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Abstract: Land surface temperature (LST) is a key parameter in the study of surface energy balance 

and climate change from local through to global scales. Vegetation has inevitably influenced the 

LST by changing the surface properties. However, the thermal environment pattern in the Yangtze 

River Basin (YRB) still remains unclear after the implementation of large-scale ecological restoration 

projects. In this study, the temporal and spatial variation characteristics of LST were analyzed based 

on the Theil–Sen estimator, Mann–Kendall trend analysis and Hurst exponent from 2003 to 2021. 

The relationships between vegetation and LST were further revealed by using correlation analysis 

and trajectory-based analysis. The results showed that the interannual LST was in a state of fluctu-

ation and rise, and the increasing rate at night time (0.035 °C‧yr−1) was faster than that at day time 

(0.007 °C‧yr−1). An obvious cooling trend could be identified from 2007 to 2012, followed by a rapid 

warming. Seasonally, the warming speed was the fastest in summer and the slowest in autumn. 

Additionally, it was found that autumn LST had a downward trend of 0.073 °C‧yr−1 after 2015. Spa-

tially, the Yangtze River Delta, Hubei province, and central Sichuan province had a significant 

warming trend in all seasons, except autumn. The northern Guizhou province and Chongqing 

showed a remarkable cooling trend only in autumn. The Hurst exponent results indicated that the 

spring LST change was more consistent than the other three seasons. It was found by studying the 

effect of land cover types on LST changes that sparse vegetation had a more significant effect than 

dense vegetation. Vegetation greening contributed 0.0187 °C‧yr−1 to the increase in LST in winter, 

which was spatially concentrated in the central region of the YRB. For the other three seasons, veg-

etation greening slowed the LST increase, and the degree of the effect decreased sequentially in 

autumn, summer, spring and winter. These results improve the understanding of past and future 

variations in LST and highlight the importance of vegetation for temperature change mitigation. 
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1. Introduction 

Land surface temperature (LST) is considered a key factor in surface physical pro-

cesses at the regional and global scales and a crucial parameter for studying the exchange 

of matter and energy between the surface and atmosphere. Abnormal temperature 

changes, such as high temperature and heat waves, may pose a serious threat to climate 

and environmental stability, agricultural production and ecological balance [1,2]. Over 

the past century, global temperatures have been on an upward trend [3–5]. The global 

average air temperature by 2009 had increased by 0.7–0.8 °C relative to the pre-industrial 

conditions, and it is estimated to rise by 1.8–4.0 °C over the course of this century [6,7]. 
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Although some studies had investigated the LST variations based on the data of me-

teorological station observations [8–10], studies on LST variability are generally inade-

quate at the regional and global scale due to the sparse distribution of meteorological sta-

tions (especially for the areas with less human intervention), resulting in the lack of tem-

poral and spatial continuity of data [11,12]. Reanalysis data were an effective way to solve 

this problem. ERA5 reanalysis data, with a spatial resolution of 0.1°, were appropriate for 

the study of LST and radiation changes in large areas [13]. However, studies have shown 

that the applicability of reanalysis data was poor in the Tibetan Plateau [14]. The develop-

ment of remote sensing provides a reliable database for the study of regional and even 

global LST. Medium resolution imaging spectrometer (MODIS) products have been 

widely used in the monitoring of LST changes due to their high accuracy (mean error less 

than 1 k; k is Kelvin, and every change of k is equal to every change of °C) and their ability 

to provide long-term data [10,15,16]. Studies of LST based on MODIS data have shown 

that most parts of the globe, especially the southern hemisphere, were experiencing 

warming [17]; however, the warming rate was discrepant between day time and night 

time in different regions. For example, there was more variation during the day time than 

at night time in Iran due to changes in land cover and use [5]. The Tibetan Plateau had a 

faster warming trend at night time than at day time, with an average rate of 0.069 K‧yr−1 

and 0.028 K‧y−1, respectively, and night-time warming had a large spatial coverage [11]. 

Through the study of 347 cities in China, it was found that the overall urban heat island 

intensity at day time (1.25 ± 0.81 °C) was greater than that at night time (0.79 ± 0.43 °C), 

but the increasing rate of urban heat island at night time was faster than that at day time 

[18]. In addition, there were significant differences in seasonal LST changes. The most sig-

nificant warming was found in winter, followed by spring and summer, and the LST in 

autumn had basically no change in China from 2003 to 2018 [2]. The agricultural ecological 

belt in northern China showed a warming trend in spring and winter, and a cooling trend 

occurred in autumn and summer [10]. LST in winter had a strong warming effect at higher 

elevation in the Andean region [19]. Regional changes in LST can lead to changes in 

longwave radiation; therefore, the warming and cooling effects can also indirectly affect 

the global radiation energy balance [20]. Warming in the arctic has been observed to in-

crease the annual downward longwave radiation by 10 to 40 W/m2 [21]. Meanwhile, it was 

shown that with the increase in surface temperature, a greater proportion of the net radi-

ation was allocated to evaporation, but net radiation decreased due to the increase in the 

emitted longwave radiation [22]. A further increase in evaporation would lead to the in-

crease in water vapor content in the atmosphere, which changes the characteristics of 

cloud cover and cloud albedo, thus affecting the atmospheric transmittance, limiting the 

arrival of shortwave and longwave radiation to the ground, and finally, affecting the ra-

diation balance of the earth–atmosphere coupled system. Therefore, studying the changes 

in LST can help understand the energy balance. Although previous studies have analyzed 

past LST changes, they ignored future LST change patterns. The Hurst exponent, as a 

long-term memory research method, was widely used to study vegetation dynamics but 

rarely used in the study of LST consistency changes [23]. An experiment that compared 

the Hurst exponent value of post-random rearrangement LST with the Hurst exponent 

value of the original time series LST found that both had little difference and were in the 

same change trend, which showed that the LST trend predicted by the Hurst exponent 

had scientific rationality and was basically consistent with the actual situation in the fu-

ture [12]. Therefore, this is a feasible method to explore the future variation patterns by 

superimposing the change trend of LST and the Hurst exponent value. 

As a dynamic parameter, LST variation is controlled by various factors. It was found 

that precipitation in the southern part of the Qinghai–Tibet Plateau was higher than that 

in the northern part, resulting in a lower warming rate in the southern part [24]. The LST 

of most irrigated areas in the world was lower than that of the corresponding non-irri-

gated areas, indicating that the change of regional soil moisture also affected the change 

of LST [25]. The large amounts of greenhouse gases and aerosol particles emitted by 
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human activities have significantly increased their concentration in the atmosphere. The 

change of concentration affected the radiation balance of the climate system by disturbing 

the radiation process, which caused the change of the global mean LST [26]. In addition, 

air temperature [1], vegetation [27], land cover [5] and topography [19] were also factors 

of LST change. Among these, vegetation was proven to be one of the primary factors, 

which affected the change of LST at the regional and global scale [28–32]. In recent dec-

ades, changes in vegetation coverage caused by deforestation and afforestation have had 

a significant impact on LST. Li et al. [29] found that deforestation caused significant warm-

ing in the tropics, up to 0.28 K per decade, and the southern temperate regions showed 

stronger warming, with a maximum of 0.32 K per decade, while cooling was observed in 

the northern temperate regions, up to 0.55 K per decade. China’s greening reportedly ac-

counted for a quarter of the global net increase in leaf area, with forests and croplands 

being the major sources [33]. Therefore, the effects caused by large-scale afforestation and 

farmland conversion in China on LST in the past 20 years also cannot be ignored. Peng et 

al. [34] reported that afforestation in China had a cooling effect during the day time and a 

warming effect at night time. Additionally, the impact of vegetation on LST is related to 

land cover types. The enormous evapotranspiration of forest, woodland and cropland 

could cool LST [33], while grassland had a warming effect on LST, mainly depending on 

the decrease in albedo [31]. The decrease in urban vegetation coverage caused by human 

activities could accelerate the rise of LST, which was also an important reason for the for-

mation of the urban heat island [35,36]. The relationship between vegetation and LST is 

affected by different factors. Cloud cover, cloud optical thickness and aerosol content can 

change atmospheric transmittance and indirectly affect the precipitation process [22,37]. 

However, due to the control that climatic conditions exert on biophysical characteristics, 

the evapotranspiration of vegetation was sensitive within a certain precipitation threshold 

[38], and the evapotranspiration of vegetation would decrease when the precipitation ex-

ceeded that threshold. Diurnal temperature range (DTR) can change vegetation phenol-

ogy. An increase of 1 °C in the DTR of the northern hemisphere can cause the start of the 

vegetation growing season to be delayed or advanced in different regions [39]. Although 

previous studies have investigated the relationships between LST and vegetation at day 

time, night time and different land cover types, the seasonal relationships based on long 

time series data were not clearly clarified. Additionally, the individual contribution of 

vegetation change to LST was poorly understood in previous studies. 

The YRB, a crucial area of ecological civilization construction, plays an important role 

in maintaining the ecological balance and security of the adjacent area and even the whole 

country, China. The large-scale ecological restoration projects’ implementation, such as 

the shelterbelt system construction project of the YRB, had prompted many studies to fo-

cus on the vegetation dynamic [23], albedo variation [28] and evapotranspiration evolu-

tion [40]. Due to the complex exchange of energy between the land and atmosphere, the 

above changes may contribute to variations of LST, which affect the ecological environ-

ment and crop growth and development. At the same time, the range of elevation, lati-

tude, slope and aspect of the YRB is relatively large, resulting in an unequal distribution 

of solar radiation in the region, which may cause the differences of LST [41]. However, the 

thermal environment pattern in the YRB still remains unclear. In view of this, understand-

ing LST variation and how vegetation affects LST in the YRB will provide a reference for 

coping with climate change. 

Therefore, the objectives of this study were to (1) analyze the temporal and spatial 

changes of LST in the YRB during the interannual day time and night time, and the four 

seasons, from 2003 to 2021; (2) study the consistency of LST changes in the YRB based on 

the Hurst exponent; and (3) explore the relationships between the vegetation dynamic and 

LST variation.  
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2. Materials and Methods 

2.1. Study Area 

The YRB (24°30′N–35°45′N and 90°33′E–122°25′E) is located in southern China (Fig-

ure 1a). It is the largest river in China and the third longest river in the world, covering an 

area of 800,000 square kilometers, accounting for 18.8% of China’s land area. The geo-

graphical environment of the YRB is relatively complex, with plateaus, mountains, basins, 

hills and plains from the western region to the eastern regions (Figure 1b). In terms of 

climate, the YRB straddles the Qinghai–Tibet Alpine region, the southwest tropical mon-

soon region and the central China subtropical monsoon region, thus forming a semi-arid 

region, a semi-humid region and a humid region from the northwest to the southeast. 

In this study, the YRB is divided into four sub-basins: the source of the YRB (SYRB), 

the upper reaches of YRB (UYRB), the middle reaches of YRB (MYRB) and the lower 

reaches of YRB (LYRB) [42]. The SYRB is located in the east of the Tibetan Plateau, where 

the temperature is the lowest in the whole basin, with an annual average temperature of 

−4.4 °C. The Sichuan Basin, Yunnan–Guizhou Plateau and Jinshajiang River Valley in the 

UYRB form high-temperature closed centers. The annual average temperature in most 

regions of the MYRB and LYRB is 16–18 °C, which is the highest in the whole basin. The 

whole basin is rich in forest resources, accounting for more than 25% of the national forest 

resources (Figure 1c). Because of afforestation and ecological projects, the vegetation cov-

erage in the YRB led to significant changes in the past two decades [27]. 

 

Figure 1. (a) The location of the Yangtze River Basin in China. (b) Four sub-basins: the source of the 

YRB (SYRB), the upper reaches of YRB (UYRB), the middle reaches of YRB (MYRB) and the lower 

reaches of YRB (LYRB). (c) Land cover types in 2020 and the 8 classes derived from 17 classes of IGBP. 
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2.2. Data Sources 

In this study, the LST data between 2003 and 2021 were obtained from the LST prod-

uct of Aqua MODIS (MYD11A2, 8-day composite, 1 km resolution, Collection 6.1) 

(http://ladsweb.nascom.nasa.gov (accessed on 9 October 2021). MYD11A2 is obtained by the 

generalized split-window algorithm [19]. The overpass times of the Aqua satellite (1:30 

PM/AM) are close to the times of daily maximum and minimum temperature. Based on 

version 6.0, version 6.1 products have been improved by undergoing various calibration 

changes. MRT is used for MODIS data Mosaic and projection transformation, and ArcGIS 

is used for batch clipping. According to the quality control (QC) documents, grid pixels 

of average LST error < 1.0 K were extracted to analyze the interannual, day-time, night-

time and seasonal LST. Then, the “3σ-Hampel identifier”, a robust method for outlier de-

tection, was used to remove outliers to obtain reliable values [15]. Winter, spring, summer 

and autumn in this study refer to the periods of December (last year)–February, March–May, 

June–August and September–November, respectively. 

The MODIS normalized difference vegetation index (NDVI) data (MOD13A3, 30-day 

composite, 1 km spatial resolution, Collection 6.0) (http://ladsweb.nascom.nasa.gov (ac-

cessed on 9 October 2021)), representing vegetation coverage, were used to analyze the 

vegetation dynamics. MOD13A3 is calculated with the distribution function using the at-

mospheric correction of surface reflectance (bidirectional reflectance distribution func-

tion—BRDF) masked by water, clouds, heavy aerosol and cloud shadows [19]. QC docu-

ments were used to obtain the NDVI data unaffected by clouds to ensure the accuracy of 

the results. The pixels with mean NDVI value no greater than zero were excluded from 

the study to decrease the effects of snow cover and water. 

The MODIS land cover type data of 2020 (MCD12Q1, 1-year composite, 1 km resolu-

tion, Collection 6.0) (http://ladsweb.nascom.nasa.gov (accessed on 9 October 2021)) were 

also used in this study. The International Geosphere-Biosphere Program (IGBP) global 

vegetation classification scheme, with 17 types of vegetation, was combined into 8 classes 

according to the research of Feng et al. [43] and Yu et al. [4] (Table 1). The shrubland area 

in the YRB is less than 0.0001%. Therefore, the shrubland was classified as forest in the 

present study. 

In addition, the digital elevation data at a spatial resolution of 500 m and boundary 

data of the YRB were obtained from the Resource and Environment Science and Data 

Center (https://www.resdc.cn (accessed on 9 October 2021)). 

Table 1. Reclassification of 17 classes of vegetation from IGBP and classification criteria of dense 

vegetation, moderate vegetation and sparse vegetation. 

Vegetation Type 
Reclassified Vegetation 

Type  
Vegetation Type in IGBP 

Multi-Year Mean 

NDVI 

Dense vegetation 

Forest 

Evergreen Needleleaf Forest 

>0.55 

Evergreen Broadleaf Forest 

Deciduous Needleleaf Forest 

Deciduous Broadleaf Forest 

Mixed Forest 

Closed Shrubland 

Open Shrubland 

Woodland 
Woody Savannas  

Savannas 

Moderate vegetation 

Wetland Permanent Wetland 

0.35–0.55 
Cropland 

Cropland 

Cropland/Natural Vegetation Mo-

saic 

Sparse vegetation 

Grassland Grassland 

0–0.35 Barren land Barren 

Urban land Urban and Built-up land 

No vegetation Water 
Water Bodies 

Permanent Snow and Ice 
- 

http://ladsweb.nascom.nasa.gov/


Remote Sens. 2022, 14, 5093 6 of 22 
 

 

2.3. Methods 

2.3.1. Trend Analysis 

(1) Theil–Sen estimator 

The Theil–Sen estimator, a robust nonparametric statistical method for trend analy-

sis, was applied at a pixel scale and river basin scale to analyze the spatial and temporal 

fluctuations of the LST and NDVI over the period 2003–2021 in this study. Compared with 

simple linear regression, this method is insensitive to outliers and skewed distributions 

[11,40]. The trend of LST and NDVI was calculated using the following equation: 

𝑆𝑙𝑜𝑝𝑒 = 𝑚𝑒𝑑𝑖𝑎𝑛 (
𝑥𝑗 − 𝑥𝑖

𝑗 − 𝑖
) , 𝑗 > 𝑖, 𝑖 = 1,… , 𝑛 (1) 

𝑥𝑗 and 𝑥𝑖 are the value of the time series whose trend is to be analyzed. 𝑛 is the 

length of the time series. 𝑆𝑙𝑜𝑝𝑒 > 0 indicates an increasing trend, and 𝑆𝑙𝑜𝑝𝑒 < 0 shows a 

decreasing trend. 

Locally weighted scatter point smoothing (LOWESS), based on locally weighted pol-

ynomial regression, was used to smooth the time series data of LST [44]. The advantage 

of LOWESS is that it can make predictions of volatility and cyclical data. 

(2) Mann–Kendall (MK) test 

The Theil-Sen estimator cannot judge the significance of a time series trend. There-

fore, the MK method is used to test the significance of the trend of the long time series 

data. It is a nonparametric trend test method, and the advantage of the method is that the 

samples do not need to follow a normal distribution [4,11,40]. The calculation process is 

as follows: 

(1) Define the term “𝑠𝑔𝑛” 

𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

+1   𝑥𝑗 − 𝑥𝑖 > 0 

 0    𝑥𝑗 − 𝑥𝑖 = 0

−1  𝑥𝑗 − 𝑥𝑖 < 0
 (2) 

(2) Calculate the MK test statistic S 

𝑆 = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (3) 

(3) Compute the variance 

𝑉𝑎𝑟(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18
 (4) 

(4) The standard normal test statistic 𝑍𝑆 is expressed as 

𝑍𝑆 =

{
 
 

 
 

𝑆 − 1

√𝑉𝑎𝑟(𝑆)
     𝑆 > 0

        0             𝑆 = 0
𝑆 + 1

√𝑉𝑎𝑟(𝑆)
      𝑆 < 0

 (5) 

If |𝑍𝑆| > 𝑍(1−α/2), this indicates that the data show a significant trend in the detected 

time series. 𝑍(1−α/2) is obtained from the standard normal distribution table. In this study, 

the MK test was run at α = 0.05 significance level. When |𝑍𝑆| > 1.65, 1.96 and 2.58, this 

indicates that the data passed the test with 90%, 95% and 99% confidence interval. 

2.3.2. Correlation Analysis 

The Pearson correlation coefficient (𝑅) was used to calculate the correlation between 

the average seasonal LST and the average seasonal NDVI. The Pearson correlation coeffi-

cient was calculated using the following equation: 
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𝑅 =
∑ (LST𝑖 − 𝐿𝑆𝑇̅̅ ̅̅ ̅)𝑛
𝑖=1 (NDVI𝑖 − NDVI̅̅ ̅̅ ̅̅ ̅)

√∑ (LSTi − LST̅̅ ̅̅ ̅)2𝑛
𝑖=1 √∑ (NDVIi − NDVI̅̅ ̅̅ ̅̅ ̅)2𝑛

𝑖=1

 
(6) 

where 𝑖 is the monitoring year from 1 to 19. 𝑅 > 0 means that there is a positive correla-

tion between LST and NDVI. In contrast, 𝑅 < 0 means that there is a negative correlation 

between LST and NDVI. 

2.3.3. Hurst Exponent 

The Hurst exponent (𝐻) has been widely used in climatology and vegetation research 

to evaluate whether the change trend of the time series data is persistent [12,45]. It reflects 

the autocorrelation of the time series, especially the long-term trend hidden in the series. 

The Hurst exponent was calculated using the following equations: 

(1) Divide the long time series {LST(𝑚)} (𝑚 = 1, 2, … , 𝑛) into 𝑚 subseries 𝑋 (𝑡), and for 

each series, 𝑡 =  1, … ,𝑚 

(2) Define the long-term memory of the time series of the mean LST 

𝐿𝑆𝑇̅̅ ̅̅
(̅𝑚) =

1

𝑚
∑𝐿𝑆𝑇(𝑚)

𝑚

𝑡

     𝑚 = 1,2, … , 𝑛 (7) 

(3) Calculate the accumulated deviation from each mean LST 

𝑋(𝑡,𝑚) =∑(𝐿𝑆𝑇(𝑡) − 𝐿𝑆𝑇̅̅ ̅̅
(̅𝑚))

𝑡

𝑡=1

    1 ≤ 𝑡 ≤ 𝑚 (8) 

(4) Define the range sequence of 𝑅 

𝑅 = max
1≤𝑡≤𝑚

𝑋(𝑡,𝑚) − lim
1≤𝑡≤𝑚

𝑋(𝑡,𝑚)     𝑚 = 1,2, … , 𝑛 (9) 

(5) Define the standard deviation sequence of 𝑆 

𝑆(𝑚) = [
1

𝑚
∑(𝐿𝑆𝑇(𝑡) − 𝐿𝑆𝑇(𝑚)

2 )

𝑚

𝑡=1

]

1/2

    𝑚 = 1,2, … , 𝑛 (10) 

(6) Calculate the Hurst exponent 

𝑅(𝑚)

𝑆(𝑚)
= (𝑐𝑚) (11) 

(7) The 𝐻 value is acquired by fitting the following formula 

log(𝑅/𝑆)𝑛 = 𝑎 + 𝐻 × log(𝑛) (12) 

The value of H ranges from 0 to 1. The 𝐻 > 0.5 indicates that the future trend change 

is consistent with the present research (positive autocorrelation), while the 𝐻 < 0.5 indi-

cates that the trend change in the future is opposite to the present research (negative au-

tocorrelation). 

To reveal the consistency in the dynamic trends of the LST, the results of the trend 

analysis and the Hurst exponent were superimposed together to obtain coupled infor-

mation on the consistency and change trends. According to the change trends, p-value 

and H value, the information can be divided into five grades (Table 2). 
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Table 2. Five criteria for dividing the superposition information of trend results and Hurst exponent. 

Slope p H Types 

>0 <0.05 >0.5 consistent and significant warming 

>0 >0.05 >0.5 consistent and slight warming 

<0 <0.05 >0.5 consistent and significant cooling 

<0 >0.05 >0.5 consistent and slight cooling 

- - <0.5 inconsistent 

2.3.4. Contribution Analysis 

Theoretical analysis of potential factors of LST 

𝑅𝑛 = (1 − 𝑎𝑙𝑏𝑒𝑑𝑜)𝑅𝑠↓ + (𝜀𝑅𝑙↓ − 𝜎𝜀𝑇𝑠
4) (13) 

𝑅𝑛 is the surface net radiation. 𝑅𝑠↓ and 𝑅𝑙↓  are the downward shortwave solar ra-

diation and longwave radiation. 𝜀 is the surface emissivity; σ is the Stephan–Boltzmann 

constant (5.6697 ×  10−8[𝑤/(𝑚2. 𝐾4)]); and 𝑇𝑠 is the LST. 𝑅𝑙↓ can be further written as 

the 𝜎𝑇𝑎
4(𝑇𝑎 is the air temperature) [13,43]. 

According to the surface energy balance, the earth system is powered mainly by 

shortwave solar radiation. Part of the shortwave radiation is absorbed by the surface, and 

the rest is reflected back into the atmosphere, where its distribution is mainly determined 

by the albedo. The absorbed shortwave radiation heats the ground and reflects upward 

longwave radiation into the atmosphere, warming the atmosphere. The atmosphere heats 

up and emits longwave radiation back to the surface. Therefore, the surface temperature 

depends mainly on the complex distribution of energy sources and the interaction be-

tween the surface and the atmosphere. Some studies have shown that surface radiation is 

correlated with vegetation cover [28–32]. Vegetation can strongly influence atmospheric 

characteristics and thus atmospheric emissivity through evapotranspiration. Therefore, 

we analyzed the contribution of vegetation cover to LST change. 

To quantify the individual contribution of vegetation change to LST, a trajectory-

based method was employed to isolate the comprehensive effects of other factors [43]. The 

change of LST in the vegetation change regions (significance at p < 0.05) represents the 

joint influence of vegetation and other factors. The change of LST in the nonchanging veg-

etation regions (significance at p > 0.05) represents a synthetic result of other factors. The 

contribution of vegetation to LST was calculated as follows: 

𝐶𝑜𝑛𝑣𝑒 = 𝐿𝑆𝑇𝑉𝐸 − 𝐿𝑆𝑇𝑛𝑜𝑛−𝑉𝑒 (14) 

where 𝐶𝑜𝑛𝑣𝑒 is the contribution of vegetation change to LST. 𝐿𝑆𝑇𝑉𝐸  and 𝐿𝑆𝑇𝑛𝑜𝑛−𝑉𝑒 are 

the change trends of mean LST in regions with vegetation change and without vegetation 

change, respectively, calculated by the MK test with Sen’s slope. All the statistical analyses 

were conducted using MATLAB R2017b. 

3. Results 

3.1. Trend Characteristics of Interannual LST 

The interannual average LST exhibited a slight upward trend in the YRB from 2003 

to 2021, with change rates of up to 0.020 °C‧yr−1 (p < 0.05) (Figure 2a). The upward rate at 

night time was higher than that of the day time, with the magnitude of 0.035 °C‧yr−1 (p < 

0.05) and 0.007 °C‧yr−1 (p > 0.1), respectively (Figure 2b,c). LOWESS estimated that the 

change trend of LST in the whole basin was in a state of fluctuation and rise, with two 

turning points in 2007 and 2012. Because turning points occurred, a piecewise fitting was 

executed to explore the rate of change for each period. The day time LST showed a signif-

icant decreasing (Slope = −0.130 °C‧yr−1, p < 0.01) and an unobvious increasing trend (Slope 

= 0.048 °C‧yr−1, p >0.05) from 2003 to 2012 and 2012 to 2021, respectively. The night time 

LST initially continued to increase until 2007 (Slope = 0.073 °C‧yr−1, p > 0.05) but was 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/interfacial-energy
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followed by a decreasing trend until 2012 (Slope = −0.160 °C‧yr−1, p > 0.05), after which it 

rapidly rebounded until 2021 (Slope = 0.017 °C‧yr−1, p < 0.05). 

   

Figure 2. Average LST change trends from 2003 to 2021: (a) interannual; (b) day time and (c) night 

time. The green line is a piecewise fitting. 

The interannual LST warmed and cooled in 74.64 % and 25.36% of the total areas of 

the YRB, respectively (Figure 3a). The areas’ portion of warming and cooling in day-time 

LST changed by 20.66% compared with the interannual variation. Among them, the sig-

nificant warming (p < 0.05) areas decreased by 7.21%, mainly clustered in the central and 

southwestern UYRB, central MYRB and LYRB. Additionally, the significant cooling (p < 

0.05) areas, mainly located in Chongqing and northern Guizhou province (Figure 3b,e), 

increased by 5.91%. The night-time LST was warming across most regions in the YRB. 
Only 8.32% of the total area, distributed in the middle of UYRB, experienced a slight cool-

ing (p > 0.05) (Figure 3c,f). 

 

Figure 3. Trend variation and its significance of LST from 2003 to 2021: interannual (a) and (d); day 

time (b) and (e); and night time (c) and (f). The inset pie charts show the percentage of area with an 

uptrend and downtrend, respectively (a–c), and the percentage of area with a significant uptrend, 

significant downtrend and insignificant change, respectively (d–f). 
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3.2. Seasonal LST Variation 

The results on seasonal timescales all revealed a slight upward trend, with a rate of 

0.013 °C‧yr−1 in winter, 0.029 °C‧yr−1 in spring, 0.032 °C‧yr−1 (p < 0.1) in summer and 0.010 

°C‧yr−1 in autumn from 2003 to 2021 (Figure 4a–d). Moreover, we could clearly see that 

there was an upward trend in winter, spring and summer after 2015, especially in spring, 

with a more obvious upward trend (Slope = 0.113 °C‧yr−1), while there was a slight down-

ward trend in autumn, with a rate of −0.073 °C‧yr−1. 

  

  

Figure 4. Average LST change trends from 2003 to 2021: (a) winter; (b) spring; (c) summer; (d) au-

tumn. The green line is a piecewise linear fitting. 

In terms of the extent of areas, the warming areas were larger than the cooling areas 

in the four seasons (Figure 5a–d). In winter and spring, a marked warming occurred in 

the LYRB, central UYRB and MYRB (p < 0.05), especially in the Yangtze River Delta of 

LYRB; the warming rate was more than 0.1 °C‧yr−1 (p < 0.01), while the SYRB experienced 

an insignificant cooling trend (p > 0.05) (Figure 5a,b). The warming regions in summer 

were relatively extensive (75.16%), and a slight warming trend even appeared in the SYRB 

(Figure 5c). The significant warming areas (p < 0.05) expanded to the west and south of 

the UYRB compared to winter and spring (Figure 5g). In autumn, a significant warming 

effect was found in the western and eastern parts of the YRB, accounting for only 4.10% 

of the total areas of the YRB (p < 0.05). However, 2.22% of the areas observed in northern 
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Guizhou province and Chongqing had experienced obvious cooling, with a decreasing 

rate of more than 0.1 °C‧yr−1 (p < 0.05) (Figure 5h), which was different from the other three 

seasons. 

 

Figure 5. Trend variation and its significance of LST from 2003 to 2020 in winter (a) and (e); spring 

(b) and (f); summer (c) and (g); and autumn (d) and (h). The inset pie charts show the percentage of 

area with an uptrend and downtrend, respectively (a−d), and the percentage of area with a signifi-

cant uptrend, significant downtrend and insignificant change, respectively (e−h). 

Over the last 19 years, the change trends in LST varied for different land cover types 

(Table 3). The value of a significant upward trend ranged from 0.0512 °C‧yr−1 (p < 0.05) to 

0.1200 °C‧yr−1 (p < 0.01), and the regions were mainly distributed in the cropland, grassland 

and urban land. For the urban land, spring had the largest significant increasing trend 

value at a rate of 0.1200 °C‧yr−1 (p < 0.01), followed by summer and winter with increasing 

trends of 0.1021 °C‧yr−1 (p < 0.01) and 0.0858 °C‧yr−1 (p < 0.05), respectively. Similarly, 

cropland significantly increased (p < 0.05) at large rates in winter and spring (0.0825 °C‧yr−1 

and 0.0580 °C‧yr−1, respectively). As for grassland, only spring had a significant upward 

trend at a rate of 0.0512 °C‧yr−1 (p < 0.05). However, forest and woodland, with high vege-

tation coverage, and barren land, with sparse vegetation, all showed insignificant change 

trends in the four seasons. 
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Table 3. Trends of LST (°C‧yr−1) and NDVI (yr−1) in different land cover types (LC) from 2003 to 

2021. Correlation coefficients (R) of LST and NDVI in different land cover types for four seasons 

from 2003 to 2021. 

LC Periods 

Sen’s Slope Correlation 

LST MK Test NDVI 
MK 

Test 
R P 

Forest Winter 0.0235 1.1195 0.0058 ** 4.9680 0.281 0.245 
 Spring 0.0188 0.9096 0.0049 ** 4.3032 0.394 • 0.095 
 Summer 0.0206 1.1195 0.0025 ** 5.3878 0.278 0.249 
 Autumn 0.0079 0.4198 0.0030 ** 4.4782 0.195 0.425 

Woodland Winter 0.0253 0.6997 0.0057 ** 4.9680 0.179 0.464 
 Spring 0.0260 1.0496 0.0053 ** 4.6531 0.359 0.132 
 Summer 0.0241 1.6093 0.0025 ** 5.0379 0.162 0.507 
 Autumn −0.0141 −0.9096 0.0043 ** 4.7580 −0.214 0.378 

Wetland Winter 0.0355 0.7697 0.0008 1.1895 0.401 • 0.089 
 Spring 0.0007 0.0002 0.0011 ** 2.6239 0.631 ** 0.004 
 Summer 0.0477 • 1.8192 −0.0016 * −2.3090 −0.295 0.220 
 Autumn 0.0956 • 1.8192 0.0006 1.4694 0.215 0.376 

Cropland Winter 0.0825 * 2.0292 0.0031 ** 3.5685 0.220 0.365 
 Spring 0.0580 * 2.1691 0.0010 * 2.4840 0.494 * 0.032 
 Summer 0.0312 1.2994 0.0002 0.7697 0.082 0.739 
 Autumn −0.0285 −1.2595 0.0015 ** 2.5889 −0.148 0.546 

Grassland Winter −0.0355 −1.2595 0.0047 ** 3.9184 0.632 ** 0.004 

 Spring 0.0512 * 2.3090 0.0038 ** 4.5131 0.609 ** 0.006 

 Summer 0.0365 1.4694 0.0021 ** 3.8484 0.145 0.553 

 Autumn 0.0055 0.2099 0.0044 ** 4.4782 0.451 • 0.053 

Urban land Winter 0.0858 * 2.0991 0.0021 ** 3.0088 0.511 * 0.025 
 Spring 0.1200 ** 3.7784 0.0007 1.6443 0.467 * 0.044 
 Summer 0.1021 ** 3.7085 −0.0017 ** −2.8688 −0.691 ** 0.001 
 Autumn 0.0499 • 1.8192 0.0008 * 2.0292 0.345 0.148 

Barren land Winter −0.0271 −0.4898 0.0007 1.3994 0.609 ** 0.006 
 Spring −0.0162 −0.2099 0.0004 1.6443 0.614 ** 0.005 
 Summer 0.0418 • 1.7493 0.0010 ** 2.9388 0.293 0.224 
 Autumn 0.0900 1.3994 0.0004 * 2.1691 0.450 • 0.053 

• Correlation significant at the 0.1 level (two-tailed); * Correlation significant at the 0.05 level (two-

tailed); ** Correlation significant at the 0.01 level (two-tailed). 

3.3. Consistency of Trends in LST Changes 

The areas with Hurst exponent values exceeding 0.5 accounted for 28.54% in winter, 

29.21% in spring, 21.47% in summer and 27.79% in autumn. Most areas had Hurst expo-

nent values lower than 0.5, and these regions accounted for more than 70% of the total 

area of the YRB in four seasons (Figure 6a–d). The information superposition results 

showed that the region of consistent warming was unevenly distributed in the four sub-

basins in autumn and mainly distributed in other areas, except the SYRB, in the other three 

seasons (Figure 6e–h). The region with consistent cooling was mainly distributed in the 

SYRB and the junction of UYRB and MYRB in winter, concentrated in the eastern UYRB 

in autumn and scattered sporadically in the YRB in spring and summer (Figure 6e–h). 

Generally, the LST in most areas of the YRB was in a state of inconsistent change. 
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Figure 6. Spatial distribution of the Hurst exponent and consistency of the LST in winter (a) and (e); 

spring (b) and (f); summer (c) and (g); and autumn (d) and (h) from 2003 to 2021. The inset pie charts 

show the percentage of area with more than 0.5 and less than 0.5, respectively (a–d). In (e–h), the 

Hurst exponent and overall trend results of the LST are superimposed. The histogram shows the 

percentage of area with consistent and inconsistent change. 

3.4. The Characteristics of the Vegetation Dynamics 

The variation of the NDVI trends in the YRB showed the highest and lowest greening 

rate in winter (0.0044‧yr−1) and summer (0.0021‧yr−1) from 2003 to 2021 (Figure 7a–d). 

Spring and autumn increased at a rate of 0.0040‧yr−1 and 0.0034‧yr−1, respectively (Figure 

8a–d). The significant greening regions, accounting for more than 45.85% of the total area 

in the YRB, mainly occurred in the eastern and middle UYRB and MYRB in the four sea-

sons (Figure 7e–h). The changes in different land cover types showed that the extreme 

greening trends (p <0.01) were found in forest, woodland and grassland in the four sea-

sons. Cropland had a greening rate of 0.0031‧yr−1 (p < 0.01) and 0.0010 (p<0.05) in winter 

and spring, respectively. Wetland showed a significant greening trend (p < 0.05) in spring 
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(0.0011‧yr−1) and a significant degradation trend in summer (−0.0016‧yr−1). Both urban land 

and barren land had significant changes (p < 0.05) in summer and autumn (Table 3). 

 

Figure 7. Trend variation and its significance of NDVI from 2003 to 2021 in winter (a) and (e); spring 

(b) and (f); summer (c) and (g); and autumn (d) and (h). The inset pie charts show the percentage of 

area with a significant uptrend, significant downtrend and insignificant change, respectively (e–h). 
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Figure 8. The contribution of vegetation greening to LST in winter (a); spring (b); summer (c); and 

autumn (d) from 2003 to 2021. 

3.5. Contribution of Vegetation Changes to LST 

The greening regions (more than 45.85% of the total land areas in the four seasons; 

Slope > 0, p < 0.05) were much more widespread than the browning regions (less than 

2.81%; Slope < 0, p < 0.05) (Figure 7e–h) in the YRB. Therefore, the present study focused 

mainly on the contribution of greening to the LST variations. In winter, the LST change in 

the area with vegetation greening was 0.0200 °C‧yr−1 and that in the nonchanging area was 

0.0013 °C‧yr−1. That is, vegetation greening contributed 0.0187 °C‧yr−1 to the warming in 

LST (Figure 8a). In spring and summer, the contribution of vegetation greening was 

−0.0306 °C‧yr−1 and −0.0416 °C‧yr−1, respectively (Figure 8b,c). Vegetation greening also 

had a negative contribution to LST in autumn, with a contribution rate of −0.0672 °C‧yr−1, 

which was slightly stronger than in the spring and summer (Figure 8d). 

Considering the spatial distribution of the vegetation, we further analyzed the corre-

lation between LST variations and vegetation dynamics. In the majority of pixels, a posi-

tive correlation was observed in winter (65.66%) and spring (56.30%), while a negative 

correlation was observed in summer (67.99%) and autumn (58.15%) (Figure 9a–d). In win-

ter, the significant positive correlation (11.8%, p < 0.05) was mainly distributed in the north 

and west of the YRB, and the significant negative correlation (2.60%, p < 0.05) was concen-

trated in northern Yunnan province (Figure 9e). In spring, the significant correlation 

(6.90%, p < 0.05) was mainly negative in northern Yunnan province but positive in other 

areas (5.90%, p < 0.05) (Figure 9f). In summer, 12.61% of the areas showed a strong negative 

correlation (p < 0.05), most of which were distributed in the UYRB, except for the west 

(Figure 9g). As for autumn, the significant negative correlation (6.00%, p < 0.05) areas were 

mainly distributed in the MYRB and LYRB, and the significant positive correlation (3.58%, 

p < 0.05) areas were mainly scattered in the SYRB and western UYRB (Figure 9h). 
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Figure 9. Correlation coefficient between LST and NDVI in winter (a) and (e); spring (b) and (f); 

summer (c) and (g); and autumn (d) and (h) from 2003 to 2021. The inset pie charts show the per-

centage of area with a positive correlation and negative correlation, respectively (a–d), and the per-

centage of area with a significantly positive correlation, significantly negative correlation and insig-

nificant relationship, respectively (e–h). 

The correlation coefficients in different land types varied from −0.691 to 0.632 (Table 

3). For grassland and barren land, which were mainly distributed in the plateau, the LST 

was positively related to vegetation in winter and spring, and these correlations were 

more significant (p < 0.01) than those in the other seasons. Wetland and cropland showed 

a significant positive correlation (p < 0.05) in spring, with correlation coefficients of 0.631 

and 0.494, respectively, but there was no significant correlation in the other three seasons. 

Urban LST showed a negative correlation (p < 0.01) with vegetation in summer (−0.691), 

whereas a positive correlation was found in winter and spring (p < 0.05). Additionally, 

forest and woodland, which accounted for 59.58% of the total land areas, did not exhibit 

significant correlations between LST and vegetation. 
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4. Discussion 

4.1. The Spatial and Temporal Change of LST 

In the context of global warming, climate change in China, since the 1960s, has been 

characterized by significant and large-scale warming [9,43,46]. As an important ecological 

civilization construction region, the YRB also has a certain response to global climate 

change. Our results suggested that interannual LST has an obvious warming potential, 

except for Chongqing and northern Yunnan province. This may be related to the positive 

contribution of CO2 emissions from human activities to global warming. Studies have 

shown that the 2 °C global warming in the mid-Pliocene was clearly attributable to the 

increasing CO2 concentration caused by industrialization and urbanization [47,48]. How-

ever, asymmetric warming, where the rate was faster at night time than at day time, was 

found in the YRB (Figure 2). Although the rate of warming at day time was greater than 

that at night time in some areas, the area of significant warming at night time was twice 

as large as during the day time (Figure 3b,c). This phenomenon might be driven by 

changes in cloud cover. Cox et al. [49] argued that increased cloud cover helped keep 

things cool during the day time but not at night time. Increased cloud cover prevented the 

loss of ground radiation, which lingered on the surface and acted as a heat preservation 

effect. From 1984 to 2009, the total cloud cover of MYRB and LYRB showed an increasing 

trend, and the annual average optical thickness of the Sichuan Basin and the Qinghai–

Tibet Plateau increased by more than 0.06‧yr−1 [50], which indirectly proved that the asym-

metric warming of YRB was related to cloud cover. In addition, high-altitude areas have 

stronger effects on LST changes at night time than at day time [51,52]. We could clearly 

see that the LST in the western YRB increased faster at night time than at day time, and 

the warming area was larger at night time (Figure 3b,c). This result was consistent with 

the research of Yang et al. [11] in the Tibetan Plateau, who reported that the contributions 

of elevation to LST variations were 27.12% and 62.98% at day time and night time, respec-

tively. 

The National Climate Change Assessment report released by the Chinese govern-

ment in 2006 predicted that, in the 21st century, the climate in China would continue to 

warm for the next 20 to 100 years [53]. LST in the YRB all showed a slight upward trend 

in the four seasons in the past 19 years, which was in agreement with the predicted results. 

However, the obvious warming occurred in summer (0.032 °C‧yr−1), which was contrary 

to the summer cooling of the agricultural pastural ecotone of northern China [10]. This 

may be associated with the change of position and intensity of the western Pacific sub-

tropical high (WPSH) system. The sea surface temperature change in the western Pacific 

triggered a cyclonic circulation on its western side, which was beneficial to the mainte-

nance of WPSH over the YRB, resulting in higher LST in the summer [54]. However, the 

significant increase in global temperature greatly enhanced the WPSH and moved it west-

ward, which inhibited the water vapor transport in the Indian Ocean [48], thus leading to 

a significant warming of the Tibetan Plateau. This was the main reason for the apparent 

warming trend in the western part of the YRB (located on the Tibetan Plateau). Note that 

the autumn LST showed a slight downward trend after 2015 in the present study, which 

was mainly attributed to the significant decline of LST in northern Guizhou province and 

Chongqing (Figure 5d). China’ s National Assessment Report on Climate Change reported 

that the cooling trend in southwest China recorded in earlier studies was still continuing 

[53]. Meanwhile, the consistency of trends in LST changes showed that 10% of the YRB 

area would continue to cool, and 40.96% of the warming regions were likely to experience 

an opposite trend (Figure 6). These results indicated that the future trend of LST in au-

tumn may decline further. 

Although the YRB as a whole showed a warming trend, there was an obvious cooling 

trend from 2007 to 2012. This phenomenon may be caused by the gap between global 

changes. Previous studies have shown that the warming trend from 1988 to 2012 was 

slower than a few decades ago [55,56]. Sun et al. [57] and Du et al. [3] also confirmed that 
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there was a warming gap in China, and the extent of the gap was even more pronounced. 

The contribution of winter to the national warming gap was the largest, while the contri-

bution of summer was the smallest, which indirectly corresponded to the maximum de-

creasing rate in winter and the minimum decreasing rate in summer of the YRB from 2007 

to 2012. 

4.2. Clarification of Biophysical Mechanisms of Interaction between LST and Vegetation 

The overall vegetation coverage in the YRB showed a significant improvement trend, 

and vegetation degradation only occurred in urban land and grassland. This result was 

consistent with the previous studies in the same area [58,59]. The changes in vegetation 

coverage would inevitably lead to the variation of evapotranspiration and albedo, thus 

affecting LST [38]. 

The alteration of surface thermal properties, particularly decreasing albedo, was 

shown to be the main reason for controlling the warming effects [43,60]. Specifically, the 

albedo was reduced by −0.003 ± 0.001, and the surface net shortwave radiation increased 

by 0.86 ± 0.14 W·m−2 for every 1% increase in NDVI [43]. Vegetation in the eastern part of 

the Qinghai–Tibet Plateau was significantly greening, while albedo showed a significant 

decrease for the period 2000 to 2018 [59]. A decrease in albedo resulted in an increase in 

net radiation from the surface, thus an increase in surface temperature, which explained 

the positive contribution of vegetation greening to winter LST rise in the central and west-

ern regions of the YRB (Figures 8a and 9a). The increasing temperature activated and pro-

moted vegetation photosynthesis and was beneficial to vegetation growth, thus resulting 

in a positive correlation effect in spring over a large area of the YRB [30,45]. Nevertheless, 

the positive correlation cannot signify that local LST was rising [33]; for example, grass-

land and barren land vegetation was greening in winter, but the LST showed a downward 

trend (Table 3). Similar results were found in the Amur-Heilongjiang River Basin [31]. The 

positive correlation can be called positive feedback. 

By contrast, the cooling effects were more closely related to the increase in evapo-

transpiration, particularly in summer. Vegetation can change the surface energy flux 

through evapotranspiration and then change the LST [34,61]. From 1998 to 2017, vegeta-

tion restoration in the YRB increased the actual evapotranspiration in most areas, and 

larger evapotranspiration could decrease the LST and had a negative effect of cooling in 

the study area [62]. Instead, vegetation degradation increased ground exposure, which 

prompted more solar radiation being absorbed, and, coupled with less transpiration of 

vegetation, led to the rise in LST, especially in urban land (Table 3) [35,63]. Meanwhile, 

high LST usually increased the evaporation of surface water and inhibited the photosyn-

thesis of different vegetation, which would severely limit the growth of vegetation and 

led to the decline of vegetation greenness [64]. This might be the primary reason for the 

lowest vegetation greening rate in the YRB in summer, with a value of only 0.0021 °C‧yr−1. 

Additionally, the effects of evapotranspiration and albedo on LST can be controlled 

by climatic conditions, to some extent. Evapotranspiration and albedo are relatively sen-

sitive to precipitation within the threshold [38]. The negative correlation found in north-

ern Yunnan province in spring was due to the relatively low precipitation in this region 

[62], and vegetation cooled the LST by evapotranspiration. Moreover, actual evapotran-

spiration should increase reasonably with increasing temperature [40]. Studies had shown 

that rising air temperature could lead to delayed phenology of vegetation and thus pro-

mote vegetation greening [33,64]. The bushy vegetation caused an increase in the transpi-

ration and evaporation of water trapped by leaves, and the relatively high temperature 

also contributed, to some extent, to the increase in actual evapotranspiration, which ex-

plained the widespread cooling effect in autumn in the present study. 
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5. Conclusions 

Compared with the commonly used least-square method, Mann–Kendall trend anal-

ysis does not require data to meet a certain distribution and is not sensitive to outliers; 

therefore, it is easier to analyze the change trend of LST in the YRB from 2003 to 2021. The 

results showed that interannual LST exhibited asymmetric warming, where the increasing 

rate at night time was faster than that at day time. The change pattern in the four seasons 

was also different, with the fastest upward rate in summer and the slowest upward rate 

in autumn. The significant warming areas were mainly distributed in the Yangtze River 

Delta, Hubei province, and central Sichuan province in all the seasons, except for autumn. 

Additionally, the northern Guizhou province showed a significant cooling trend in au-

tumn. Moreover, the area of consistent change in LST was the largest in spring and the 

smallest in summer. Sparse vegetation had a significant positive correlation with LST in 

winter and spring, and dense vegetation mainly had a negative correlation in summer and 

autumn. The trajectory-based method showed that vegetation greening played a warming 

role in LST change in winter, and the opposite effect occurred in the other three seasons. 

However, LST variations between the area with and without vegetation change may ig-

nore the spatial variability in atmospheric impacts between different regions; therefore, 

investigating the contribution of vegetation dynamics in the same climatic context in fu-

ture studies could help mitigate uncertainty. 
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