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Abstract: The spatial distribution of remote-sensing scene images is highly complex in character, so
how to extract local key semantic information and discriminative features is the key to making it
possible to classify accurately. However, most of the existing convolutional neural network (CNN)
models tend to have global feature representations and lose the shallow features. In addition,
when the network is too deep, gradient disappearance and overfitting tend to occur. To solve
these problems, a lightweight, multi-instance CNN model for remote sensing scene classification is
proposed in this paper: MILRDA. In the instance extraction and classifier part, more discriminative
features are extracted by the constructed residual dense attention block (RDAB) while retaining
shallow features. Then, the extracted features are transformed into instance-level vectors and the local
information associated with bag-level labels is highlighted by the proposed channel-attention-based
multi-instance pooling, while suppressing the weights of useless objects or backgrounds. Finally, the
network is constrained by the cross-entropy loss function to output the final prediction results. The
experimental results on four public datasets show that our proposed method can achieve comparable
results to other state-of-the-art methods. Moreover, the visualization of feature maps shows that
MILRDA can find more effective features.

Keywords: remote-sensing scene image classification; convolutional neural network (CNN); multiple
instance learning (MIL); attention mechanisms

1. Introduction

High-resolution remote-sensing scene-image classification, as a fundamental task in
remote-sensing-image understanding, has received increasing attention in the past few
years [1–3]. Thanks to the development of satellite and remote-sensing technologies, remote-
sensing scene-image classification plays an important role in real-life applications, such
as urban construction and planning [4,5], land cover and land use (LCLU) [6], vegetation
mapping [7], remote monitoring and intelligent decision making [8,9].

Difficulties in the study of remote-sensing scene-image classification are influenced by
the characteristics of the images themselves. Compared to natural images, remote-sensing
scene images contain more objects at different scales because they are taken from a bird’s
eye view. As shown in Figure 1a, remote-sensing images often contain many objects which
are diverse in size. As shown in Figure 1b, objects in natural images are usually medium-
sized and centered, but in remote-sensing images, objects generally have multiple scales
and show a dense distribution at any location in the image. In addition, remote-sensing
images often contain a large amount of useless background information due to the angle of
imaging, making it more difficult to capture key object features than natural images. In
addition, the remote-sensing scene images contain a large number of similar scenes, and
have the characteristics of small inter-class differences and large intra-class differences.
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As shown in Figure 2, the categories in (a) are the same, but their architectural styles are
obviously different, and the shapes of the main objects are not similar; the categories in
(b) are different but very similar, such as "runway," "freeway," "railway" and "intersection,"
which are sometimes difficult to distinguish with the naked eye. Another example involves
"terrace," "meadow," "wetland" and "forest," which mostly contain similar or identical
objects, but they have completely different semantic labels. The above problems pose
difficulties for accurate classification of remote-sensing scene images.

airport

airplane

storage tank

industrial area

runway

residential areas

(a) Remote sensing images contain more objects 
at different scales

(b) Comparison of remote sensing images and 
natural scene images

Figure 1. Comparison of remote-sensing images and natural images.

Beach Beach

Church Church

Runway Freeway Railway Intersection

Terrace Meadow Wetland Forest

(a) Scenes with large within-class differences.

(b) Scenes with high between-class similarities.

Beach Beach

Church Church

Figure 2. Examples of different classes in remote-sensing scene images.

The early research methods are mainly based on low-level features, which represent the
features of remote-sensing scene images by selecting different feature description operators.
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Some of the widely used methods include SIFT [10], CH [11], HOG [12], GIST [13] and
LBP [14]. However, with the rapid development of remote-sensing imaging technologies
and platforms, the internal information contained in remote-sensing images is becoming
more and more complex, and a single shallow feature is no longer applicable. To overcome
the limitations of low-level feature description, the researchers proposed a method based on
mid-level features. This type of approach obtains global features by encoding the extracted
features (such as BoVW [15], LDA [16] and pLSA [17]). However, these methods rely on a
large amount of a priori information and sparse local features, and thus have limited ability
to characterize remote sense images.

With the rapid development of deep learning methods (high-level features) since
2012, deep CNN models have become able to automatically learn and extract represen-
tative features from given data, and have achieved many impressive results in several
fields [18]. Compared with traditional feature extraction methods, deep learning meth-
ods have stronger recognition and feature description capabilities [19]. Remote-sensing
scene-image classification methods based on deep learning can be broadly classified into
three categories, namely, fine tuning, full training and using a CNN as a feature extractor.
The fine-tuning-based methods usually target CNN models pre-trained on large natural-
image datasets beforehand, and use remote-sensing image datasets. CNN models require a
large amount of data for training to reach their true potential, but remote-sensing datasets
have the problem of small samples, so fine-tuning-based methods are generally effective.
Full-training-based methods usually redesign the CNN structure based on remote-sensing
scene-image features or improve the currently available superior models [20–22]. The new
model can extract key features directly from remote-sensing scene images, and thus works
better than existing models such as VGGNet [23], AlexNet [24] and ResNet [25]. Using a
CNN as a feature extractor usually fuses multiple layers of features from a CNN model to
obtain a more comprehensive feature representation map [26–29]. Although such methods
outperform existing CNN models, they require CNN models that have already been trained
on remote sensing datasets, and thus they lack flexibility.

Although the CNN has achieved some good results in the study of remote-sensing
scene-image classification, the following problems still exist:

(1) Insufficient description of key semantic feature representations: The remote-sensing
scene-image contains many objects or redundant backgrounds inside the image that are not
related to labels, and also has the characteristics of large intra-class differences and small
inter-class differences, but the CNN focuses on global features, which are easily disturbed
by useless information and affect the final performance.

(2) Too many parameters make it difficult to train: Although the deeper CNNs have
stronger feature representation capabilities, the small sizes of remote-sensing scene-image
datasets tend to cause parameter redundancy, resulting in low accuracy. Meanwhile,
the problem of gradient disappearance easily arises during the training process, which
generates a high computational cost.

(3) Loss of shallow features: Although the discriminative power of deep features is
stronger, retaining shallow features is more helpful to enriching the diversity of features.
For remote-sensing scene images with complex spatial information, retaining shallow
features is more helpful to describing different spatial structures and improving the final
classification performance.

In recent years, multiple-instance learning (MIL) is often combined with a CNN. This
combined approach can effectively distinguish the local semantic information associated
with the scene labels [30]. MIL was originally designed for drug activity prediction [31]. Its
effectiveness has since also been demonstrated in a range of computer-vision tasks, such as
image recognition [32], saliency detection [33] and target detection [34]. In MIL, training
samples are specified as bags, each containing multiple instances, each with a predefined
semantic label. A bag is labeled as a positive bag if it contains at least one positive instance,
and vice versa. In general, there are no specific instance labels, and each instance can only be
judged to belong to or be deployed in one bag category [35], which makes MIL well suited
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for learning from weakly labeled data [36,37]. In the past few years, the combination of
MIL and trainable CNNs has become a new trend. For example, Wang et al. [36] used max
pooling and mean pooling to aggregate instance representations in the network. However,
this method is applicable to medical images or natural images, and does not adapt to create
remote-sensing scene maps that contain complex spatial information.

To solve the above problems, this paper proposes a framework for remote-sensing scene-
image classification based on the CNN and MIL. The main objectives include the following.

(1) Improved utilization of shallow features: Deep CNNs usually cannot retain shallow
features, but shallow features help to improve feature diversity and enhance the perfor-
mance of the final classification decision. Therefore, our model should effectively improve
the feature reuse rate, improve feature propagation and make full use of the limited samples
of remote-sensing scene images.

(2) Enhance the extraction of key features: The commonly used deep CNN models are
inadequate in key local feature extraction. Since remote-sensing scene images contain a
large amount of redundant background information and have high inter-class similarity,
our model needs to improve the feature representation of key objects.

(3) Improved parameter utilization: Although increasing the depth of the CNN model
helps to extract deeper features with more discriminative rows, it can easily cause parameter
redundancy and overfitting. Therefore, our model should minimize the parameters while
ensuring the feature extraction capability of the image-depth semantic information.

In summary, we first constructed a feature extraction module, RDAB, based on local
residuals and dense connectivity, and converted the extracted features into local instance
vectors. Then, the correlation weights were generated by aggregating the instance infor-
mation through MIL pooling based on channel attention. Finally, the whole network is
constrained by a cross-entropy loss function, so that the whole model outputs the final
result directly under the supervision of bag-level labels.

The main contributions of this paper are as follows.
(1) We constructed an end-to-end lightweight network, MILRDA, for remote-sensing

scene-image classification. Additionally, it has much smaller parameters and computational
complexity compared to existing CNN models.

(2) We constructed the feature extraction module RDAB with local residuals and dense
connections, which performs feature reuse and retains shallow features, which helps the
network generate more discriminative information.

(3) The constructed MIL pooling based on channel attention and aggregating relevant
instances, helps to suppress redundant background information of remote-sensing scene
images while highlighting major instance weights and outputting prediction results directly
under the supervision of bag-level labeling.

The rest of the article is organized as follows. Section 2 introduces our proposed
framework and describes its component parts in detail. Section 3 describes the experimental
results and compares them with those of other methods. In Section 4, we discuss the
proposed approach. Section 5 summarizes the proposed method.

2. Methodology

Figure 3 shows the architecture of the proposed MILRDA method. MILRDA consists
of three parts: (1) instance extraction and classifier, (2) MIL pooling and (3) a bag-Level
classification layer. In this framework, we first extract features with the proposed convolu-
tion module and then feed the extracted features into the instance-level classifier to obtain
instance-level feature vectors. The instance-level classifier here is made up of a series of
1× 1 convolutions that are proportional in number to the number of remote-sensing scene
images (for example, the UCM dataset corresponds to 21 convolutional groups, and the AID
dataset corresponds to 30). Then, we use the proposed MIL pooling with channel attention
to obtain the bag-level class probabilities. Finally, the true labels of the scene images are
predicted by the softmax classifier. The network as a whole creates an end-to-end structure.
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Figure 3. Overall structure of the proposed MILRDA model. The model consists of three parts:
(a) instance extraction and classifer, (b) MIL pooling based on channel attention and (c) bag-level
classification layer.

For remote-sensing scene classification tasks, each image in a training set T is converted
into a collection of local patches, which are referred to as instances. Let xi denote each
local patch that maps to the class label yi = h(xi) of instance Zi through the instance-level
classifier h; each instance Zi is a local piece of image Xi. Then, the instance label is changed
into an image (bag) label under the common MIL assumptions, which are based on the
MIL pooling function fMIL, denoted as:

Yj = fMIL(y1, y2, . . . , yn) =

{
1, if ∃yi = 1
0, else

(1)

This indicates that the negative image has solely negative patches, whereas the positive
image has at least one positive patch. Since the instance-level label yi is an unknown hidden
variable during the training process, it is crucial to establish the image-to-instance mapping
h, and to establish the fMIL that transforms the instance label to the bag label. Deep
convolutional neural networks have shown powerful capabilities in the field of computer
vision, and we constructed a deep CNN to learn hidden variables, and the pooling function
fMIL is a module based on channel attention to better highlight local key regions of images
under class label supervision.

2.1. Instance Extraction and Classifier

Scene classification performance is somewhat impacted by the influence of feature
extraction. Stronger feature representation may be attained with deeper CNN structures;
however, these structures also come with issues, including gradient disappearance, pa-
rameter redundancy and challenging training [38]. We built a residual dense attention
block (RDAB) for feature extraction to solve this problem and transformed it into an in-
stance feature vector. The complete structure of the block is shown in Figure 4. It consists
of a dense connection layer, an attention-based adaptive downsampling layer and local
residual connection.
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Figure 4. Structure of RDAB. The RDAB module consists of a dense connection block, a skip
connection and an adaptive downsampling layer.

(1) Dense Connection Layer
It is known that deep neural networks can be optimized with dense connections for

more efficient feature extraction [39]. When training deep neural networks, a large number
of trainable parameters are often required, but the small data size of remote-sensing-image
datasets makes it difficult to train the networks effectively. The densely connected structure
provides feature reuse, which to some extent mitigates the remote sensing datasets’ limited
sample learning difficulty and boosts training effectiveness. The output feature maps from
each layer during feature extraction can be used as inputs for all succeeding layers. We set
the number of densely connected layers in the three RDABs to four for multi-level feature
representation, which makes the network structure more organized. The dense connection
layers consist of 1× 1 and 3× 3 convolution operations; let Rd−1 be the input of the d-th
RDAB, and Rd,n stands for the output of the n-th dense connection layer in the d-th RDAB.
The whole process of dense connection can be expressed as:

Rd,n = H([Rd−1, Rd,1, . . . , Rd,n−1]) (2)

where H denotes the convolution; BN, ReLU three consecutive composite functions;
[Bk−1, Bk,1, . . . , Bk,d−1] denotes the successive operations of the feature map generated
by the d− 1th RDAB. The output feature map channel of Rd,n is N0 + N × (n− 1), where
N0 is the input feature map channel of Rd−1, and N is the growth rate of each dense
connection layer.

(2) Attention-Based Adaptive Downsampling
The final output number of feature channels, after the features have passed through

numerous tightly coupled layers, is the total of the earlier channels. To ease the network
training burden and improve the features while drawing attention to the weights of impor-
tant regions, we created an attention-based control unit called the adaptive downsampler.
The original control unit (CU) consists of 1× 1 convolution and average pooling [39]. We
placed a coordinate attention (CA) at the front end to highlight key discriminative features
while reducing the number of feature channels and improving the efficiency of sampling.
CA is a light and high-efficiency attention mechanism that embeds location information
into the channel [40]. Compared with the original channel attention mechanism, CA al-
lows lightweight CNNs to acquire critical information at a larger scale. Referring to the
experimental procedure of CA, this mechanism is introduced into the constructed residual
densely connected module in this paper. CA generates attention weights by encoding
channel information in horizontal and vertical coordinates, which are then aggregated. The
complete structure is shown in Figure 5, which contains two parts: coordinate information
embedding (CIE) and coordinate attention generation (CAG).

CIE: Encoding using the global pooling makes it difficult to retain location informa-
tion [41]. Therefore, the global average pooling is first decomposed into a bi-directional
average set of channels, and the association between long distances is obtained by location
information. The outputs of the c-th channel with height h and width w are expressed,
respectively, as:
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zh
c (h) =

1
W ∑

0≤i≤W
fc(h, i) (3)

zw
c (w) =

1
H ∑

0≤j≤H
fc(j, w) (4)

where W and H denote the width and height of the feature map F, and fc represents the
pixel value of c-th channel in the feature map. This operation compresses all pixels of
each channel into a single feature vector that gets long dependencies along both directions,
helping the network to better capture important information.

CAG: The features obtained in both directions are concatenated and then channel
compressed by a shared 1 × 1 convolutional layer:

z = δ
(

Conv1×1

([
zh, zw

]))
(5)

where [.., ..] represents the concatenation operation for manipulating the spatial dimension,
and δ represents the non-linear and BatchNorm, which encode spatial information in both
horizontal and vertical directions. The resulting tensor is then split into its component
pieces, zh and zw, and its dimensionality is changed using convolution operation, yielding

Zh = σ
(

Convh

(
zh
))

(6)

Zw = σ(Convw(zw)) (7)

where Convh and Convw represent two 1 × 1 convolutional operations that convert zh and
zw into a tensor with the same number of channels as the input features. σ is the sigmoid
activation function. The outputs Zh and Zw are re-weighted and fused as attention weights
with the original input features to get F

′
, which can be represented as:

F
′
c(i, j) = fc(i, j)× Zh

c (i)× Zw
c (j) (8)

where fc(i, j) denotes the c-th channel of the input feature map. In the H and W directions,
Zh

c (i) and Zw
c (j) are the attention weights for the i-th and j-th positions. The output flow of

the whole adaptive downsample can be expressed as:

Rd, ads = W([Rd−1, Rk,1, . . . , Rd,n−1, . . . , Rd,n]) (9)

where Rd, ads is the output of adaptive downsample, and W is the operation of CA and CU.

Feature after 

Coordinate Attention 

𝑭′

Input feature 

Concatenate Conv2d BN+ReLU

Split

Conv2d

Conv2d

Sigmoid

Sigmoid

F

H AvgPool

W AvgPool

Coordinate information embedding

（CIE）
Coordinate attention generation

（CAG）

H AvgPool : average pooling in the vertical direction

W AvgPool : average pooling in the horizontal direction 

Concatenate : link the horizontal and the vertical  tensor together

: sigmoid activation function 

Conv2d ：convolution operation 

Split : split the input of the previous layer into two separate tensors

BN+ReLU : batch normalization and activation function : multiplication operation 

Figure 5. The architecture of the coordinate attention (CA). It contains two parts, coordinate informa-
tion embedding (CIE) and coordinate attention generation (CAG).

(3) Local Residual Connection
To further ensure that the feature information transmitted by RDAB is not lost and to

improve the efficiency and use of the transferred features, driven by the idea of RDN [42],
a local residual connection is added between the RDAB input and output. This skip
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connection technique can address the issue of gradient disappearance in deep networks
and achieve the fusion of local features of densely connected blocks, which to some extent
increases the variety of features. The 1× 1 convolution is utilized for the local residual
connection in order to preserve the consistency of the RDAB input and output dimensions,
and the output Rd of the d-th RDAB can be written as follows:

Rd = Rd−1 + Rd, ads (10)

The output of RDAB can connect with all preceding layers and directly access the
original input features, which not only increases feature reuse but also creates implicit
deep supervision.

(4) Instance-level Classifier
For remote-sensing scene-image classification tasks, when MIL is introduced, an

instance-level classifier needs to be built to sample the local image patches [43]. Specifi-
cally, in MILRDA, the image is obtained as a multi-channel feature map after a series of
convolutional-feature-extraction operations. Each position on the feature map corresponds
to a local feature vector. The feature maps are fed into a 1× 1 convolution layer consis-
tent with the number of scenes needed to build an instance-level classifier. Additionally,
bag-level semantic labels can be given to the local instances in each feature map.

2.2. MIL Pooling Based on Channel Attention

The MIL pooling converts the instance feature vector to a label at the bag level. The
remote-sensed scene images contain many occurrences unrelated to the bag level labels
and are available in various sizes. In other words, the instances in the feature map can
cover one or more categories (channels). Therefore, there is nonlinear dependence between
the different channels. To solve this problem, we constructed MIL pooling based on
channel attention [41] that combines CNN and MIL to suppress irrelevant instances while
highlighting important regions. The module structure is shown in Figure 6.

A
vg

P
o

o
l

FC

R
e

LU FC

Si
gm

io
d

Channel Attention Module

Instance-level Classifer

u
Z

P

Figure 6. Structure of MIL pooling based on channel attention.

The MIL pooling based on channel attention first initializes channel weights by global
average pooling of u:

Zc =
1

k1 × k2

k1×k2

∑
i=1

uc,i (11)

Then , the nonlinearity between different channels is captured by two fully connected
layers:

Sc = σ
(

Fc(2)δ
(

Fc(1)Z
))

(12)
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where σ is the sigmod function and delta is the ReLU function to limit the range of instance
weights. There is a skip connection between the output of the input and the sigmoid layer.
The final outputs, feature maps u,

c, are obtained by channelwise multiplication:

u′c = Zc · uc + uc (13)

After obtaining the instance weights, the class-score vector Pc at the bag level is calcu-
lated by weighted average. Each channel of P represents an image class. The probability of
the input image belonging to class c is Pc.

Pc =
exp(uc′)

∑
p
i=1 exp(ui′)

(14)

2.3. Bag-Level Classification

The softmax classifier receives the output bag-level scores and converts them into
conditional probabilities for each class. Then, we calculate the loss between the bag level
probability Pc and the true label Yc by the cross-entropy loss function:

Loss = −
p

∑
c=1

Yc log Pc (15)

Here, the loss between the bag-level prediction and the true label is obtained by direct
minimization of the global optimization [43].

3. Experiment and Results

We experimented with the proposed method on four challenging datasets and compare
it with some state-of-the-art methods. The experimental results show that our proposed
method outperforms existing CNN models and some other state-of-the-art methods.

3.1. Datasets Description

We used four publicly available datasets: UC Merced Land Use Dataset(UCM) [44],
SIRI-WHU [45], AID [24] and NWPU-RESISC45 Dataset (NWPU) [46]. Table 1 shows the
basic information on these datasets, including the number of classes, the images per class,
the total number of images, the spatial resolution and the image size.

Table 1. Information on the four datasets.

Datasets No.of Classes Image Per
Class No. of Images

Spatial
Resolution
(in meters)

Image Size Training Ratio
Setting

UCM 21 100 2100 0.3 256 × 256 50%, 80%
SIRI-WHU 12 200 2400 2 200 × 200 50%, 80%

AID 30 220–400 10,000 0.5–8 600 × 600 20%, 50%
NWPU 45 700 31,500 0.2–30 256 × 256 10%, 20%

3.1.1. UCM Dataset

The UCM dataset was manually extracted from large images of urban areas in the
USGS National Map Urban Area Imagery collection for use in various urban areas across
the country. The dataset contains 21 categories. There are 100 images per category. The
spatial resolution is 0.3 m, and the image size is 256 × 256. The small size of this dataset
and the fact that there are many categories make it quite challenging. Figure 7 shows the
categories included in this dataset.
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agriculture airplane baseball
diamond

beach buildings chaparral dense
residential

forest freeway golf course harbor intersection medium
residential

mobile
homepark

overpass parking lot river runway sparse
residential 

storage
tanks

tennis
court

Figure 7. Examples of different categories in the UCM dataset.

3.1.2. SIRI-WHU Dataset

The SIRI-WHU dataset is from Google Earth and contains mainly different urban areas
in China. The dataset contains 12 categories of images; there are 200 images per category.
The image size is 200 × 200, and the spatial resolution is 2 m. Although the number of
categories is small, the SIRI-WHU dataset contains a large number of similar images, and
the sample size is small, so it is challenging. Some examples are shown in Figure 8.

agriculture commercial harbor idle_land industrial meadow

overpass park pond residential river water

Figure 8. Examples of different categories in the SIRI-WHU dataset.

3.1.3. AID Dataset

Compared with the UCM dataset, the AID dataset contains more categories and
images, and the spatial resolution is variable. Therefore, it presents greater classification
difficulties. The dataset contains 30 categories and 220 to 400 images per category. Spatial
resolutions range from 0.5 to 8 m, and the image size is 600 × 600. Some scene images are
shown in Figure 9.
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viaduct

airport bareland baseballfield beach bridge center

church commercial dense 
residential

desert farmland

meadowindustrial

forest

medium 
residential mountain park parking

playground pond port railway
station

resort river

school sparse 
residential

square stadium storage 
tanks

Figure 9. Examples of different categories in the AID dataset.

3.1.4. NWPU Dataset

The NWPU dataset is the most challenging. It contains more than 100 areas around
the world, and images from satellite photography, aerial photography and Geographic
Information Systems (GIS). Additionally, it was collected from different angles, in different
lighting conditions and at different times of day and seasons, so the similarity between
different categories is very high. The dataset has a size of 256 × 256 per image and
45 categories of scene images. There are 700 images per category, and a total of 31,500
images. It has large spatial resolution variation: 0.2–30 m. Some examples are shown in
Figure 10.

3.2. Experimental Settings

To accurately evaluate the performance of the proposed method against those of other
experimental methods [1,24,47–49], we selected training-to-test set ratios that are equal to
those used in the majority of prior research. For the UCM and SIRI-WHU datasets, the
training ratios were set to 50% and 80% (50% or 80% of the randomly selected images from
the dataset were used for training, and the remaining images were used for testing.); for
the AID dataset, 20% and 50%; and for the NWPU dataset, 10% and 20%. To obtain real
and reliable experimental results, we randomly divided the four datasets according to the
training ratios and repeated the experiment ten times. The mean and standard deviation
were calculated as the final results of the MILRDA network.
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Figure 10. Examples of different categories in the NWPU dataset.

The input size for all images was set to 224× 224 pixels. The Adam optimizer was
used to optimize the parameters, and its initial learning rate was set to 0.001. Training
was carried out until the network converged; if the training loss did not decrease for
ten consecutive epochs, the learning rate was divided by 10. Each of our methods was
implemented in this study using the TensorFlow and Keras framework. All of the solutions
were evaluated using a workstation equipped with a GeForce TiTan V GPU, 64 GB of
memory and a Xeon(R) Gold 5222 CPU.

3.3. Results and Comparison
3.3.1. Experiments on the UCM Dataset

Table 2 shows the results of the proposed method and some state-of-the-art meth-
ods on the UCM dataset. Previous studies [24,46] have shown that deep learning-based
methods are far superior to traditional handcrafted feature-based methods, so we do not
compare the proposed approach with handcrafted feature methods here. As can be ob-
served, the proposed MILRDA had the highest OAs under two training ratios, 98.19%
and 98.81%. Under both training ratios, the enhanced methods based on the traditional
VGGNet, AlexNet and GoogLeNet networks, such as TEX-Net with VGG [47], D-CNN
with AlexNet [23] and DSFATN [48], perform bettered than the original methods. Some
methods redesigned for remote-sensing scene images, such as ADFF [50], LSENet [22] and
CIPAL [20], performed better. However, they still were 0.97%, 0.25% and 6.59% worse than
our proposed MILRDA method, respectively. The numbers of parameters for DC-Net [43],
although 0.16 M less than MILRDA, were 3.67% and 2.6% lower than our method for the
two training ratios, respectively. since the UCM dataset is a small dataset with only 2100
images in total, the performance improvement from this small increase in parameters is
within a reasonable range. Although Inception-v3-CapsNet [49] achieved 0.24% higher
accuracy than our proposed method at high training ratios, it had 21.34M more parameters
than our method. However, our method was still 0.6% more accurate than Inception-v3-
CapsNet [49] at lower training ratios. This is because the residuals and dense connectivity
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included in our method improve the feature extraction rate to some extent. In addition,
for CNN-based methods, the results are better when the training ratio is high, because the
network can learn more features. Figure 11 shows the CM on the UCM dataset. Of the
21 categories, all achieved accuracy of 95% or higher; 16 of them achieved 100% accuracy.

Table 2. Performance comparison on the UCM dataset(—-: not reported).

Methods OA(50/50)(%) OA(80/20)(%) Number of Parameters

AlexNet [24] 93.98 ± 0.67 95.02 ± 0.81 60 M
VGGNet-16 [24] 94.14 ± 0.69 95.21 ± 1.20 130 M
GoogLeNet [24] 92.70 ± 0.60 94.31 ± 0.89 7 M

TEX-Net with VGG [47] 94.22 ± 0.50 95.31 ± 0.69 130 M
D-CNN with
AlexNet [23] —- 96.67 ± 0.10 60 M

CCP-net [51] —- 97.52 ± 0.97 130 M
ADFF [50] 97.22 ± 0.45 98.81 ± 0.51 23 M

DSFATN [48] —- 98.25 143 M
Inception-v3-
CapsNet [49] 97.59 ± 0.16 99.05 ± 0.24 22 M

WSPM-CRC [52] —- 97.95 23 M
SAFF with AlexNet [28] —- 96.13 ± 0.97 60 M

DFAGCN [53] —- 98.48 ± 0.42 130 M
Fine-tune

MobileNetV2 [54] 97.88 ± 0.31 98.13 ± 0.33 3.5 M

DC-Net [43] 94.52 ± 0.63 96.21 ± 0.67 0.5 M
GBNet [29] 97.05 ± 0.19 98.57 ± 0.48 18 M
LSENet [22] 97.94 ± 0.35 98.69 ± 0.53 130 M
RSNet [55] —- 96.78 ± 0.60 1.22 M
CIPAL [20] 91.96 ± 0.91 96.58 ± 0.76 1.53 M

ORRCNN [56] 96.58 96.42 —-
MILRDA (ours) 98.19 ± 0.54 98.81 ± 0.12 0.66 M
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Figure 11. CM of the UCM dataset for an 80% training ratio (only displays results greater than 0.01).
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Figure 12. CM of the SIRI-WHU dataset for a 80% training ratio (only displays results greater
than 0.01).

3.3.2. Experiments on the SIRI-WHU Dataset

Table 3 shows the results of the proposed method and some state-of-the-art methods
on the SIRI-WHU dataset. The proposed method outperformed the other methods at all
training ratios. With two training ratios of 50% and 80%, MILRDA achieved accuracies of
97.16 and 98.54. Compared to some large-scale methods, such as Siamese AlexNet [25],
Siamese VGG16 and Siamese ResNet50, it was superior by 13.91%, 2.66% and 1.41%.
Compared with the lightweight method SE-MDPMNet [54], our method was only 0.02%
less accurate at the large training ratio but 0.2% more accurate at the small training ratio.
In addition, ours had 4.51M fewer parameters than SE-MDPMNet [54]. Since MILRDA
constructs a feature extraction backbone based on RDAB, which can perform feature reuse
well, while suppressing redundant backgrounds and increasing key object weights through
attention-based MIL pooling, our method is more effective on small sample datasets.
Figure 12 shows the CM on the SIRI-WHU dataset. It can be seen that all categories
achieved accuracy of 95% or more; six categories reached 100%.

Table 3. Performance comparison on the SIRI-WHU dataset (—-: not reported).

Methods OA(50/50)(%) OA(80/20)(%) Number of Parameters

AlexNet [25] 82.50 88.33 60 M
VGGNet-16 [25] 94.92 96.25 130M
ResNet-50 [25] 94.67 95.63 26M

DMTM [45] 91.52 —- —-
Siamese AlexNet [25] 83.25 88.96 60M
Siamese VGG16 [25] 94.50 97.30 130 M

Siamese ResNet50 [25] 95.75 97.50 26 M
Fine-tune

MobileNetV2 [54] 95.77 ± 0.16 96.21 ± 0.31 3.5M

SE-MDPMNet [54] 96.96 ± 0.19 98.77 ± 0.19 5.17M
LPCNN [57] —- 89.88 —-
SICNN [58] —- 93.00 —-

Pre-trained-AlexNet-
SPP-SS [26] —- 95.07 ± 1.09 —-

SRSCNN [59] 93.44 94.76 —-
MILRDA (ours) 97.16 ± 0.37 98.75 ± 0.18 0.66M
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3.3.3. Experiments on the AID Dataset

Table 4 shows the results of the different methods on the AID dataset. Our proposed
method achieved accuracies of 91.95% and 95.46% at the two training ratios. Compared
to the first two datasets, the AID dataset is more difficult to classify, so the accuracy of
all methods was significantly lowered. Some redesigned models, such as DC-Net [43],
GBNet [29] and LCNN-BFF [60], are more accurate than some improved methods based on
pre-trained models, such as TEX-Net with VGG [47] and VGG16+MSCP [61], but these were
still 5.58%, 1.74% and 0.82% less accurate than our proposed MILRDA. The light-weight
models MIDC-Net [43] and RANet [62], although they had less parameters than MILRDA,
had lower accuracy by 3.44% and 3.83%. Our proposed MILRDA method achieved a good
balance between the number of parameters and accuracy. Figure 13 shows the CM of the
AID dataset at a 50% training ratio. Of the 30 categories, for 13, category accuracy of 95% or
higher was achieved; for 28, 90% or higher was achieved; and for 4 of them, 100% accuracy
was achieved. Several categories with similar structures and landforms, such as schools
and commercial buildings, towns centers and churches, are prone to mislabelling, but
accuracy of over 80% was still achieved.

Table 4. Performance comparison on the AID dataset (—-: not reported).

Methods OA(20/80)(%) OA(50/50)(%) Number of Parameters

AlexNet [24] 86.86 ± 0.47 89.53 ± 0.31 60 M
VGGNet-16 [24] 86.59 ± 0.29 89.64 ± 0.36 130 M
GoogLeNet [24] 83.44 ± 0.40 86.39 ± 0.55 7 M

TEX-Net with VGG [47] 87.32 ± 0.37 90.00 ± 0.33 130 M
D-CNN with
AlexNet [23] 85.62 ± 0.10 94.47 ± 0.12 60 M

Fusion by addition [63] —- 91.87 ± 0.36 —-
WSPM-CRC [52] —- 95.11 23 M

DFAGCN [53] —- 94.88 ± 0.22 130 M
SAFF with AlexNet [28] 87.51 ± 0.36 91.83 ± 0.27 60 M

VGG16+MSCP [61] 91.52 ± 0.21 94.42 ± 0.17 130 M
AlexNet+MSCP [61] 88.99 ± 0.38 92.36 ± 0.21 60 M

GBNet [29] 90.16 ± 0.24 93.72 ± 0.34 18 M
DC-Net [43] 87.37 ± 0.41 91.49 ± 0.22 0.5 M

LCNN-BFF [60] 91.66 ± 0.48 94.64 ± 0.16 6.2 M
Skip-connected

CNN [64] 91.10 ± 0.15 93.30 ± 0.13 6 M

CIPAL [20] 91.22 ± 0.83 93.45 ± 0.31 1.53 M
ORRCNN [56] 86.42 92.00

LCPP [65] 90.96 ± 0.33 93.12 ± 0.28
MILRDA (ours) 91.95 ± 0.19 95.46 ± 0.26 0.66 M

3.3.4. Experiments on the NWPU Dataset

Table 5 shows the results of the proposed MILRDA method compared with those of
other methods. Some transfer-learning-based methods perform better with completely new
data because knowledge from large datasets (such as ImageNet) is fully learned during
pre-training. The MILRDA method achieved accuracies of 91.56% and 92.87% at the two
training ratios, respectively. Some lightweight networks, such as SCCov [64], LCNN-
BFF [60] and Contourlet CNN [66], also achieved good accuracy, but still 2.26%, 5.03% and
5.63% lower accuracy than our proposed method. In addition, the MILRDA method had
the highest accuracy but the smallest number of parameters among all listed methods. Since
the instance feature classifier in MILRDA contains a residual dense-connectivity structure
for maximum feature reuse, CA helps to extract key local features, and MIL pooling
based on channel attention helps to suppress background information (other categories)
and highlight the weights of important instances under bag label supervision. Figure 14
shows the CM of the NWPU dataset at the 20% training ratio. Of the 45 categories, an
accuracy rate of 90% or higher was achieved for 32; for five of them, 100% accuracy was
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reached. Two scene categories, circular farmland and rectangular farmland, are prone to
mislabelling because they contain similar objects, and the categories river and terrace are
prone to classification errors due to similar scene topographic features, but still resulted in
75% accuracy.
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Figure 13. CM of the AID dataset for a 50% training ratio (only displays results greater than 0.01).

Table 5. Performance comparison on the NWPU dataset (—-: not reported).

Methods OA(10/90)(%) OA(20/80)(%) Number of Parameters

AlexNet [46] 76.69 ± 0.21 79.85 ± 0.13 60M
VGGNet-16 [46] 76.47 ± 0.18 79.79 ± 0.15 130M
GoogLeNet [46] 76.19 ± 0.38 78.48 ± 0.26 7M

Fine-tuned VGG16 [46] 87.15 ± 0.45 90.36 ± 0.18 130M
Fine-tuned AlexNet [46] 81.22 ± 0.19 85.16 ± 0.18 60M

Fine-tuned
GoogLeNet [46] 82.57 ± 0.12 86.02 ± 0.18 7M

DFAGCN [53] —- 89.29 ± 0.28 130M
TFADNN [67] 87.78 ± 0.11 90.86 ± 0.24 130M

SAFF with AlexNet [28] 80.05 ± 0.29 84.00 ± 0.17 60M
Contourlet CNN [66] 85.93 ± 0.51 89.57 ± 0.45 12.6M

Inception-v3-
CapsNet [49] 89.03 ± 0.21 92.60 ± 0.11 22M

SCCov [64] 89.30 ± 0.35 92.10 ± 0.25 13M
MF2Net [68] 90.17 ± 0.25 92.73 ± 0.21 —-

LCNN-BFF [60] 86.53 ± 0.15 91.73 ± 0.17 6.2M
ACNet [27] 91.09 ± 0.13 92.42 ± 0.16 130M

ACR-MLFF [69] 90.01 ± 0.33 92.45 ± 0.20 26M
AMB-CNN [70] 88.99 ± 0.14 92.42 ± 0.14 5.6M
MILRDA (ours) 91.56 ± 0.18 92.87 ± 0.26 0.66M
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Figure 14. CM of the NWPU dataset for a 20% training ratio (only displays results greater than 0.01).

3.3.5. Prediction Time

Table 6 shows the prediction time for a single image from each of two datasets. Since
the prediction time is closely related to the configuration of the computer, all experiments
were performed on the same equipment. The prediction time of MILRDA was significantly
shorter than those of the four baseline models that are widely used for remote-sensing
scene-image classification. Additionally, these results show that reducing the parameters of
the model is positively associated with improving the time efficiency. It is worth noting that
the prediction time did not increase significantly when the size of the dataset became larger,
indicating that our method can be applied to datasets with larger numbers of images.

Table 6. Prediction times of different methods on two datasets (in milliseconds).

Methods AID (20%) NWPU (10%)

AlexNet [46] 8.91 9.84
GoogLeNet [46] 5.33 6.17
VGGNet-16 [46] 12.56 13.11
ResNet-50 [25] 6.18 7.33
MILRDA (ours) 2.81 3.07

3.3.6. Model Size

Table 7 shows how the MILRDA method compares with other commonly used existing
CNNs and some lightweight methods in terms of parameters and complexity. We use
floating-point operations (FLOPs) to indicate model complexity, and in general, smaller
values indicate lighter models. As can be seen in the table, our proposed method has far
fewer parameters than some commonly used deep CNNs, such as AlexNet, GoogleNet,
ResNet-50 and VGGNet-16. MILRDA’s parameters total only 0.66 M, which is 60.24 M less
than the deep CNN model AlexNet, but the FLOPs are slightly more numerous—about
0.22 G. This is due to the fact that MILRDA contains residual and dense connection that
produce more floating-point operations, but as can be seen in Tables 4 and 5, our method is
much more accurate than AlexNet for AID and NWPU datasets. Some recently proposed
lightweight methods, SE-MDPMNet, Contourlet CNN and LCNN-BFF, still have far more
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parameters and FLOPs than our proposed methods. In other words, the MILRDA method
achieves a balance in terms of accuracy and model size.

Table 7. Comparing the size and complexity of different models.

Methods Parameters (In
Million)

Model size (In
MByte)

Computational
Complexity (In

GFlops)

AlexNet [46] 60.9 232.7 0.72
GoogLeNet [46] 6.8 25.9 2.1
VGGNet-16 [46] 136 527.6 15.5
ResNet-50 [25] 26 87.2 2.91

SE-MDPMNet [54] 5.17 19.72 3.27
Contourlet CNN [66] 12.6 48 15.5

LCNN-BFF [60] 6.1 23.3 24.6
MILRDA (ours) 0.66 2.51 0.94

4. Discussion

The performance of our proposed MILRDA method is influenced by the number of
building blocks in the RDAB. Due to space limitations, only the OA of M in UCM with a
50% training ratio and that of NWPU with a 10% training ratio are reported here, for when
RDAB equals 1, 2, 3 and 4. Figure 15 shows the relevant results. The classification accuracy
peaked when the number of RDAB modules is 3. With four RDAB modules, the number
of convolutional layers increased, the classification accuracy decreased and overfitting
occurred. When the number of RDAB modules was four, the classification accuracy could
still compete with those of some of the other methods in Tables 2 and 5. This proves the
effectiveness of the MILRDA method in feature extraction, and may also be related to the
MIL pooling based on channel attention, which after all, highlights key local features.
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Figure 15. Effect of the number of RDAB modules on the classification accuracies in UCM and
NWPU datasets.

To verify the effectiveness of MIL pooling based on channel attention, Figure 16 shows
the different results on two datasets. RDANet indicates that MIL pooling is not included
(the features extracted by the convolutional layer are fed directly into the final classification
layer), and RDNet indicates that the CA mechanism is not included in the convolutional
feature extraction backbone. Even without using any MIL pooling operation, our RDANet
still achieved good results with higher classification accuracy than all existing deep CNN
models, and still had some advantages over other methods (seen in Tables 2 and 5). This
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was due to the fact that the features are maximally reused under the effect of residuals
and dense connectivity, which improves the diversity of features while highlighting the
weights of key regions within the CA mechanism. Note that even without including
the CA mechanism, RDNet still achieved good results, proving the effectiveness of the
model. Remote-sensing scene images contain a large amount of redundant background
information; the MIL pool based on channel concerns can not only alleviate this problem,
but also highlight the weights of key instances, and to a certain extent solve the research
difficulties of small inter-class differences and large intra-class differences in remote-sensing
scene images; in addition, the pooling is trainable, and the MILRDA model as a whole can
be trained under the supervision of bag-level semantic labels.
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Figure 16. Effects of different structures on experimental effects.

For the sake of observation, Figure 17 shows the feature maps of some categories. With
the effect of MIL pooling based on channel attention, useless background information or
other categories not related to bag-level labeling were suppressed. For example, for the
category "tennis court," the image contains multiple objects, such as trees, residential areas
and roads. With MIL pooling, regions associated with true bag-level semantic labels were
highlighted, and other instances were given reduced weights, showing the effectiveness
of this pooling operation. Even in the absence of MIL pooling, our proposed method
still produced good feature extraction results. This is because the CA mechanism in the
feature extraction backbone can help represent the key local features while expanding the
corresponding regions. However, this would include some useless background regions,
further demonstrating the effectiveness of MIL pooling for suppressing the weights of
irrelevant objects.
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Figure 17. Visualization of feature maps of example vectors before and after MIL pooling.

5. Conclusions

In this paper, we proposed a lightweight model called MILRDA for remote-sensing
scene-image classification, providing an end-to-end MIL framework with strong local
semantic representation. In this framework, dense connections and residual connections
are first used as the feature extraction backbone, and then an adaptive downsampling
layer is formed with the control unit through a CA mechanism to highlight local features
while focusing on large regions. The features extracted through the backbone network
are then transformed into instance feature vectors, which are further eliminated from
redundant background information while highlighting the weights of important instances
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through a trainable MIL pooling layer based on channel attention. Finally, optimization
and classification are performed by a cross-entropy loss function under the supervision of
bag-level labels. We validated the method on four publicly available remote sensing scene
datasets, and our experiments showed that our proposed method MILRDA outperforms
other state-of-the-art methods. The numbers of parameters and FLOPs are much smaller in
MILRDA than in existing CNNs and some lightweight methods, proving the effectiveness
of the method. For future work, we will further feature framework compatibility, improve
the extraction capability of the sign extraction backbone for multi-layer features and further
improve performance.

Author Contributions: Conceptualization, X.W. (Xinyu Wang) and H.X.; methodology, X.W. (Xinyu
Wang); software, L.Y.; validation, H.X. and W.D.; formal analysis, X.W. (Xinyu Wang); investigation,
L.Y.; resources, D.W.; data curation, X.W. (Xinyu Wang); writing—original draft preparation, X.W.
(Xinyu Wang); writing—review and editing, X.W. (Xianbin Wen); visualization, L.Y.; supervision,
X.W. (Xianbin Wen); project administration, X.W. (Xianbin Wen); funding acquisition, X.W. (Xianbin
Wen) All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the New-Generation AI Major Scientific and Tech-
nological Special Project of Tianjin (18ZXZNGX00150), and in part by the Special Foundation for
Technology Innovation of Tianjin (21YDTPJC00250).

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The UC Merced Land Use Dataset (UCM), SIRI-WHU, AID and
NWPU-RESISC45 (NWPU) datasets presented in this work are openly available.

Acknowledgments: The authors would like to thank the anonymous reviewers for their very compe-
tent comments and helpful suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, X.; Yuan, L.; Xu, H.; Wen, X. CSDS: End-to-end aerial scenes classification with depthwise separable convolution and an

attention mechanism. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10484–10499.
2. Cheng, G.; Xie, X.; Han, J.; Guo, L.; Xia, G.S. Remote sensing image scene classification meets deep learning: Challenges, methods,

benchmarks, and opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3735–3756.
3. Zhang, L.; Han, Y.; Yang, Y.; Song, M.; Yan, S.; Tian, Q. Discovering discriminative graphlets for aerial image categories recognition.

IEEE Trans. Image Process. 2013, 22, 5071–5084.
4. Longbotham, N.; Chaapel, C.; Bleiler, L.; Padwick, C.; Emery, W.J.; Pacifici, F. Very high resolution multiangle urban classification

analysis. IEEE Trans. Geosci. Remote Sens. 2011, 50, 1155–1170.
5. Tayyebi, A.; Pijanowski, B.C.; Tayyebi, A.H. An urban growth boundary model using neural networks, GIS and radial

parameterization: An application to Tehran, Iran. Landsc. Urban Plan. 2011, 100, 35–44.
6. Chen, W.; Li, X.; He, H.; Wang, L. Assessing different feature sets’ effects on land cover classification in complex surface-mined

landscapes by ZiYuan-3 satellite imagery. Remote Sens. 2017, 10, 23.
7. Li, X.; Shao, G. Object-based urban vegetation mapping with high-resolution aerial photography as a single data source. Int. J.

Remote Sens. 2013, 34, 771–789.
8. Ahmed, Z.; Hussain, A.J.; Khan, W.; Baker, T.; Al-Askar, H.; Lunn, J.; Al-Shabandar, R.; Al-Jumeily, D.; Liatsis, P. Lossy and

lossless video frame compression: A novel approach for high-temporal video data analytics. Remote Sens. 2020, 12, 1004.
9. Kleanthous, N.; Hussain, A.; Khan, W.; Sneddon, J.; Liatsis, P. Deep transfer learning in sheep activity recognition using

accelerometer data. Expert Syst. Appl. 2022, 207, 117925.
10. Hu, J.; Xia, G.S.; Hu, F.; Sun, H.; Zhang, L. A comparative study of sampling analysis in scene classification of high-resolution

remote sensing imagery. In Proceedings of the 2015 IEEE International geoscience and remote sensing symposium (IGARSS),
Milan, Italy, 26–31 July 2015; pp. 2389–2392.

11. Swain, M.J.; Ballard, D.H. Color indexing. Int. J. Comput. Vis. 1991, 7, 11–32.
12. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1,
pp. 886–893.

13. Oliva, A.; Torralba, A. Modeling the shape of the scene: A holistic representation of the spatial envelope. Int. J. Comput. Vis. 2001,
42, 145–175.



Remote Sens. 2022, 14, 5095 22 of 23

14. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification with local binary
patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987.

15. Zhu, Q.; Zhong, Y.; Zhao, B.; Xia, G.S.; Zhang, L. Bag-of-visual-words scene classifier with local and global features for high
spatial resolution remote sensing imagery. IEEE Geosci. Remote Sens. Lett. 2016, 13, 747–751.

16. Hofmann, T. Unsupervised learning by probabilistic latent semantic analysis. Mach. Learn. 2001, 42, 177–196.
17. Blei, D.; Ng, A.; Jordan, M. Latent dirichlet allocation. In Proceedings of the 2001 Neural Information Processing Systems (NIPS)

Conference, Vancouver, BC, Canada, 3–8 December 2001.
18. Hu, F.; Xia, G.S.; Hu, J.; Zhang, L. Transferring deep convolutional neural networks for the scene classification of high-resolution

remote sensing imagery. Remote Sens. 2015, 7, 14680–14707.
19. Penatti, O.A.; Nogueira, K.; Dos Santos, J.A. Do deep features generalize from everyday objects to remote sensing and aerial

scenes domains? In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston, MA,
USA, 7–12 June 2015; pp. 44–51.

20. Chen, J.; Huang, H.; Peng, J.; Zhu, J.; Chen, L.; Tao, C.; Li, H. Contextual information-preserved architecture learning for
remote-sensing scene classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–14.

21. Tang, X.; Lin, W.; Ma, J.; Zhang, X.; Liu, F.; Jiao, L. Class-Level Prototype Guided Multiscale Feature Learning for Remote Sensing
Scene Classification With Limited Labels. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15.

22. Bi, Q.; Qin, K.; Zhang, H.; Xia, G.S. Local semantic enhanced convnet for aerial scene recognition. IEEE Trans. Image Process. 2021,
30, 6498–6511.

23. Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When deep learning meets metric learning: Remote sensing image scene classification
via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821.

24. Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of
aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981.

25. Liu, X.; Zhou, Y.; Zhao, J.; Yao, R.; Liu, B.; Zheng, Y. Siamese convolutional neural networks for remote sensing scene classification.
IEEE Geosci. Remote Sens. Lett. 2019, 16, 1200–1204.

26. Han, X.; Zhong, Y.; Cao, L.; Zhang, L. Pre-trained alexnet architecture with pyramid pooling and supervision for high spatial
resolution remote sensing image scene classification. Remote Sens. 2017, 9, 848.

27. Tang, X.; Ma, Q.; Zhang, X.; Liu, F.; Ma, J.; Jiao, L. Attention consistent network for remote sensing scene classification. IEEE J. Sel.
Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2030–2045.

28. Cao, R.; Fang, L.; Lu, T.; He, N. Self-attention-based deep feature fusion for remote sensing scene classification. IEEE Geosci.
Remote Sens. Lett. 2020, 18, 43–47.

29. Sun, H.; Li, S.; Zheng, X.; Lu, X. Remote sensing scene classification by gated bidirectional network. IEEE Trans. Geosci. Remote
Sens. 2019, 58, 82–96.

30. Tang, P.; Wang, X.; Feng, B.; Liu, W. Learning multi-instance deep discriminative patterns for image classification. IEEE Trans.
Image Process. 2016, 26, 3385–3396.

31. Dietterich, T.G.; Lathrop, R.H.; Lozano-Pérez, T. Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell.
1997, 89, 31–71.

32. Wang, X.; Wang, B.; Bai, X.; Liu, W.; Tu, Z. Max-margin multiple-instance dictionary learning. In Proceedings of the International
Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 846–854.

33. Wang, Q.; Yuan, Y.; Yan, P.; Li, X. Saliency detection by multiple-instance learning. IEEE Trans. Cybern. 2013, 43, 660–672.
34. Wang, C.; Huang, K.; Ren, W.; Zhang, J.; Maybank, S. Large-scale weakly supervised object localization via latent category

learning. IEEE Trans. Image Process. 2015, 24, 1371–1385.
35. Bi, Q.; Zhou, B.; Qin, K.; Ye, Q.; Xia, G.S. All Grains, One Scheme (AGOS): Learning Multi-grain Instance Representation for

Aerial Scene Classification. arXiv 2022, arXiv:2205.03371.
36. Wang, X.; Yan, Y.; Tang, P.; Bai, X.; Liu, W. Revisiting multiple instance neural networks. Pattern Recognit. 2018, 74, 15–24.
37. Pinheiro, P.O.; Collobert, R. From image-level to pixel-level labeling with convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1713–1721.
38. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
39. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
40. Hou, Q.; Zhou, D.; Feng, J. Coordinate attention for efficient mobile network design. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 13713–13722.
41. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
42. Zhang, Y.; Tian, Y.; Kong, Y.; Zhong, B.; Fu, Y. Residual dense network for image super-resolution. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 2472–2481.
43. Bi, Q.; Qin, K.; Li, Z.; Zhang, H.; Xu, K.; Xia, G.S. A multiple-instance densely-connected ConvNet for aerial scene classification.

IEEE Trans. Image Process. 2020, 29, 4911–4926.



Remote Sens. 2022, 14, 5095 23 of 23

44. Yang, Y.; Newsam, S. Bag-of-visual-words and spatial extensions for land-use classification. In Proceedings of the 18th
SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, USA, 2–5 November 2010;
pp. 270–279.

45. Zhao, B.; Zhong, Y.; Xia, G.S.; Zhang, L. Dirichlet-derived multiple topic scene classification model for high spatial resolution
remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 2015, 54, 2108–2123.

46. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017,
105, 1865–1883.

47. Anwer, R.M.; Khan, F.S.; van de Weijer, J.; Molinier, M.; Laaksonen, J. Binary patterns encoded convolutional neural networks for
texture recognition and remote sensing scene classification. ISPRS J. Photogramm. Remote Sens. 2018, 138, 74–85.

48. Gong, X.; Xie, Z.; Liu, Y.; Shi, X.; Zheng, Z. Deep salient feature based anti-noise transfer network for scene classification of
remote sensing imagery. Remote Sens. 2018, 10, 410.

49. Zhang, W.; Tang, P.; Zhao, L. Remote sensing image scene classification using CNN-CapsNet. Remote Sens. 2019, 11, 494.
50. Li, B.; Su, W.; Wu, H.; Li, R.; Zhang, W.; Qin, W.; Zhang, S. Aggregated deep fisher feature for VHR remote sensing scene

classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3508–3523.
51. Qi, K.; Guan, Q.; Yang, C.; Peng, F.; Shen, S.; Wu, H. Concentric circle pooling in deep convolutional networks for remote sensing

scene classification. Remote Sens. 2018, 10, 934.
52. Liu, B.D.; Meng, J.; Xie, W.Y.; Shao, S.; Li, Y.; Wang, Y. Weighted spatial pyramid matching collaborative representation for

remote-sensing-image scene classification. Remote Sens. 2019, 11, 518.
53. Xu, K.; Huang, H.; Deng, P.; Li, Y. Deep Feature Aggregation Framework Driven by Graph Convolutional Network for Scene

Classification in Remote Sensing. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 5751–5765.
54. Zhang, B.; Zhang, Y.; Wang, S. A lightweight and discriminative model for remote sensing scene classification with multidilation

pooling module. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 2636–2653.
55. Wang, J.; Zhong, Y.; Zheng, Z.; Ma, A.; Zhang, L. RSNet: The search for remote sensing deep neural networks in recognition tasks.

IEEE Trans. Geosci. Remote Sens. 2020, 59, 2520–2534.
56. Li, Z.; Wu, Q.; Cheng, B.; Cao, L.; Yang, H. Remote sensing image scene classification based on object relationship reasoning

CNN. IEEE Geosci. Remote Sens. Lett. 2020, 19, 1–5.
57. Zhong, Y.; Fei, F.; Zhang, L. Large patch convolutional neural networks for the scene classification of high spatial resolution

imagery. J. Appl. Remote Sens. 2016, 10, 025006.
58. Zhong, Y.; Fei, F.; Liu, Y.; Zhao, B.; Jiao, H.; Zhang, L. SatCNN: Satellite image dataset classification using agile convolutional

neural networks. Remote Sens. Lett. 2017, 8, 136–145.
59. Liu, Y.; Zhong, Y.; Fei, F.; Zhu, Q.; Qin, Q. Scene classification based on a deep random-scale stretched convolutional neural

network. Remote Sens. 2018, 10, 444.
60. Shi, C.; Wang, T.; Wang, L. Branch feature fusion convolution network for remote sensing scene classification. IEEE J. Sel. Top.

Appl. Earth Obs. Remote Sens. 2020, 13, 5194–5210.
61. He, N.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Remote sensing scene classification using multilayer stacked covariance pooling. IEEE

Trans. Geosci. Remote Sens. 2018, 56, 6899–6910.
62. Bi, Q.; Qin, K.; Zhang, H.; Li, Z.; Xu, K. RADC-Net: A residual attention based convolution network for aerial scene classification.

Neurocomputing 2020, 377, 345–359.
63. Chaib, S.; Liu, H.; Gu, Y.; Yao, H. Deep feature fusion for VHR remote sensing scene classification. IEEE Trans. Geosci. Remote

Sens. 2017, 55, 4775–4784.
64. He, N.; Fang, L.; Li, S.; Plaza, J.; Plaza, A. Skip-connected covariance network for remote sensing scene classification. IEEE Trans.

Neural Netw. Learn. Syst. 2019, 31, 1461–1474.
65. Sun, X.; Zhu, Q.; Qin, Q. A multi-level convolution pyramid semantic fusion framework for high-resolution remote sensing

image scene classification and annotation. IEEE Access 2021, 9, 18195–18208.
66. Liu, M.; Jiao, L.; Liu, X.; Li, L.; Liu, F.; Yang, S. C-CNN: Contourlet convolutional neural networks. IEEE Trans. Neural Netw.

Learn. Syst. 2020, 32, 2636–2649.
67. Xu, K.; Huang, H.; Deng, P.; Shi, G. Two-stream feature aggregation deep neural network for scene classification of remote

sensing images. Inf. Sci. 2020, 539, 250–268.
68. Xu, K.; Huang, H.; Li, Y.; Shi, G. Multilayer feature fusion network for scene classification in remote sensing. IEEE Geosci. Remote

Sens. Lett. 2020, 17, 1894–1898.
69. Wang, X.; Duan, L.; Shi, A.; Zhou, H. Multilevel feature fusion networks with adaptive channel dimensionality reduction for

remote sensing scene classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5.
70. Shi, C.; Zhao, X.; Wang, L. A multi-branch feature fusion strategy based on an attention mechanism for remote sensing image

scene classification. Remote Sens. 2021, 13, 1950.


	Introduction
	Methodology
	Instance Extraction and Classifier
	MIL Pooling Based on Channel Attention
	Bag-Level Classification

	Experiment and Results
	Datasets Description
	UCM Dataset
	SIRI-WHU Dataset
	AID Dataset
	NWPU Dataset

	Experimental Settings
	Results and Comparison
	Experiments on the UCM Dataset
	Experiments on the SIRI-WHU Dataset
	Experiments on the AID Dataset
	Experiments on the NWPU Dataset
	Prediction Time
	Model Size


	Discussion
	Conclusions
	References

