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Abstract: Infrared dim small target detection is the critical technology in the situational awareness
field currently. The detection algorithm of the infrared patch image (IPI) model combined with
the total variation term is a recent research hotspot in this field, but there is an obvious staircase
effect in target detection, which reduces the detection accuracy to some extent. This paper further
investigates the problem of accurate detection of infrared dim small targets and a novel method based
on total variation weighted low-rank constraint (TVWLR) is proposed. According to the overlapping
edge information of image background structure characteristics, the weights of constraint low-rank
items are adaptively determined to effectively suppress the staircase effect and enhance the details.
Moreover, an optimization algorithm combined with the augmented Lagrange multiplier method
is proposed to solve the established TVWLR model. Finally, the experimental results of multiple
sequence images indicate that the proposed algorithm has obvious improvements in detection
accuracy, including receiver operating characteristic (ROC) curve, background suppression factor
(BSF) and signal-to-clutter ratio gain (SCRG). Furthermore, the proposed method has stronger
robustness under complex background conditions such as buildings and trees.

Keywords: overlapping edge information; infrared small target detection; low-rank constraint; total
variational regularization

1. Introduction

The infrared imaging system uses the target radiation received by the sensor to
image, which has the advantages of being unaffected by the environment, small size
and passive imaging. As a crucial technique of situation awareness, the detection and
tracking of infrared dim and small targets play a significant role in the precision strike,
perception and early warning systems [1]; this has been extensively studied [2–4]. Generally,
the overall contrast and signal-to-noise ratio of infrared images are low and the target is
easily submerged in the clutter background and noise interference, which is difficult to
distinguish. Furthermore, the number of pixels occupied by the target is small. The Society
of Photo-optical Instrumentation Engineers (SPIE) defines that the imaging area of infrared
dim and small target is less than 0.12% of the total pixel number, no more than 81 pixels on
an image of 256 × 256 [5]. However, in the actual imaging process, the target is even much
smaller than this value and lacks shape and texture features, which results in a significant
increase in the difficulty of target detection. Therefore, infrared dim target-detection
technology has become a challenging and hot topic.

Generally, infrared dim small target-detection algorithms are mainly divided into
multi-frame detection and single-frame detection. Multi-frame detection uses the continu-
ity and correlation of moving targets in multi-frame images to achieve detection, while
single-frame detection mainly uses the single-frame image to extract the gradient, grayscale,
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contrast and other characteristics of the small target. Compared with multi-frame detection,
it has the advantages of low complexity, high execution efficiency and easy hardware im-
plementation.

The traditional single-frame-detection algorithm divides an infrared image into the
background region, the target region and the noise region and the model is as follows:

fD(i, j) = fE(i, j) + fT(i, j) + fB(i, j) (1)

where (i, j), fD, fE, fT and fB represent the position of a specific pixel, the infrared small
target image, noise region, target region and background region, respectively.

It can be seen that the performance of conventional algorithms depends on assump-
tions about the background and target, which has great limitations. Since the image has
nonlocal autocorrelation properties, fB(i, j) can be considered a low-rank matrix. In the
meantime, since the target possesses very few image pixels, fT(i, j) can be treated as a
sparse matrix. Therefore, the traditional infrared image model is extended to the infrared
patch image (IPI) model.

The IPI model regards target detection as the optimization problem of separating
sparse matrix and low-rank matrix and is solved by using principal component analysis.
The following is the target image redefined by the IPI model:

D = E + T + B (2)

where D, E, T and B, respectively, represent the infrared patch image, noise region, target
region and background region.

Neglecting the noise part, target detection is carried out by constraining the sparse
matrix and the low-rank matrix, respectively:

min
B,T
‖B‖∗ + λ‖T‖1, s.t.D = T + B (3)

where λ is the positive balance parameter, ‖·‖∗ represents the nuclear norm and ‖·‖1
represents the l1 norm.

However, the sparse term is constrained by the l1 norm that makes part of the back-
ground remain in the target image or excessively narrow the target. Some low brightness
non-target points also show sparsity under the l1 norm constraint, which causes false
detection. Moreover, when there is a strong edge in the image, the target image will leave
the edge residual and make the estimated background fuzzy. This paper proposes the
TVWLR mode to address these issues. The overlapping edge information and total vari-
ation (TV) regularization term are combined to characterize the background structural
features and the constraint of the low-rank term is strengthened to reduce the false detection
rate of target detection. Meanwhile, we employ the adaptive weight constraint low-rank
term to accurately evaluate the background image.

The following are the main contributions of this paper:
(1) Considering the problem that it is difficult to accurately detect targets in compli-

cated backgrounds, a total variational weighted low-rank constraint method is proposed.
The proposed method strengthens the constraints on low-rank terms, which can better
evaluate the background image and improves target-detection probability.

(2) By applying overlapping edge information (OEI) to determine the weights that
constrain low-rank terms, the staircase effect is effectively suppressed. Meanwhile, the l2,1
norm is introduced to remove strong edges so as to solve the problem of false detection
caused by low-brightness non-target points.

(3) An optimization algorithm combined with the alternating direction method of mul-
tipliers (ADMM) is given to resolve the TVWLR model accurately. Moreover, the solution
process is simplified by using tolerance error as a stopping condition.
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(4) We conduct many experiments on some of the scene images after determining the
specific values of the pivotal parameters. The feasibility of the suggested method is verified
by qualitative and quantitative analysis of the experimental results.

The following shows the organization of the remaining parts of this paper: Section 2
briefly introduces the related works on infrared small target detection; we describe in detail
the process of proposing the TVWLR model and related optimization methods in Section 3;
we carry out experiments on six sequential images and conduct qualitative and quantitative
analysis, respectively, in Section 4; Section 5 is the discussion; Section 6 summarizes the
conclusions of this paper.

2. Related Works
2.1. Sequence Image-Detection Methods

The methods require multi-frame image information, which leads to low detection
efficiency and poor practicability. In the case of uniform background distribution, the meth-
ods such as dynamic programming [6], spatial filtering [7] and matched filtering [8] have
good background suppression ability. However, the relative speed of the image detector
and the target is fast in the actual application process, which makes it difficult to ensure
that the image has a uniform background, resulting in poor detection performance [9].

2.2. Single-Frame Image-Detection Methods

The methods utilize gray and contrasting characteristics of the image to achieve detec-
tion; this involves low complexity and high detection efficiency. The methods are mainly
composed of traditional filtering methods, methods based on human vision, optimization-
based methods and method-based deep learning.

Traditional filtering methods such as Tophat transform [10], maximum mean and
maximum median [11] utilize the residual image of the original image and the filtered
image to achieve target enhancement and background noise suppression. Due to the
background complexity of the actual application environment, the algorithms mentioned
above usually cannot meet the detection accuracy requirements.

The methods based on human vision take the saliency of the target in the adjacent
area as the detection basis. Based on the spatially discontinuous features of the target [12],
Chen et al. developed the local contrast map (LCM) algorithm [13]. The gray difference
of a 3 × 3 neighborhood is utilized to estimate the saliency of pixels in the neighbor-
hood. To improve the detection speed of the algorithm, an improved local contrast metric
method (ILCM) was proposed by Han et al. [14]. Based on the characteristics of bright and
dark targets, Wei et al. created a multi-scale patch-based contrast method (MPCM) [15].
By using the matching filter and the principle of closest mean, Han et al. designed an
enhanced closest-mean background estimation (ECMBE) model to suppress high brightness
backgrounds and improve the signal-to-noise ratio [16]. Bai et al. fused the contrast mea-
surement mapping derived from different derivative sub-bands and proposed a contrast
measurement method based on derivative entropy (DECM) [17]. However, these methods
depend on the brightness difference between the background and target and cannot achieve
ideal detection results when the brightness difference is low.

The optimization-based methods treat target detection as an ill-posed inverse problem.
Combining this idea, Gao et al. [18] created the IPI model, which exploited the nonlocal
autocorrelation of the background to turn target detection into an optimization problem of
the background matrix and the target matrix. According to the thermal characteristics of
the target, Dai et al. developed a non-negative infrared patch-image model (NIPPS) [19,20].
Zhang et al. [21] introduced an advanced local prior graph that simultaneously encodes
background-related and target-related information and proposed a detection method
incorporating the partial sum of tensor kernel norm (PSTNN), which can significantly
reduce the algorithm complexity and computational time. Wang et al. [22] designed the total
variation regularization and principal component pursuit (TV-PCP) model to effectively
preserve the background edge information. Zhang et al. [23] used self-regularization terms
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to describe background features and devised the self-regularized weighted sparse model
(SRWS). The above methods reach good detection results, but the detection accuracy of
images with special strong edges is poor and the false alarm rate and missed detection rate
are high.

The methods based on deep learning are the latest technology in the field of target
detection. Wang et al. [24] adopted a dictionary learning method and considered the
non-local characteristics of background and target and developed a more flexible stable
multi-subspace learning model (SMSL). Shi et al. [25] designed a denoising autoencoder
model (CDAE), which regarded small targets as noise, used a denoising autoencoder for
denoising reconstruction and obtained a detection image by subtracting the original image
from the reconstructed image. In order to improve the performance of network-detection
targets, Du et al. [26] proposed a target-oriented shallow-deep features (TSDFs) model based
on deep semantic features and shallow detail features of targets. Gao et al. [27] devised a
feature mapping deep neural network (FMDNN) to solve the problem that small target
features are difficult to extract. For star maps with non-uniform backgrounds, Xue et al. [28]
designed a StarNet that employed pixel-level classification to quickly separate backgrounds
and targets. To extract targets in cluttered backgrounds, Zhou et al. [29] proposed a 3D-
based convolutional network that could reconstruct small targets. These methods show
good detection ability. However, there are few infrared dim small target datasets publicly
available at present, resulting in unsatisfactory robustness in diverse backgrounds.

3. Proposed Method

First, we briefly introduce the total variational models to characterize background
features and preserve background information in this section. Second, we explain the
concept and structure of overlapping edge information, which is utilized to constrain
the image background and eliminate the staircase effect created by total variation. Third,
the total variational weighted low-rank model and associated optimization algorithm are
proposed. Finally, the quantitative evaluation metrics and qualitative evaluation methods
are described.

3.1. TV Model

Rudin et al. [30] first presented a total variation model to remove image noise. This
model smoothes the image inside the image and reduces the difference between adjacent
pixels and as far as possible does not smooth the edge of the image. Therefore, it is an
anisotropic model. If the infrared small target image is represented by X ∈ Rm×n and the
pixel in row i and column j of image X is xi,j, the definition of TV norm can be described by:

TV(X) = ∑ n−1
j=1

∣∣xm,j+1 − xm,j
∣∣+ ∑ m−1

i=1 |xi+1,n − xi,n|+ ∑ n−1
j=1 ∑ m−1

i=1

√(
xi,j+1 − xi,j

)2
+
(
xi+1,j − xi,j

)2 (4)

It can be seen from Equation (4) that if the edge information is not considered, the total
variation norm can be regarded as the l2 norm of the image derivative. If we convert
image X to a column vector and use Pi to represent the corresponding gradient operator,
the discrete gradient of pixels at i can be represented by Pi ∈ R2. Therefore, the following
non-differentiable, non-convex function can be obtained:

TV(X) = ∑
i
‖PiX‖2 (5)

The total variational model is an effective regular item to maintain the image smooth-
ness [31]. The model can reduce the disparity of the image to closely match the original
image, remove unwanted details and retain crucial details such as edges. In addition,
the total variation model can also accurately evaluate discontinuities in infrared images.
Thus, we introduce total variation to characterize the image background features.

The total variation term enables detection algorithms to better preserve background
information such as strong edges, which better estimate the background image. Some
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sparse parts of non-target points are removed to reduce the false detection rate of target
detection. However, the total variation model will appear as a significant staircase effect in
practical applications [32–34], which makes it difficult to accurately detect the target.

3.2. Overlapping Edge Information

To address the staircase effect problem, the structural features of the image are char-
acterized by OEI. It can be found from Figure 1 that the edge portion of the OEI feature
image is rather visible and numerous. Based on this property, we utilize OEI to obtain the
equivalent weight to constrain low-rank terms that suppress the staircase effect. To get
the OEI of image X, the matrix Q is obtained by combining the overlapping matrix of
horizontal and vertical derivatives of the image:

Q(i, j) = |Qv(i, j)|+ |Qh(i, j)| (6)

where Qv(i, j) = ∑ m2
i=−m1

∑ m2
j=−m1

Gv(i, j), Qh(i, j) = ∑ m2
i=−m1

∑ m2
j=−m1

Gh(i, j), Gv(i, j) and
Gh(i, j) represent the first derivative of pixel (i, j) in the vertical direction and horizontal
direction, respectively. Among them, m1 =

[
l−1

2

]
, m2 =

[
l
2

]
and l represents the number

of overlapping information groups; operator [n] is the largest integer equal to or less than
the number n.

The smaller the element difference in the OEI, the better it can characterize the struc-
tural features and suppress the background. Therefore, we use OEI to constrain the
low-rank term to highlight the target in the image, thereby improving the background
suppression ability and detection accuracy of the detection algorithm.

(a) (b) (c)

Figure 1. The featured image of OEI. (a) original image. (b) OEI feature image. (c) three-dimensional
image of OEI.

3.3. TVWLR Model

As shown in Figure 2, there are large residuals in the target image detected by the IPI
model, which can cause false detection. To improve this phenomenon, we introduce the
total variation regularization term into the IPI model to retain the background edge well:

min
B,T
‖B‖∗ + λ1TV(B) + λ2‖T‖1,

s.t.D = E + T + B, ‖E‖F ≤ δ
(7)

where ‖·‖F represents the F norm, TV(·) represents the TV norm, λ1 and λ2 are two
positive balance parameters, δ is a positive parameter that changes with the image.
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According to Section 3.1, the total variational term is represented by Equation (5):

min
B,T
‖B‖∗ + λ1 ∑

i
‖PiB‖2 + λ2‖T‖1,

s.t.D = E + T + B, ‖E‖F ≤ δ
(8)

where Pi represents the gradient operator. Both the nuclear norm and the TV norm constrain
the background, which can obtain better background estimation.

(a) (b)

(c) (d)

Figure 2. The IPI model detection results. (a,b) original images. (c,d) target images with clutter.

According to the background structure information, the low-rank term is weighted to
suppress the staircase effect so as to accurately characterize the image background feature
and obtain a clear background estimation. First, the matrix Q is converted into patch image
Q. Then, the following weight equation is obtained by the OEI of the infrared image:

ω = exp(α ∗ Q−Qmin

Qmax −Qmin
) (9)

where α is the tensile coefficient, Qmin and Qmax the minimum value and the maximum
value of the matrix Q, respectively.
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In order to remove the residuals left by the strong edges of a complex infrared image
in the target image, we introduce the following defined l2,1 norm:

‖E‖2,1 = ∑
i

√
∑

j
E2

ij (10)

In summary, the proposed total variation weighted low-rank constraint (TVWLR)
model is as follows:

min ‖B‖ω,∗ + λ1 ∑
i
‖PiB‖2 + λ2‖T‖1 + β‖E‖2,1,

s.t.D = E + T + B
(11)

where Pi represents the gradient operator; β is the penalty factor. We obtain the detected
target image and related target information after solving Equation (11).

Figure 3 describes the framework of the proposed method:
1. Specify a sliding window and step size, obtain each patch in turn and then vec-

torize these patches into the column vectors to form a new matrix, thereby obtaining the
patch image.

2. Calculate the OEI of the original image and then use the same step and sliding
window size as the previous step to obtain the patch weight.

3. Initialize the relevant parameters, input the patch image and patch weight into
Algorithm 1 and solve it through the designed optimization algorithm.

OEI

TVWLR model

Weight

Origin Image

Target Image

Patch Image

Patch Weight

Background Patch Image

Target Patch Image

Noise Patch Image

Figure 3. The framework of the proposed method.
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Algorithm 1: The solution process of the TVWLR model.

Input: Original patch image D, λ1, λ2, β, µ0; these parameters are used as inputs
and the experimental part mentioned how to obtain the values of λ1, λ2, β, µ;

Output: B, T;
Initialize: Z0

1 = B0 = T0 = E0 = zeros(m, n), ρ = 1.1, t = 0,
Y1 = Y3 = zeros(m, n), Z0

2 = zeros(mn, 2), Y2 = zeros(2, mn);
while not converged do

Zt+1
1 is solved by singular value threshold Equation (15);

Zt+1
2 is updated by the two-dimensional Shrinkage-like Equation (17);

Bt+1 is updated through Equation (19);

Tt+1 = ` λ2
µt

(
D− Bt+1 − Et − Yt

3
µt

)
;

Et+1(:, i) =


‖M(:,i)‖2−

β

µt

‖M(:,i)‖2
M(:, i) i f ‖M(:, i)‖2 > β

µt

0 otherwise
;

Update others:
Yt+1

1 = Yt
1 + µt(Zt+1

1 − Bt+1),
Yt+1

2 = Yt
2 + µt(Zt+1

2 − DBt+1),
Yt+1

3 = Yt
3 + µt(D− Bt+1 − Tt+1 − Et+1)

;

µt+1 = ρµt;
Update t: t = t + 1;

end

3.4. Optimization Algorithm

We propose an optimization method by combining ADMM to solve Equation (11) in
this section. First, Equation (11) is equivalent to:

min ‖Z1‖ω,∗ + λ1 ∑
i
‖zi‖2 + λ2‖T‖1 + β‖E‖2,1,

s.t.Z1 = B
Z2 = [z1, z2, . . . , zmn], zi = PiB
D = B + T + E

(12)

Then, Equation (12) is transformed into the augmented Lagrange function:

LA =
‖Z1‖ω,∗ + λ1 ∑

i
‖zi‖2 + λ2‖T‖1 + β‖E‖2,1 + 〈Y1, Z1 − B〉

+ µ
2 ‖Z1 − B‖2

F + ∑
i

(
〈yi, zi − PiB〉+

µi
2 ‖zi − PiB‖2

F

)
+〈Y3, D− T − B− E〉+ µ

2 ‖D− T − B− E‖2
F

(13)

where ‖·‖F is the F norm, 〈·, ·〉 represents the interior product of two matrices, Y1, Y3 and
Y2(Y2 = [y1, y2, . . . , ymn] ∈ R2×mn) denote the Lagrange multiplier, µ is the penalty factor.

Equation (13) can be solved iteratively with our designed optimization algorithm.
When the (t + 1)th iteration is performed:

Zt+1
1 = arg min

Z1

‖Z1‖ω,∗ + 〈Y1, Z1 − B〉+ µt

2

∥∥∥Z1 − Bk
∥∥∥2

F
(14)

The singular value threshold method can be used to solve Equation (14). The following
is the singular threshold function:

SVTε(M) = Udiag[(τ − ε)+]VT ,

(τ − ε)+ =

{
τ − ε τ > ε

0 otherwise
(15)
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where M = U ∑ VT represents the singular value decomposition of matrix M.

Zt+1
2 = arg min

Z2

∑
i

(
‖zi‖2 + 〈yi, zi − PiB〉+

µt
i

2 ‖zi − PiB‖2
F

)
(16)

According to Ref. [35], Equation (16) can be solved by using a two-dimensional
shrinkage-like formula:

zi = max
{∥∥∥∥PiB−

yi
µt

i

∥∥∥∥
2
− 1

µt
i
, 0
}
·

(
Pi B−

yi
µt

i

)
∥∥∥∥Pi B−

yi
µt

i

∥∥∥∥
2

(17)

The solution process of Bt+1 is as follows:

Bt+1 ← ∂LA
∂B = 0 (18)

Equation (18) is a linear problem and its solution process is as follows:

Bt+1 =
[Yt

1+Yt
3+∑

i
(DT

i yi+µi DT
i zi)+µ(Zt+1

1 +D−Tt+1−Et+1)]

2µ+∑
i

µi DT
i Di

(19)

Updates to Et+1 and Tt+1 are as follows:

Et+1 = arg min
E

β‖E‖2,1 +
µt

2

∥∥∥D− Bt+1 − Tt+1 − E− Yt
3

µt

∥∥∥2

F
(20)

Tt+1 = arg min
T

λ2‖T‖1 +
µt

2

∥∥∥D− Bt+1 − T − Et − Yt
3

µt

∥∥∥2

F
(21)

According to Ref. [36] and Ref. [9], Equations (20) and (21) are solved, respectively:

Et+1(:, i) =


‖M(:,i)‖2−

β

µt

‖M(:,i)‖2
M(:, i) i f ‖M(:, i)‖2 > β

µt

0 otherwise
(22)

Tt+1 = ` λ2
µt

(
D− Bt+1 − Et − Yt

3
µt

)
(23)

In Equation (22), M = D− Bt+1− Tt+1− Yt
3

µt . In Equation (23), `ε(·) represents the soft
threshold operation [37].

Updates to Yi
t+1 and µt+1 are as follows:

Yt+1
1 = Yt

1 + µt(Zt+1
1 − Bt+1),

Yt+1
2 = Yt

2 + µt(Zt+1
2 − DBt+1),

Yt+1
3 = Yt

3 + µt(D− Bt+1 − Tt+1 − Et+1)

(24)

µt+1 = ρµt (25)

where ρ > 0.
Finally, we describe the whole iterative optimization process in Algorithm 1.

3.5. Evaluation Metrics

We introduce the definitions of several evaluation metrics in this subsection, includ-
ing receiver operating characteristic (ROC) curve, background suppressor factor (BSF)
and signal-to-clutter ratio gain (SCRG).

SCRG and BSF are good evaluations of the ability of detection target and background
suppression and can be expressed by the following two formulas:
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SCRG = Sout/Cout
Sin/Cin

(26)

BSF = Cin
Cout

(27)

where Cin and Cout represent the standard deviation of the background region of the
original infrared image and the output target image, respectively. Sin and Sout represent
the amplitude of the target region of the original infrared image and the detected target
image, respectively.

S = Tmax − Tmin (28)

where Tmax and Tmin, respectively, are the maximum and minimum gray values of the
target region.

In order to avoid infinity (Inf) [38] when calculating SCRG and BSF, as shown in
Figure 4, we adopt the definition of background region in Ref. [23], as shown in Figure 4.
The red square and black square in the figure represent the target region of size a and the
background region of size d, respectively. To ensure that all target pixels are included in the
selected region, we set a = 11 and d = 81.

d

d

a

a

Figure 4. The background region and target region of the infrared small image.

To comprehensively assess the detection capability of all methods, two important
evaluation matrices are introduced: the false alarm rate Fa and the probability of detection
Pd, which are expressed by the following two formulas:

Fa =
N f
NI

(29)

Pd = Nt
NT

(30)

where N f and NI represent the number of small targets detected incorrectly and the number
of images, respectively; Nt and NT represent the number of small targets actually detected
and the actual number of small targets, respectively.

When drawing the ROC curve, we use Fa and Pd as the horizontal axis and vertical
axis, respectively. Therefore, as the ROC curve approaches the upper left corner, the target
detection ability improves. We also quantify the detection effect by calculating the area
under the ROC curve (AUC) of all methods. Generally, the better the effect of target
detection, the higher the AUC.

4. Experiments and Results

Firstly, the experimental parameters are determined, then we compare the TVWLR
model with the other seven baseline methods.

4.1. Parameter Setting

The main parameters that influence the proposed method’s detection performance
are determined in this part. The low-rank term and the TV regularization term are both
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balanced by λ1. It is an empirical value of around 0.01, so we set it to 0.005. λ2 is utilized
to balance the mutual influence between the target region and background region. Con-
sidering the influence of the TV term, we use the value λ2 = 150√

max(p,q)
in the experiment,

where p and q, respectively, represent the width and length of the original patch image. µ
directly affects the soft threshold operator of the calculation target and the convergence
speed of the iterative process, which is a penalty operator. If µ is too small, the target will
not be recognized; if µ is too large, the target image will have a lot of noise. To make µ
change adaptively, we set µ = z

√
max(m, n), where we set the range of µ from 0.5 to 5.

For six sequential images, the detection performance is best when z = 2 or z = 3. In order
to ensure the convergence speed, we choose z = 3. For the proposed method, we define
the tolerance error as follows:

tol = ‖D−Tt−Bt−Et‖F
‖D‖F

(31)

where t represents the number of the iterative process of the optimization method. The iter-
ative process stops when tol < 10−5, which is considered convergent.

4.2. Experimental Preparation

First, two scenes in Figure 2 are tested with the proposed method, which verifies the
effectiveness of our detection algorithm. The processing results and the corresponding
three-dimensional views are shown in Figure 5, where the red box marks the target.

(102,161)

(a) (b)

(c) (d)

Figure 5. The TVWLR model detection results. (a,b) the target images processed by the TVWLR
model. (c,d) the target images processed by the TVWLR model.
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In order to further test the performance of the proposed model, a large number of
experiments are performed in this paper. The experimental scenes include high-light
clutter, cloud background, ground, sea level, etc., and the results of some of the scenes
are selected for display. These six scenes and three-dimensional views are shown in
Figures 6 and 7, respectively. These images feature various target sizes, diverse backgrounds
and low signal-to-noise ratios, which make it difficult to successfully detect the target using
traditional methods.

(a) (b) (c)

(d) (e) (f)

Figure 6. Infrared images of some real scenes. (a) Scene 1 (Seq1). (b) Scene 2 (Seq2). (c) Scene 3 (Seq3).
(d) Scene 4 (Seq4). (e) Scene 5 (Seq5). (f) Scene 6 (Seq6).

(a) (b) (c)

Figure 7. Cont.
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(d) (e) (f)

Figure 7. Infrared images of some real scenes. (a) Scene 1 (Seq1). (b) Scene 2 (Seq2). (c) Scene 3 (Seq3).
(d) Scene 4 (Seq4). (e) Scene 5 (Seq5). (f) Scene 6 (Seq6).

Each image sequence consists of a series of images for each scene, Figure 6. Table 1
shows the specific information of Figure 6. The proposed method is compared with seven
representative methods containing Tophat transform, LCM, MPCM, IPI, TV-PCP, PSTNN
and SRWS.

Table 1. The specific information of the six image sequences.

Sequence Size Number Target Description Background Description

1 320 × 240 50 Irregular shape
Low contrast

Cloudy background
Background changes quickly

2 319 × 192 67 Move quickly Heavy noise
Bright background

3 407 × 272 185 Small
Vague and unclear

Complex background with trees

4 298 × 186 40 Tiny
Very low contrast

Dim background
Heavy noise

5 320 × 240 200 Small and bright
Slow-motion

Sea background with bridge

6 332 × 221 300 The cloud obscures the target
Size variation

Heavy cloud background
Clouds change quickly

4.3. Qualitative Results

In this section, the experiments on six groups of sequential images are carried out to
test the detection performance of the eight algorithms. Figures 8 and 9 show the detected
target images of all detection methods of six image sequences. In particular, we mark
targets in different scenes with red boxes. The three-dimensional views of gray images of
target images are shown in Figures 10 and 11.
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(a) Tophat

(b) LCM

(c) MPCM

(d) IPI

Figure 8. From left to right are the detection results of 1∼6 sequence images.

(a) TV-PCP

(b) PSTNN

Figure 9. Cont.
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(c) SRWS

(d) Proposed

Figure 9. From left to right are the detection results of 1∼6 sequence images (Continued).

(a) Tophat

(b) LCM

(c) MPCM

(d) IPI

Figure 10. From left to right are the 3D gray images of the detection results of the 1∼6 sequences
of images.

As shown in Figures 8 and 9, Tophat is particularly sensitive to noise and background
edges. Under complex background clutters such as seq 2, seq 5 and seq 6, a large amount of
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background information will be left in the target image, which results in a large false alarm rate.
LCM can achieve fast and efficient detection. However, the targets are easily overwhelmed
when the gray value of the target and background have trivial difference. The detection
effect of IPI is good, but in the case of complex background and low signal-to-noise ratio,
the target will not be detected and the accuracy of target detection cannot be guaranteed,
as shown in seq 2 and seq 3. TV-PCP can recover the target well. As shown in seq 2, seq 5
and seq 6, due to the constraint of TV regularization, TV-PCP will produce the staircase effect,
especially when the target moves rapidly. PSTNN and SRWS have good detection results,
but when there is extremely rich background information, they will leave some non-target
sparse points in the target image, which are difficult to distinguish from the real target, such
as seq 5 and seq 6. Compared with the above seven baseline methods, our method can
more effectively separate the background and target, has better target detection performance
and can accurately estimate the background image and precisely detect the target.

(a) TV-PCP

(b) PSTNN

(c) SRWS

(d) Proposed

Figure 11. From left to right are the 3D gray images of the detection results of the 1∼6 sequences of
images (Continued).

As shown in Figures 10 and 11, in the case of a complex background, the detection results
of Tophat, LCM, IPI and TV-PCP all have much background noise. The detection images of
MPCM, PSTNN and SRWS are good, but in the particularly complex background, such as
seq 5 and seq 6, the target image has multiple peaks and the detection is not accurate enough.
As shown in Figures 8–11, our method has a better detection effect on various backgrounds,
improves the accuracy of target detection and enhances the robustness of detection.
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4.4. Quantitative Results

We quantitatively evaluate the detection effects of the eight algorithms in this part.
SCRG and BSF are two important evaluation metrics. The specific results of all methods
are shown in Table 2.

Table 2. SCRG and BSF of eight methods (bold red number: maximum value; bold blue number:
second-highest value).

Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Method SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF SCRG BSF

Tophat 4.4421 4.6007 3.8941 3.8419 3.2609 3.3832 1.0877 1.1718 2.7220 2.7965 2.2323 2.2788
LCM 1.4192 0.6568 1.6625 0.7981 1.6013 0.5912 0.8250 0.2148 1.6755 0.4726 1.2586 0.2192

MPCM 7.2178 2.6165 7.3079 1.6609 2.6907 0.8652 0.9695 0.3156 1.9363 1.1390 1.4127 1.0858
IPI 7.2045 0.8598 – – 3.8504 1.5899 1.4695 0.5808 4.2557 3.4883 2.6592 2.3908

TV-PCP 7.1253 8.0967 1.6206 1.5801 3.5875 4.3371 1.4335 1.8847 3.8874 4.8042 2.5588 2.8488
PSTNN 7.0204 1.5193 7.2397 0.7621 3.4487 1.8467 1.3657 1.0496 4.0430 2.6367 2.6204 2.0141
SRWS 19.5110 14.7651 5.6929 4.9813 4.2770 3.3859 5.6838 5.4759 4.7064 4.2971 5.0728 4.7346

Proposed 20.9825 15.8786 5.3570 4.6874 6.8538 5.4259 9.4167 9.0722 6.8972 6.2975 8.8536 8.2634

As shown in Table 2, due to the extremely low signal-to-noise ratio of the images in seq
2, IPI fails to detect and the corresponding metrics cannot be obtained. The evaluation met-
rics obtained by the proposed method are almost always the maximum or sub-maximum
values. The SCRG and BSF are significantly improved compared with the other seven
algorithms, which indicates that the proposed method can separate background and target
well and has better background suppression and robustness.

A large number of experiments to test the ROC curve of each sequence image are
made to more comprehensively evaluate the detection ability of each method and reflect
the advantages of our method, as shown in Figure 12. Meanwhile, Table 3 summarizes the
AUC of the ROC curve.
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Figure 12. ROC curve of eight methods. (a) Seq1. (b) Seq2. (c) Seq3. (d) Seq4. (e) Seq5. (f) Seq6.
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Table 3. AUC values of eight methods (bold red number: maximum value; bold blue number:
second-highest value).

Method Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Tophat 0.7207 0.7473 0.6483 0.8082 0.5718 0.4698
LCM 0.7158 0.7432 0.6717 0.8661 0.6388 0.4761

MPCM 0.8458 0.8048 0.7372 0.9278 0.6693 0.5418
IPI 0.8174 0.7252 0.7442 0.9251 0.6579 0.5601

TV-PCP 0.8567 0.8032 0.7312 0.9247 0.6601 0.5531
PSTNN 0.9041 0.8784 0.8470 0.9677 0.7463 0.7604
SRWS 0.9428 0.9209 0.8571 0.9898 0.8780 0.6521

Proposed 0.9484 0.9168 0.9078 1.0000 0.8867 0.8850

It can be seen that Tophat and LCM have the worst performance; they cannot handle
complex background images well. The target is easily submerged when MPCM pro-
cesses cluttered and noisy images occurred. The detection performance of IPI is unstable,
especially in seq 2; the accuracy of target detection is extremely poor. In the case of extraor-
dinarily rich background information, TV-PCP cannot accurately predict the background
image. PSTNN and SRWS have good detection performance, but the robustness of the algo-
rithms cannot be guaranteed in the complex background of seq 5 and seq 6. Based on the
above evaluation metrics, our method outperforms other methods in terms of background-
suppression ability and target-detection ability and the robustness of our method to various
complex backgrounds is proved.

We also calculate the running time for all methods in six sequence scenes. These
experiments are all implemented on a computer with 16G of memory and an Intel Celeron
2.90 GHz CPU. As shown in Table 4, Tophat requires the least computation time and LCM
and MPCM can also achieve fast detection because they all filter in the spatial domain.
Both IPI and TV-PCP greatly increase the computational complexity, which requires a long
computation time. With the premise of evaluating the background more accurately, we
propose a solution strategy combined with ADMM, which simplifies the solution process,
improves the convergence speed and greatly reduces the running time.

Table 4. Computation time (seconds) for all methods (bold red number: minimum value; bold blue
number: second-smallest value).

Method Seq1 Seq2 Seq3 Seq4 Seq5 Seq6

Tophat 0.0012 0.0014 0.0011 0.0009 0.0010 0.0009
LCM 0.0964 0.0402 0.0443 0.0399 0.0304 0.0295

MPCM 0.2184 0.4967 0.4971 0.5490 0.5148 0.9059
IPI 39.6778 9.3576 55.9365 11.9990 30.4720 30.1724

TV-PCP 59.1727 15.4766 123.7174 64.4702 90.5041 88.1987
PSTNN 0.0974 0.0430 0.0539 0.0298 0.1032 0.0504
SRWS 0.9783 0.8261 2.4877 0.6208 1.3301 1.1024

Proposed 7.8637 7.3609 15.4934 6.2538 11.6141 8.6011

5. Discussion

Traditional filtering methods have a simple idea and a small amount of computation
and only to some extent play a role in suppressing uniform background and cannot
solve the problem of complex background. The methods based on human vision are
mainly suitable for scenes where the target brightness is significantly different from the
surrounding background. The optimization-based methods are obviously applicable to
almost all kinds of complex and rapidly changing backgrounds and have strong robustness.
The background data in the early IPI model is represented by the nuclear norm, which has
good applicability to the background with slow change and uniformity, but still cannot
deal with the image with complex background. The TV-PCP model improves the clarity of
edges and corners and reduces noise interference, but there are residual dim edges in the



Remote Sens. 2022, 14, 4615 19 of 21

background image, showing a distinct staircase effect. PSTNN and SRWS fully consider
the target characteristics, but their parameter settings limit the robustness. To improve the
detection ability in complex backgrounds, we propose a TVWLR model.

The model introduces the TV regularization term to constrain the target to address
the defect of the l1 norm sparsity measurement and uses OEI to weight the background
data to eliminate the obvious staircase effect. The proposed method is superior to other
methods; Figures 8–11 show that our method has higher detection accuracy, Tables 2 and 3
demonstrate the robustness of our method to various complex backgrounds.

Although the proposed method has an excellent performance concerning detection
ability, like other optimization-based algorithms, our method requires a lot of iterative op-
erations. Compared with the traditional spatial domain algorithms, our method increases
computational complexity and requires a slightly longer running time. Our future research
work will focus on solving this problem. In addition, driven by big data and artificial intel-
ligence, small target detection algorithms based on deep learning have made great progress.
It is also a good idea to use the semantic segmentation model to detect small targets in
complex backgrounds, which will also be our future research. The above experimental
results indicate that, in the spatial domain algorithm, Tophat has extremely poor detection
probability for complex background images. A lot of background clutter remains in the
target image with LCM and missed detection and false detection occur in the process of
MPCM. Compared with the spatial domain algorithm, the optimized detection algorithm
has better detection performance. The IPI model has good detection performance in the
case of uniform background, but it still cannot handle images with complex backgrounds.
There are residual dim edges in the background image of the TV-PCP model, showing a
distinct staircase effect. PSTNN and SRWS fully consider the target characteristics, but their
parameter settings limit the robustness. The proposed method is superior to other meth-
ods, Figures 8–11 show that our method has higher detection accuracy, Tables 2 and 3
demonstrate the robustness of our method to various complex backgrounds.

Although the proposed method has an excellent performance concerning detection
ability, like other optimization-based algorithms, our method uses iterative calculation.
Compared with the traditional spatial domain algorithms, our method increases computa-
tional complexity and requires a slightly longer running time. Our future research work
will focus on solving this problem.

6. Conclusions

In this paper, a new detection algorithm TVWLR is proposed to improve the detection
accuracy of infrared dim small targets. The algorithm utilizes OEI to characterize the
structural features of the image background and has the ability to adaptively determine
the weight of the constraint low-rank term. It can suppress the staircase effect caused
by the TV regularization term, enhance the details and edge information of the image
and effectively reduce the false detection rate. The l2,1 norm is introduced to remove strong
edges and residuals in the image, which greatly improves the background suppression
ability of the algorithm. Finally, we propose a solution algorithm combining ADMM for
the TVWLR model. A large number of extensive experimental results demonstrate that the
proposed method has better detection accuracy, better subjective and objective consistency
and stronger robustness compared with the other seven methods.
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