trees and sparse vegetation are usually cleared away by applying automatic
filters and manual refinement, which may lead to unreliable volume calculations. Indeed,
the vegetation effect does not allow the detection of fissures and other features of the
ground, which is useful for precise landslide delimitation [97].

UAVs provide a level of detail that traditional methods could not obtain, but airborne
sensors will remain limited to local and/or regional aspects. For national and global cover-
age, space-borne systems have become mandatory. Therefore, remote sensing techniques
are used as alternative and/or complementary methods of gathering information about the
distribution and kinematics of landslides and their conditioning factors [172]. Since SAR is
the only sensor technology that combines all-weather, day-and-night with high-resolution
imaging capability, it should play a more significant role in hazard and disaster monitoring
in the future [173].

Under non-ideal scenarios, the determination of impulse response by the ANI method
becomes challenging; this becomes even worse if the target is noise-based tomography.
In the case of time-lapse monitoring, the problem is not so hard to solve. If the array of
sensors is in line with the direction of the incoming noise wave-field the apparent velocities
are considered true velocities [137]. The noise sources should be stationary, which seldom
happens in natural scale experiments; these assumptions (non-stationary noise source and
white noise etc.) of ANI are never met in the real world [137]. Fractures at the surface
do not allow the propagation of Rayleigh waves and are attenuated at short distances. In
order to record these waves, a dense network of sensors is required, which increases the
cost of experiments manifold. Therefore, the applications of ANI and other passive surface
wave-based techniques at higher frequencies are not recommended in the case of landslides.
Autocorrelation has suffered a limitation based on the ambiguity of the types of waves; it
is unclear whether these waves are surface or body, making it unclear which part of the
subsurface was observed.

HVSR technique is based on the 1D assumption, i.e., the material changes only with
depth, and no changes occur in lateral directions, which again is not the case of landslides
where the changes are expected to occur in both directions; it is challenging to remove
transient ambient noise from the records, which makes the results of this technique unre-
liable. The peak identification is very straightforward for the higher subsurface contrast.
However, the ambiguities arise in the case where there exist two velocity contrasts and
a depth-dependent rise in shear wave velocity; under these conditions, the HVSR curve
represents two peaks, and correct peak identification becomes challenging; this multi-peak
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conundrum has been described elsewhere [23]. Another uncertainty associated with the
interpretation of HVSR results is the influence of geomorphological features as topographic
effects such as valleys, hills, basins etc., affect the seismic wave path, polarization and ampli-
tudes [111]. As fluidization leads to change in the solid state, the assumption of a rigid body
does not hold, and Newmark’s approach doesn’t apply in the case of a clayey landslide.

The dV/V, as an indication of a change in shear wave velocity (Vs), does not provide
any information about the landslide velocity of motion. The reversible changes in dV/V
relate to the meteorological causes and not to the internal dynamic mechanism of LS mass.
Sometimes it is difficult to separate the LS internal mechanics from the variations because
of changes in ambient noise sources using dV/V.

The emissions of microseismic signals for earthslides are questionable; in the case of
a clayey landslide, brittle material is absent, so the energy is not released in the case of
collapse. However, sometimes the signals recorded are related to soil mechanics. Usually,
these techniques are better described based on ground truth provided by complementary
techniques such as remote sensing of the landslide surface and extensometer data, which
can significantly increase their reliability. In the case of ESb, it is challenging to separate
endogenous source and exogenic source mechanisms. Many sensors are required in the
localization of SQs because of the highly attentive medium offered by the landslide. There
is the absence of any unequivocal classification of the tremor-like signals because of the
presence of a wide range of dominant frequencies and waveform intricacy and its atten-
uation pattern that is dependent on the size and the distance of rockfall event from the
recording array, which can be observed from the remote sensing of the landslide surface.
Therefore, the typological analysis of the emitted seismic signals is challenging.

In MASW, the frequency-dependent variation in phase velocity of surface waves
crossing layered media is used for the inversion. The nonlinearity and the non-uniqueness
of the inversion of surface waves (Rayleigh and Love) can cause misinterpretation of the
inversion results [174].

High attenuation of electromagnetic waves under certain subsurface conditions such
as groundwater or soil salinity, degree of saturation, and the proportion of clay contents
reduces the depth of penetration drastically, making the GPR technique unsuitable under
these conditions [175].

However, there are severe limitations associated with the use of GPR in the investiga-
tions of landslides mainly because of (1) signal attenuation in high conductive formations,
which limits its application in landslide mass or when water saturation is higher; (2) hetero-
geneities related to the fractures and cracks that produce signal diffraction which decreases
the penetration depth [9].

The severe drawbacks of geophysical techniques, mainly because of the complexity
of landslides, can be minimized by combining their results and the information obtained
from geological, geotechnical and remote sensing data.

6. The Integration of UAV-Based Photogrammetry and Geophysical Data within the
GIS Environment

As demonstrated in the previous sections, both UAV and geophysical techniques have
considerably evolved with the emergence of 3D spatial imaging (and now 4D with time);
these have been widely applied to study landslides, but separately. Whilst both techniques
are integrable with the Geographical Information system (GIS), very rare studies [5] pro-
posed a full integration of UAV and geophysical data within the GIS environment. Such
integration can significantly improve the evaluation of landslide-susceptible zones and the
development of a model for spatial prediction.

Logistically, the implementation of both types of methods (UAV and geophysical) can
be planned and conducted within the same field visits. Both have a comparable size of
portable equipment and can also benefit from the same ground control points (GCPs) to
correctly calibrate the resulting model and ensure the high spatial quality of integration.
Therefore, such integration within GIS can be very beneficial for landslide studies in terms
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of cost efficiency, fieldwork management, and, most importantly, the quality of data which
can allow, e.g., to correlate and match the landslide locations with the locations of geological
features and structures extracted from geophysical techniques.

GIS is a powerful technology to manipulate and integrate the factors contributing to
landslide susceptibility with great efficiency and accuracy [176]. Although UAV research
works have significantly utilized the GIS system, geophysical methods are not commonly
integrated into other investigation schemes. The recent emergence of 3D geophysical
imaging techniques has dramatically increased not only the attractiveness of geophysical
methods [9] but also their potential integration. By combining geophysical and UAV-
based photogrammetric data, maps that represent triggering and conditioning factors
for landslide susceptibility can be constructed, analyzed, and integrated within the same
georeferencing outline using GIS.

The workflow of the proposed methodology and integration is shown in Figure 11.
The process consists of 5 main phases starting from the data acquisition (Phase 1) followed
by two phases of data processing (Phase 2 and 3) to ultimately generate 3D models, which
are integrated within the GIS environment. The combined data are then further analyzed in
Phase 4 to perform a classification of the resulting segments into landslide hazard categories
according to predefined susceptibility factors contributing to landslide occurrences; these
factors are attributed to spectral, special, texture, topological, and geophysical parameters;
this classification can be conducted by a suitable method such as the bivariate statistical
index method to assign ranks and weights for the causative factors and their classes,
representing their realistic relations with landslide susceptibility in the study area. The
process can benefit from the development of an analytical algorithm that considers an
expert rule-based (RB) feature extraction and classification (i.e., similar to the approach
used by [85].

Figure 11. Workflow of the proposed methodology and integration.

The proposed integration (Figure 11) can have several benefits and advantages, in-
cluding (i) the ability to correlate and match the landslide locations with the fault loca-
tions extracted from geophysical techniques, (ii) conducting a GIS-based statistical anal-
ysis [177,178] where the analytical distribution identifies landslide locations from UAV
images and field survey, and thus provides valuable information on the relation between
landslide activities and their contributing factors; (iii) provide data to carry out finite
element modeling on a particular segment for further geotechnical study for stability
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assessment; (iv) the integration of other geological and geotechnical information such
lithology and engineering properties of the ground layers.

7. Conclusions

This study proposes a review that refers to a wide range of practical adopted geophys-
ical techniques applied to landslide studies to output their suitability and feasibility.

ERT, MASW, GPR, and HVSR techniques allow the characterization of the landslide-
involved slopes as well as determining the landslide mass geometry in terms of lateral
boundaries, sliding surface location, and groundwater paths. Time-dependent changes
in the properties of landslide materials can be evaluated over time as a consequence of
changes caused by landslide dynamics. The most efficient methods for quantifying time-
dependent changes are based on ambient noise recording, and, in particular, they consist
of ANI and HVSR. Along with site characterization, emerging ANb techniques such as
HVSR and ANI can help in time-lapse seasonal monitoring of landslides. The parameters
calculated from these techniques are natural frequency (f0) and relative velocity changes
(dV/V), which are proved essential proxies for detecting landslide activities.

Unmanned aerial vehicle (UAV)-based surveys have been extensively applied in the
landslide domain due to their effectiveness in rapidly collecting precise and accurate
terrain morphology data. However, despite the UAV system being adaptable to different
onboard sensors, most studies carried out photogrammetric flights. Therefore, the use of
multispectral and other sensors (e.g., LiDAR) has been very limited, and further research
is required in this area, considering the latest technological advancement. For example,
LiDAR sensors are becoming smaller and lighter, while UAVs are getting more capable
and stable.

Although UAV research works have significantly utilized the GIS system, geophysical
methods are not commonly integrated into investigation schemes. Using geophysical and
UAV-based photogrammetric data, maps that represent triggering and conditioning factors
for landslide susceptibility can be constructed, analyzed, and integrated within the same
georeferencing outline using GIS.

We hope this paper will contribute to filling the gaps between communities and
strengthen the use of appropriate integration between UAV and geophysical methods for
landslide investigation. The integration between UAV and GP with the climatic conditions
is also under investigation; these are useful for studies utilizing Artificial Intelligence and
deep learning to predict landslides.
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List of Notations
ANb Ambient Noise-based
DSMs Digital Surface Models
dV/V Relative Change in Velocity
ERT Electrical Resistivity Tomography
ESb Emitted Signal-based
GM Geophysical method
GIS Geographical Information System
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GPR Ground Penetrating Radar
HVSR Horizontal-to-Vertical Ratio
InSAR Interferometric Synthetic Aperture Radar
LQs Landslidequakes
LS Landslides
LSDP Landslide Dynamic Properties
LSSP Landslide Static Properties
MASW Multichannel Analysis of Surface Waves
MRC Mass Rock Creep
NM Nanoseismic Monitoring
SAR Synthetic Aperture Radar
SfM Structure from Motion
SQs Slidequakes
SRT Seismic Refraction Tomography
UAV Unmanned Aerial Vehicle (or drone)
VHR Very High-Resolution
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