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Abstract: Soil moisture is an important parameter affecting environmental processes such as 
hydrology, ecology, and climate. Synthetic aperture radar (SAR) microwave remote sensing is an 
important means of farmland surface soil moisture (SSM) measurement. The inversion of farmland 
SSM by microwave remote sensing is greatly affected by vegetation cover. To address this problem, 
a multisource remote sensing inversion method of farmland SSM based on feature optimization and 
machine learning is proposed in this paper. Six typical machine learning algorithms suitable for 
small sample training, including random forest, radial basis function neural network, generalized 
regression neural network, support vector regression, genetic algorithm–back propagation neural 
network, and extreme learning machine, were selected in this paper. The features extracted from 
Sentinel-1/2 and Radarsat-2 remote sensing data were analyzed by Pearson correlation, and those 
with high correlation coefficients were selected to form the optimal feature subset as the input for 
the subsequent machine learning models. Then, the SSM collaborative inversion models under 
different machine learning algorithms were constructed, and comparative experiments were set up 
to select the optimal prediction model. The models’ accuracy under different feature parameters 
were studied, and the difference in the performance between the dual-polarization SAR data and 
the quad-polarization SAR data in SSM inversion was explored. The experimental results showed 
that among the six models, the random forest model had a higher inversion accuracy, with a 
coefficient of determination of 0.6395 and a root mean square error of 0.0264 cm3/cm3. Meanwhile, 
the inversion accuracy could be greatly improved after feature optimization, and the inversion 
accuracy of the quad-polarization SAR data combined with optical remote sensing data, was better 
than that of the dual-polarization SAR data combined with optical remote sensing data. 

Keywords: surface soil moisture; multisource remote sensing; feature optimization; machine 
learning 
 

1. Introduction 
Although surface soil moisture (SSM) cannot be directly extracted and utilized, it is 

closely related to human life and can impact plant growth, the meteorological 
environment, and even the ecosystem cycle [1]. On a global scale, SSM is closely related 
to the global climate. It influences the entire terrestrial water cycle, and it is a key 
parameter in scientific research in many fields such as meteorology, hydrology, and 
agriculture [2,3]. On a regional scale, SSM affects the growth of crops, and knowledge of 
the spatial and temporal distributions and dynamics of SSM can guide agricultural 
production. Therefore, achieving large-scale, higher spatial resolution and more accurate 
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SSM inversion can be of great help to crop production, hydrological research, and drought 
monitoring [4,5]. 

Traditional methods of monitoring SSM, for example, using SSM meters or ground 
observation stations, are mainly based on point measurements. The number of sampling 
points is limited, and it is difficult to accurately and efficiently monitor the SSM 
information for a large area. The advantage of using an SSM meter is that the result is 
accurate, but it requires a large amount of labor and time, which is time consuming and 
laborious [6,7]. The establishment of ground observation stations can monitor SSM in real 
time without manpower, but the cost of large-scale monitoring is high [8,9]. Remote 
sensing technology is becoming an important tool for monitoring spatial and temporal 
SSM information, with the advantage of large-scale, efficient, and dynamic monitoring in 
real-time [10]. In recent years, as many synthetic aperture radar (SAR) sensor satellites 
have been updated and put into use, an increasing number of experts and scholars have 
started to use SAR data for SSM inversion in practical applications [11,12]. The Sentinel-
1/2 satellites, the data from which are free to download and have extremely wide coverage 
areas, provide data support for SSM inversion studies [13–16]. The Radarsat-2 satellite is 
one of the most mature commercial satellites available, with quad-polarization and 
multimode imaging capabilities to meet more individual data requirements [17]. The 
surface information reflected by microwave signals varies with different polarization 
modes, frequencies, and angles. Thus, multi-polarization SAR data can reflect surface 
information more comprehensively and be more fully applied in SSM inversion. The 
backscattering coefficient of SAR is not only related to its polarization mode, incidence 
angle and SSM, but is also directly affected by vegetation and surface roughness. SSM 
retrieval needs to effectively suppress the impact of vegetation coverage and surface 
roughness [18,19]. In areas with high vegetation cover, eliminating the effects caused by 
vegetation is a top priority. A large amount of vegetation information can be extracted 
from remote sensing data. Liujun Zhu et al. [18] used remote sensing data and surface 
observation station data to retrieve SSM based on the improved change detection method, 
partially eliminating the impact of vegetation and roughness changes in the experiment. 
However, these methods require a large number of sample data from ground observation 
stations. For those areas without ground observation stations, it is difficult to obtain a 
large number of samples. From the perspective of a small sample data drive, it is still 
difficult to conduct high-precision SSM inversion studies in vegetation-covered areas and 
needs to be explored in depth. Therefore, the SSM retrieval method suitable for small 
samples from the perspective of the machine learning model and feature optimization was 
studied in this paper. 

Due to the nonlinear relationship between surface parameters, the vegetation index, 
and the radar backscattering coefficient, the need to improve inversion accuracy often 
leads to numerous parameters and complex structures in SSM inversion models. The 
machine learning method has a strong nonlinear fitting ability and can learn 
independently. It can help solve nonlinear problems in the process of SSM inversion, and 
it has been used widely to retrieve SSM. Rains et al. [20] used the support vector regression 
(SVR) method and the water cloud model to retrieve SSM and obtained a higher accuracy. 
Abbes et al. [21] used SMAP and MODIS data and an LSTM neural network to retrieve 
SSM, and the inversion results were consistent with the actual situation. Tsagkatakis et al. 
[22] used SMAP radiometer data and Sentinel-1 SAR data to construct a convolutional 
neural network (CNN) for SSM inversion and achieved a high degree of accuracy. 
Greifeneder et al. [23] used a gradient boosted regression trees (GBRT) algorithm, remote 
sensing data, and measured data to inverse SSM in the study area, and the R2 of the 
experimental results could reach 0.81. El Hajj et al. [24] proposed an artificial neural 
network (ANN) method based on remote sensing data and measured data to retrieve SSM, 
and achieved a high degree of accuracy. Although these machine learning methods 
perform well in a practical application, most of them require a large number of sample 
data to ensure sufficient training. For the research based on a small data size, there are 
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still many problems to address. For instance, there are many parameters in the process of 
soil moisture inversion, and the relationship between surface parameters, vegetation 
index and radar backscatter coefficient is complex. It is of great importance to find out the 
optimal machine learning model and further optimize the model parameters in the case 
of small samples. 

In order to address the problem that the inversion of farmland SSM is greatly affected 
by vegetation cover, based on feature optimization and machine learning methods, a 
multisource remote sensing inversion method of farmland SSM is proposed in this paper. 
The feature parameters, including vegetation index, surface roughness, backscatter 
coefficient and its combination mode, polarization characteristic parameters, etc., were 
extracted from Sentinel-1, Radarsat-2, and Sentinel-2 remote sensing data, providing a 
more comprehensive reference for soil moisture inversion research. The feature 
parameters were then optimized using the Pearson correlation analysis method. Six 
typical machine learning models suitable for small sample training, including random 
forest (RF), radial basis function neural network (RBF), generalized regression neural 
network (GRNN), support vector regression (SVR), genetic algorithm-back propagation 
neural network (GA-BP), and extreme learning machine (ELM), were constructed and 
compared to select the optimal prediction model for the study area in this paper. The 
difference between the performance of the dual-polarization SAR data and the quad-
polarization SAR data in SSM inversion was explored simultaneously. 

2. Materials and Methods 
2.1. Materials 
2.1.1. Study Area and In Situ SSM 

The study area was located in Xiangfu District, Kaifeng city, Henan Province, China, 
with an area of approximately 500 km2, as shown in Figure 1a. It was located in the North 
China Plain, which is cold and dry in the winter and hot and rainy in the summer, with a 
sufficient annual precipitation and a long frost-free period, suitable for crop growth. The 
crops mainly include winter wheat, corn, and peanut, with winter wheat being the main 
crop during the experiment. The experiment was conducted at the standing, jointing, and 
filling stages of winter wheat. During these three phenological periods, the winter wheat 
plants were more abundant; the vegetation cover was higher; the ground vegetation cover 
did not change much; field activities, such as plowing and sowing, which affect surface 
roughness, did not occur. Therefore, the modeling and analysis in this paper were 
uniformly carried out for these three similar phenological periods. 

   
(a) (b) (c) 
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Figure 1. Location and Sentinel-1/2 images of the study area and sampling points: (a) location of the 
study area; (b) Sentinel-1 image of the study area and sampling points; (c) Sentinel-2 image of the 
study area and sampling points. 

There are two main sources of in situ SSM data used in SSM remote sensing inversion 
studies. One is from ground-based observation stations or automatic observation 
networks, which are easy to obtain data from, and these data are usually collected more 
frequently and in larger quantities. The other is from the traditional manual measurement 
method, which relies on manual ground sampling and measurement on the date of 
satellite transit; it is often difficult to obtain data with this method, and these data are 
usually collected a limited number of times and in small quantities. Since there were no 
ground-based observation sites or automatic observation networks in the study area, 
manual measurements were used to obtain ground-based data and to carry out SSM 
inversion studies based on small sample sizes of measured data. 

A total of 20 sampling points, as shown in Figure 1b,c, were set-up in the study area. 
The SSM values and latitude and longitude coordinates of all of the sampling points were 
collected in the field at the time of the Sentinel-1 and Radarsat-2 satellite transits, and a 
total of 60 sets of valid measured data for each satellite were collected for subsequent 
experiments. A TDR350 soil moisture meter with a probe length of 3.8 cm was used to 
measure the volumetric soil moisture content of the surface layer of the farmland. The 
SSM value of five points were measured using the cross-measurement method at each 
sampling point, and the measurement points were distributed in a “+” shape, as shown in 
Figure 2. Their average value was recorded as the in situ SSM value of each sampling 
point. The sampling points were located using an outdoor handheld UG905 locator, with 
a positioning accuracy of 1 to 3 m, and the WGS84 coordinate system was used to record 
the coordinates of the sampling points. 

 
Figure 2. Measurement distribution of a single sampling point. 

2.1.2. Remote Sensing Data and Preprocessing 
The details and acquisition dates of the Sentinel-1 and Radarsat-2 SAR image data 

and Sentinel-2 optical image data used in this paper are shown in Table 1. The data used 
were all in the same phenological periods with the same vegetation growth conditions, 
allowing for uniform modeling and inversion.  

Table 1. Remote sensing data information. 

Data Source Acquisition Date Phenological Period Product Type Polarization Mode 

Sentinel-1 
(SAR Image Data) 

22 March 2020 Standing Stage 
IW SLC Dual-Polarization 4 April 2020 Jointing Stage 

21 May 2020 Filling Stage 
Radarsat-2 15 March 2020 Standing Stage Quad-Polarization 
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(SAR Image Data) 8 April 2020 Jointing Stage Standard Quad-
Polarization 26 May 2020 Filling Stage 

Sentinel-2 
(Optical Image Data) 

23 March 2020 Standing Stage 
L2A  12 April 2020 Jointing Stage 

22 May 2020 Filling Stage 

The Sentinel-2 optical data selected for the experiments were 3 quasi-synchronous 
L2A level products of similar dates with Sentinel-1 and Radarsat-2 transits, as the L2A 
level data were products that were preprocessed with atmospheric corrections, etc. [25]. 

The acquired SAR images were preprocessed using the Sentinel Application Platform 
(SNAP) software to perform preprocessing operations such as radiometric calibration, 
multi-viewing, Refined Lee filtering, and terrain correction. The multi-viewing operation 
is a very important step in SAR image preprocessing. Multi view images improve the 
radiation resolution and reduce the spatial resolution. Refined Lee filtering operation can 
suppress speckle noise of the SAR image. In order to better compare the geometric and 
radiometric characteristics of the SAR images, it is necessary to use terrain correction to 
convert SAR data from an oblique range or ground distance projection to a geographic 
coordinate projection. After preprocessing, ArcGIS software was used to extract the 
backscatter coefficients using the latitude and longitude coordinates of the sampling 
points [26]. 

2.2. Methods 
To eliminate the influence of vegetation cover on the accuracy of the SSM inversion 

results and to select the optimal model for inversion, six typical machine learning models, 
including RF, RBF, GRNN, SVR, GA-BP, and ELM, were selected for comparison 
experiments. The difference in the SSM inversion accuracy between the dual-polarization 
and quad-polarization SAR data was also explored. The technology roadmap for the 
experiments in this paper is shown in Figure 3, with the main steps as follows. 
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Figure 3. Technology roadmap. 

• Step 1. Feature parameter extraction 
The Sentinel-1 data were subjected to H/A/α polarization decomposition and 

combined with Sentinel-2 optical data to calculate the relevant vegetation indices. A total 
of 22 parameters were extracted from this combination. The Radarsat-2 data were 
subjected to H/A/α polarization decomposition and Freeman-Durden three-component 
decomposition and combined with the Sentinel-2 optical data. A total of 37 parameters 
were extracted from this combination, and the details are shown in Section 2.2.1. 
• Step 2. Feature optimization 

The Pearson correlation analysis method was carried out using the extracted feature 
parameters. According to the correlation between the feature parameters and the SSM 
values measured, the optimal features subset was selected. The details are shown in 
Section 2.2.2. 
• Step 3. Construction of the machine learning model 

The RF, RBF, GRNN, SVR, GA-BP, and ELM models were constructed and used, and 
each model was tuned to ensure the training and inversion accuracy of the model. The 
details are shown in Section 2.2.3. 
• Step 4. SSM prediction and precision evaluation 
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For each machine learning model, two sets of multisource remote sensing data, 
Sentinel-1 dual-polarization data combined with Sentinel-2 optical data and Radarsat-2 
quad-polarization data combined with Sentinel-2 optical data, were used for comparison. 
The in situ measured SSM values from 60 sampling points were randomly divided into 
two groups: one with 50 samples used for training, and the other with 10 samples used 
for validation and accuracy evaluation. The details are shown in Section 2.2.4. 

2.2.1. Polarization Feature Parameter Extraction 
SAR detects feature characteristics by transmitting microwave beams to and 

receiving echo signals from objects. Radar system parameters, such as wavelength, angle 
of incidence and polarization mode, and feature parameters, such as the dielectric 
constant and physical structure of the target object, have a direct impact on radar 
information. Similarly, many vegetation indices can be extracted from optical remote 
sensing data to describe the surface vegetation information [27]. 
• Polarization feature parameter extraction from the Sentinel-1 dual-polarization data 

The Sentinel-1 single look complex (SLC) dual-polarization data used in this paper 
have the advantage of wide coverage, high spatial and temporal resolutions, and are 
publicly available free of charge. The polarization characteristics are mainly the 
backscatter coefficients and the polarization decomposition characteristics. 

Active microwave remote sensing for SSM inversion is mainly based on the 
information reflected by the backscatter coefficients. Based on the latitude and longitude 
of each sampling point, the incident angle (θ), VV polarization backscatter coefficient (σ0 

VV

), and VH polarization backscatter coefficient (σ0 
VH) were extracted from the preprocessed 

Sentinel-1 SAR data as the feature parameters for subsequent experiments. Since cos(θ) 
and sin(θ) are also related to SSM [10], and the σ0 

VH/σ0 
VV backscattering coefficient is only 

related to the surface roughness for a certain radar incidence angle [28], cos(θ), sin(θ), and 
σ0 

VH/σ0 
VV were also used as feature parameters. Meanwhile, the combination of different 

polarization backscattering coefficients in the forms of polarization sum (σ 0 
VV + σ 0 

VH), 
polarization difference (σ0 

VV − σ0 
VH) and polarization multiplication (σ0 

VH × σ0 
VV) were also 

added. A total of 9 feature parameters related to the radar backscatter coefficients were 
extracted from the Sentinel-1 SAR data. 

Polarization decomposition allows the more complex scattering process of an object 
to be broken down into several simple scattering mechanisms. Using polarization 
decomposition, more feature parameters can be extracted from SAR remote sensing data. 
The eigenvalue decomposition of the coherence matrix or covariance matrix of the target 
feature was performed using H/A/α decomposition for Sentinel-1 dual-polarization data, 
from which the scattering entropy (H), the complementary parameter to the scattering 
entropy–inverse entropy (A), the mean scattering angle (α), and the eigenvalues (λ1 and 
λ2) could be extracted. A total of 5 polarization parameters were extracted from the 
Sentinel-1 SAR data [29]. 
• Polarization feature parameter extraction from the Radarsat-2 quad-polarization data 

The Radarsat-2 quad-polarization data contained more scattering information than 
the dual-polarization data. The incident angle (θ) at the corresponding position was 
extracted from the preprocessed Radarsat-2 SAR data based on the latitude and longitude 
of each sampling point, and the cos(θ) and sin(θ) were extracted in the same way as the 
dual-polarization feature parameters. The backscatter coefficients of each polarization and 
their polarization combinations were then extracted including the VV polarization 
backscatter coefficients (σ 0 

VV ), VH polarization backscatter coefficients (σ 0 
VH ), HH 

polarization backscatter coefficients (σ0 
HH), HV polarization backscatter coefficients (σ0 

HV), 
cross-polarization sums (σ0 

HV + σ0 
HH and σ0 

VH + σ0 
VV), cross-polarization differences (σ0 

HV − σ0 
HH 

and σ0 
VH − σ0 

VV), cross-polarization ratios (σ0 
HV/σ0 

HH and σ0 
VH/σ0 

VV), co-polarization ratio (σ0 
HH/σ0 

VV

), and polarization multiplication (σ0 
HV × σ0 

HH, and σ0 
VH × σ0 

VV). A total of 16 feature parameters 
related to the radar backscatter coefficients were extracted from the Radarsat-2 SAR data. 
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The H/A/α decomposition and Freeman–Durden three-component decomposition 
were used to decompose the quad-polarization data, from which the scattering entropy 
(H), inverse entropy (A), mean scattering angle (α), and eigenvalues (λ1, λ2 and λ3) could 
be extracted. The Freeman–Durden three-component decomposition allowed for the 
extraction of the body scattering (Freeman_Vol), secondary scattering (Freeman_Dbl), and 
surface scattering (Freeman_Odd), as well as the calculation of the total power (Span). A 
total of 10 polarization feature parameters were extracted from the Radarsat-2 SAR data 
[30–32]. 

Unlike the dual-polarization data, the quad-polarization data allowed for the 
extraction of the radar vegetation index (RVI), which describes vegetation information. 
Three radar vegetation indices (i.e., Van_RVI, Freeman_RVI, and Kim_RVI) were available 
and were calculated as shown in Equations (1)–(3) [33–35], 

3

1 2 3

4
Van_RVI

+
λ

λ λ λ
×

=
+  

(1)

v

s d v

fFreeman_RVI
f +f f

=
+  

(2)

8
2

HV

HV HH VV

Kim_RVI
+

σ
σ σ σ

×
=

× +  
(3)

• Vegetation index and surface roughness 
The backscattering coefficient of SAR is not only related to its own polarization mode, 

incident angle, and SSM, but the vegetation cover and surface roughness also have a direct 
influence on the surface scattering information. The effects of the vegetation cover and 
surface roughness need to be suppressed in SSM inversion. 

In areas covered by crops, the coverage by the crops makes most of the microwaves 
unable to penetrate the vegetation to reach the surface. This greatly reduces the closeness 
between SSM and microwave signals and increases the difficulty of retrieving SSM 
covered by crops. The main feature parameter that can be extracted from optical remote 
sensing data is the vegetation index. The vegetation index is a combination of the 
operation of the ground reflectance in two or more wavelength ranges to enhance a certain 
characteristic or detail of the vegetation. At present, there are more than 100 vegetation 
indices proposed in the field of remote sensing [36], but only a few of them have been 
tested in practice. Limited by the type of sensor and the combination of bands used, 
different vegetation indices have different band application ranges and application fields. 

Based on the multi band data provided by the Multispectral Imager(MSI) carried by 
Sentinel-2 and the actual vegetation coverage situation in the study area, 7 vegetation 
indexes [37–40] commonly used in SSM inversion research were finally selected for this 
experiment including the normalized difference vegetation index (NDVI), normalized 
difference water index (NDWI), ratio vegetation index (RVI), moisture stress index (MSI), 
water band index (WBI), fusion vegetation index (FVI), and enhanced vegetation index 
(EVI). Their calculation formulas are shown in Equations (4)–(10), 

842 665

842 665

NDVI = ρ ρ
ρ ρ

−
+

 (4)

842 1610

842 1610

NDWI = ρ ρ
ρ ρ

−
+

 (5)
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842

665

RVI = ρ
ρ

 (6)

1610

842

MSI = ρ
ρ

 (7)

865

945

WBI = ρ
ρ

 (8)

842 665 1610

842 665 1610

2FVI =
2

ρ ρ ρ
ρ ρ ρ

− −
+ +

 (9)

842 665

842 665 490

EVI =2.5
6 7.5 1

ρ ρ
ρ ρ ρ

−
×

+ × − × +
 (10)

where ρ842, ρ665, ρ1610, ρ865, ρ945, ρ665, and ρ490 represent the band values corresponding to 
842, 665, 1610, 865, 945, 665, and 490 nm in the Sentinel-2 data, respectively. 

Soil roughness is an important factor affecting the microwave backscatter coefficient. 
Removing the effect of surface roughness can improve the accuracy of the SSM inversion 
results. It is meaningful to extract the feature parameters that can characterize the surface 
roughness. 

The extracted surface roughness information varies with the frequency of the 
waveband, the incident angle and the polarization method, which makes it difficult to 
simulate the surface roughness. Based on the existing research theory that there is a 
relationship between the surface roughness and the difference in the cross-polarization 
backscattering coefficient, a combined roughness model was established from the SAR 
data [41], as shown in Equations (11)–(13), 

0 0 ( )=exp( )
( )

HV VV v
s

v

B
Z

A
σ σ θ

θ
− −

 
(11)

3 22.640 8sin ( ) 5.293sin ( )
3.838sin( ) 2.2042

vA θ θ
θ

= − +
− +

 

(12)

3 24.152 2sin ( ) 13.1sin ( )
16.947 2sin( ) 16.422 8

vB θ θ
θ

= −
+ −

 

(13)

where Zs is the combined roughness: Av and Bv are the coefficients relating only to the 
incident angle. The coefficients of the Av and Bv were obtained using nonlinear least 
squares and linear regression fitting, and they were only applicable to the combined 
roughness model under C-band SAR data. 

2.2.2. Feature Optimization 
The training accuracy of machine learning models is closely related to the size and 

quality of the training data. If the size of the training data is too large, the model will 
converge too slowly. In severe cases, a data disaster will occur, affecting the model’s 
autonomous learning, causing misjudgments of the prediction results, and reducing the 
accuracy of the model. Analyzing the feature parameter set and selecting the feature 
parameters with the high correlations as the input data for the machine learning model, 
can improve the prediction accuracy of the model and reduce the consumption. 

After preprocessing, the 22 feature parameters extracted from the Sentinel-1 and 
Sentinel-2 data were labeled as feature parameter set A, as shown in Table 2. The 37 
feature parameters extracted from the Radarsat-2 and Sentinel-2 data were labeled as 
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feature parameter set B, as shown in Table 3. The Pearson correlation analysis method was 
carried out between the extracted feature parameters and the in situ measured SSM values 
to obtain their correlation coefficients, which were between −1 and 1. The higher the 
absolute value, the stronger the correlation. The correlation coefficients were ranked from 
largest to smallest, as shown in Tables 2 and 3. The top 10 feature parameters in each set 
with the highest correlation were selected as the optimal feature subset to participate in 
the subsequent inversion experiments. The optimal feature subset selected from feature 
parameter set A included the NDWI, α, σ0 

VV, θ, A, FVI, σ0 
VH, NDVI, MSI, and cos(θ). The 

optimal subset of features selected from the set of feature parameters B included α, NDWI, 
Van_RVI, σ0 

VH, Freeman_Dbl, λ1, A, λ3, θ, and λ2. 

Table 2. Feature parameters extracted from the Sentinel-1 and Sentinel-2 data and their correlation 
coefficients with the in situ measured SSM values. 

No. Parameter CC No. Parameter CC 
1 NDWI 0.5834 ** 12 σ0 

VH/σ0 
VV −0.236 

2 
𝛼 

(Scattering Angle) 0.4143 * 13 λ1
 −0.219 

3 σ0 
VV 0.3992 * 14 H 

(Scattering Entropy) 
0.1424 

4 θ −0.3971 * 15 Zs −0.1401 
5 A (Anisotropy) −0.3723 * 16 EVI 0.1331 
6 FVI −0.3321 * 17 σ0 

VH×σ0 
VV −0.0751 

7 σ0 
VH −0.3281 * 18 λ2 (Eigenvalue) −0.0685 

8 NDVI −0.3134 * 19 RVI 0.0642 
9 MSI −0.2987 20 σ0 

VH-σ0 
VV −0.0604 

10 cos(θ) 0.2700 21 σ0 
VH+σ0 

VV 0.0511 
11 sin(θ) −0.2699 22 WBI −0.0501 

* Indicates a significant correlation at the 0.05 level; ** indicates a significant correlation at the 0.01 
level. 

Table 3. Feature parameters extracted from the Radarsat-2 and Sentinel-2 data and their correlation 
coefficients with the in situ measured SSM values. 

No. Parameter CC No. Parameter CC 

1 
𝛼 

(Scattering Angle) 0.4961 ** 20 Zs −0.1231 

2 NDWI 0.4102 * 21 sin(θ) −0.1197 
3 Van_RVI −0.3843 * 22 σ0 

VH/σ0 
VV 0.1076 

4 σ0 
VH 0.3821 * 23 cos(θ) −0.1031 

5 Freeman_Dbl −0.3694 * 24 σ0 
HH × σ0 

HV −0.0767 
6 λ1 (Eigenvalue) −0.3691 * 25 σ0 

HV + σ0 
HH 0.0720 

7 A (Anisotropy) 0.3639 * 26 Kim_RVI −0.0643 
8 λ3 (Eigenvalue) −0.3513 * 27 σ0 

HH 0.0638 
9 θ −0.3387 * 28 RVI 0.0576 

10 λ2 (Eigenvalue) −0.3141 * 29 σ0 
VH + σ0 

VV 0.0553 
11 MSI −0.3140 * 30 σ0 

VH × σ0 
VV −0.0537 

12 σ0 
HH/σ0 

VV 0.2986 31 WBI −0.0486 
13 FVI 0.2548 32 Freeman_RVI −0.0324 
14 NDVI 0.1736 33 σ0 

HV/σ0 
HH −0.0230 

15 σ0 
HV −0.2565 34 σ0 

HV − σ0 
HH 0.0112 

16 
H 

(Scattering Entropy) −0.1534 35 σ0 
VV 0.0070 

17 σ0 
VH − σ0 

VV 0.1483 36 Freeman_Vol 0.0012 
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18 Freeman_Odd 0.1442 37 span 0.0011 
19 EVI 0.1253    

* Indicates a significant correlation at the 0.05 level; ** indicates a significant correlation at the 0.01 
level. 

2.2.3. Construction of the Machine Learning Model 
Machine learning has a strong nonlinear fitting ability. It is helpful for solving the 

problem of too many parameters and too complex a structure of SSM inversion models, 
caused by the nonlinear relationship between the surface parameters, vegetation index, 
and radar backscatter coefficient. Due to the small number of samples collected in the 
study area, in order to avoid overfitting, six typical machine learning models suitable for 
small sample training (including RF, RBF, GRNN, SVR, GA-BP, and ELM models) were 
selected for the experiment. 
• RF model 

A random forest model is basically a bunch of regression equations. Each equation is 
built for each decision tree branch. DT branches are distinguished from each other by the 
most significant differences in features. RF is an integration algorithm based on the 
decision tree. Each decision tree is a classifier, and randomness is introduced into the 
training process of the decision tree to randomly select samples and features. For each 
input sample, n trees will have n classification results. RF integrates all classification 
voting results and specifies the one with the most votes as the final output. This process 
embodies randomness and integration. The RF model has the advantages of improving 
prediction accuracy, reducing overfitting, and being insensitive to missing data and 
multicollinearity [42]. 

In the experiment, the number of leaves was adjusted to 5, 10, 20, 50, and 100, and 
the optimum number of leaves was obtained by comparing the mean square error (MSE) 
of different leaves. The results showed that the optimum number of leaves was 10. 
• RBF model 

The radial basis function neural network model can approach any nonlinear function 
and deal with laws that are difficult to analyze in the system. It has a good ability for 
generalization and a fast learning convergence speed. The RBF model was composed of 
an input layer, a hidden layer, and an output layer. The role of the input layer was to input 
the training data into the network, and its nodes were composed of the input samples. 
The hidden layer used the activation function to perform nonlinear transformation on the 
input data. The common activation function of the RBF hidden layer was the Gaussian 
radial basis function, and the output layer used the linear optimization strategy, which 
was a linear combination of the first two [43]. 
• GRNN model 

The generalized regression neural network is a type of RBF. It has a strong nonlinear 
mapping ability and learning speed, and its advantages are greater than the RBF. Research 
shows that a GRNN has certain advantages for small sample prediction, and it can also 
manage unstable data. The GRNN is different from the RBF in structure, and is composed 
of an input layer, a mode layer, a summation layer, and an output layer [44]. 
• SVR model 

Support vector regression is the application of a support vector machine (SVM) in 
regression analysis. SVM determines a hyperplane by maximizing the interval, so that 
most of the sample points are located outside the two decision boundaries. Different from 
SVM, SVR also considers maximizing the interval, but considers the points within the 
decision boundary to make as many sample points as possible within the interval [45]. Its 
advantages are that it supports multidimensional space, different kernel functions are 
used for different decision functions, and small sample datasets can also be trained. 
• GA-BP model 
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Neural network approaches are total black boxes of rules based on multilayer 
combinations of forecasting factors. Back propagation (BP) neural networks have been 
widely used in many fields, but easily fall into local minima and depend on the design 
structure. Sometimes it cannot find the global optimal value. Although a genetic algorithm 
(GA) does not have a self-learning ability, it has the ability of global optimization. 
Therefore, using a GA to optimize a BP neural network can improve the shortcomings of 
the neural network. It not only gives play to the nonlinear mapping ability of the neural 
network and the global optimization ability of a GA, but also accelerates the learning 
speed of the neural network and comprehensively improves the accuracy and fitting 
ability of the whole prediction model [46]. During the construction of the GA-BP neural 
network, the Kolmogorov theorem [41] can be used to determine the number of hidden 
layer nodes, as shown in Equation (14), 

20.43 0.12 2.54 0.77 0.35 0.51s mn n m n= + + + + +  
(14) 

where s, m, and n are the numbers of hidden layers, input layers, and output layers, 
respectively. 
• ELM model 

An extreme learning machine is a kind of machine learning model based on a 
feedforward neural network. The characteristic of this algorithm is that it can randomly 
generate weights and thresholds. Unlike a BP neural network, it does not need to 
continuously reverse adjust, and it only needs to set the number of hidden layer nodes to 
obtain the optimal solution, which greatly improves the training speed. The commonly 
used activation functions of its hidden layer are the radial basis function, gaussian 
function, trigonometric function, and sigmoid function. It has the advantages of a fast 
learning rate and a good generalization performance [47]. 

2.2.4. SSM Prediction and Precision Evaluation 
To better eliminate the influence of the vegetation cover on the accuracy of the SSM 

inversion results, six typical machine learning models were selected in this paper for 
comparative experiments, from which the optimal prediction model suitable for the study 
area was chosen. In this experiment, two sets of comparative experiments were set up 
based on feature parameter extraction. All feature parameters and the optimal feature 
subset were used as the input data for each model, to compare and analyze the impact of 
the feature parameter selection on the accuracy of the SSM reversion results. 

3. Results 
In this paper, four precision evaluation indexes were used to evaluate the 

experimental results, and the spatial distribution of SSM was obtained. 

3.1. Accuracy of the Experimental Results 
To verify the effectiveness of the proposed method, a verification experiment of SSM 

inversion was carried out on winter wheat farmland in the study area. Using the in situ 
measured SSM data, a comparative experiment was implemented to explore the 
application performance of different data sources, different machine learning models, and 
different input parameters in SSM inversion. Their influences on the experimental results 
were qualitatively and quantitatively analyzed, and several meaningful conclusions were 
obtained. 

In this experiment, four precision evaluation indexes, which were bias, root mean 
square error (RMSE), unbiased root mean square error (ubRMSE), and coefficient of 
determination (R2), were used to evaluate the inversion accuracy. To reduce the 
randomness of the experimental results, the average values obtained after multiple 
repeated experiments were recorded as the experimental results, as shown in Table 4.  
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Table 4. Comparison of the accuracy of the inversion results. 

No. Method Parameter Bias RMSE ubRMSE R² 

Sentinel-1 + Sentinel-2 

RF 22 0.0138 0.0371 0.0365 0.5912 
10 0.0086 0.0311 0.0306 0.6282 

RBF 
22 0.0211 0.0463 0.0451 0.5007 
10 0.0171 0.0358 0.0346 0.5697 

GRNN 22 0.0183 0.0422 0.0418 0.5525 
10 0.0134 0.0350 0.0338 0.6087 

SVR 22 0.0165 0.0416 0.0408 0.5414 
10 0.0146 0.0367 0.0353 0.5931 

GA-BP 
22 0.0118 0.0391 0.0376 0.5893 
10 0.0086 0.0337 0.0329 0.6167 

ELM 22 0.0203 0.0387 0.0372 0.5516 
10 0.0173 0.0327 0.0304 0.6012 

Radarsat-2 + Sentinel-2 

RF 37 0.0132 0.0332 0.0294 0.5954 
10 0.0091 0.0271 0.0264 0.6395 

RBF 
37 0.0199 0.0403 0.0394 0.4976 
10 0.0167 0.0546 0.0490 0.6113 

GRNN 
37 0.0139 0.0371 0.0369 0.5675 
10 0.0113 0.0399 0.0373 0.6536 

SVR 37 0.0155 0.0433 0.0424 0.5674 
10 0.0126 0.0376 0.0361 0.6076 

GA-BP 37 0.0147 0.0341 0.0326 0.6039 
10 0.0114 0.0324 0.0289 0.6343 

ELM 
37 0.0197 0.0389 0.0366 0.5709 
10 0.0148 0.0317 0.0308 0.6186 

3.2. Spatial Distribution of SSM 
According to the above conclusions, based on the Radarsat-2 SAR data and the 

Sentinel-2 optical data, the distribution and frequency distribution maps of SSM in the 
study area were obtained by using the optimal feature subset and the selected optimal 
prediction model—the RF model. The results are shown in Figures 4–6. To highlight the 
farmland areas in the SSM distribution map, non-farmland areas such as buildings, roads, 
and rivers, were prescreened and filled with white pixels. The average SSM inversion 
values in the three phases of the study area were 0.0772, 0.0537 and 0.0213 cm3/cm3, 
respectively, and the average in situ measured SSM values at the sampling points were 
0.0908, 0.0639, and 0.0165 cm3/cm3, respectively. The inversion results of SSM were 
consistent with the in situ measured values. 

(a) (b) (c) 
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Figure 4. Retrieval results of SSM in the study area on 15 March 2020: (a) distribution map of 
retrieved SSM; (b) frequency distribution of retrieved and in situ measured SSM; (c) comparison of 
the differences between the measured values and the inversion values at the sampling points. 

  

(a) (b) (c) 

Figure 5. Retrieval results of SSM in the study area on 8 April 2020: (a) distribution map of retrieved 
SSM; (b) frequency distribution of retrieved and in situ measured SSM; (c) comparison of the 
differences between the measured values and the inversion values at sampling points. 

  

(a) (b) (c) 

Figure 6. Retrieval results of SSM in the study area on 26 May 2020: (a) distribution map of retrieved 
SSM; (b) frequency distribution of retrieved and in situ measured SSM; (c) comparison of the 
differences between the measured values and the inversion values at sampling points. 
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4. Discussion 
4.1. Accuracy Evaluation of the Experimental Results 

From the perspective of the data source, the experimental results of the Radarsat-2 
quad-polarization SAR data combined with the Sentinel-2 optical remote sensing data, 
were more accurate than the Sentinel-1 dual-polarization SAR data combined with the 
Sentinel-2 optical remote sensing data, and they had a better performance in the six 
models and four indicators. However, the Sentinel-1 dual-polarization data could also 
achieve a certain accuracy. In the absence of quad-polarization data, dual-polarization 
data combined with optical remote sensing data could also be used for SSM inversion to 
obtain an acceptable accuracy. 

From the perspective of the model, it was found that the comprehensive performance 
of the RF model was the best. Among the four indexes, only its R2 of the Radarsat-2 
combined with the Sentinel-2 data was slightly lower than that of the GRNN model. 
Among the six models, the RBF model had the worst accuracy among the experimental 
results. While the GA-BP, SVR, and ELM models also had better inversion accuracy, they 
were not as good as the RF and GRNN models. Combining the four evaluation indexes, 
the RF model was selected as the optimal prediction model for the subsequent 
experiments. 

From the perspective of the input data, the experimental results were more accurate 
when the optimal feature subset was used as the input data. It can be concluded that after 
removing the redundant feature parameters, the inversion accuracy could be improved 
and the SSM inversion value was closer to the in situ measured value, which illustrates 
the effectiveness and superiority of the proposed method. 

4.2. Spatial Distribution Analysis of SSM 
The frequency distribution of the measured and retrieved SSM values in the study 

area are shown in Figure 4b, Figure 5b, and Figure 6b, respectively. The frequency 
distribution of the retrieved values on 15 March 2020 was mainly in the ranges of 0.04~0.06 
and 0.048~0.1 cm3/cm3. The frequency distribution of the retrieved values on 8 April 2020 
was mainly in the range of 0.04~0.08 cm3/cm3. The frequency distribution of the retrieved 
values on 26 May 2020 was mainly in the range of 0~0.04 cm3/cm3. They were relatively 
consistent with the frequency distribution of in situ measured values at the sampling 
points on the same days, which shows that the proposed method had strong applicability 
in the study area. The difference comparison between the measured values and the 
inversion values at the sampling points is shown in Figures 4c, 5c and 6c. At 20 sampling 
points, the inversion values and the measured values had a relatively consistent change 
trend. The results show that the inversion values can display whether the sampling points 
are dry, as well as the reliability of the soil moisture distribution. 

5. Conclusions 
A collaborative SSM inversion method based on machine learning and feature 

optimization was proposed by combining Sentinel-1 and Radarsat-2 microwave remote 
sensing data with Sentinel-2 optical remote sensing data. Six typical machine learning 
models were compared, and the differences in the performance between the dual-
polarization SAR data and the quad-polarization SAR data in SSM inversion were 
explored. The experimental results showed that the quad-polarization SAR data 
performed better in SSM inversion, and the optimization of the feature parameters could 
greatly improve the accuracy of SSM inversion. Among the six typical machine learning 
models, RF, RBF, GRNN, SVR, GA-BP, and ELM, which are suitable for small sample 
training, the RF model had a higher accuracy with an R² of 0.6395 and an RMSE of 0.0264 
cm3/cm3. The retrieved SSM values from the study area using the proposed method were 
consistent with the in situ measured SSM values, demonstrating the application potential 
of the proposed SSM inversion method. The proposed method provides a reference for 
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SSM inversion in the surface layer of agricultural fields from multisource remote sensing 
data, and will be further discussed in terms of its applicability to other farmland surface 
types in the future. 
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