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Abstract: Mapping rubber plantations in a large area is still challenging in high-cloud-cover and 
complex-vegetation landscapes. Existing studies were often confined to the discrimination of rubber 
trees from natural forests and rarely concerned other tropical tree species. The Sentinel-2 constella-
tion, with improved spatial, spectral, and temporal resolution, offers new opportunities to improve 
previous efforts. In this paper, four Hainan Sentinel-2 composites were generated based on the de-
tailed phenological stages delineation of rubber trees. The random forest classifier with different 
phenological stage combinations was utilized to discuss the capability of Sentinel-2 composites to 
map rubber plantations. The optimal resultant rubber plantation map had a producer’s accuracy, 
user’s accuracy, and F1 score of 81%, 84.4%, and 0.83, respectively. According to the rubber planta-
tion map in 2020, there was a total of 5473 km2 rubber plantations in Hainan, which was 2.93% 
higher than the statistical data from the Hainan Statistical Yearbook. According to the Hainan Statisti-
cal Yearbook, the area-weighted accuracy at the county level was 82.47%. The mean decrease in ac-
curacy (MDA) was used to assess the feature importance of the four phenological stages. Results 
showed that the recovery growth stage played the most important role, and the resting stage was 
the least important. Moreover, in terms of the combinations of phenological stages, any dataset 
group with two phenological stages was sufficient for rubber tree discrimination. These findings 
were instrumental in facilitating the rubber plantation mapping annually. This study has demon-
strated the potential of Sentinel-2 data, with the phenology-based image-compositing technique, for 
mapping rubber plantations in large areas with complex vegetation landscapes. 
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1. Introduction 
The rubber tree (Hevea brasiliensis) is the primary source of natural rubber, an essen-

tial industrial raw material. With the increasing demand for natural rubber, rubber plan-
tations have expanded to almost every tropical forest region in the world. The expansion 
of rubber plantations has contributed to local economic development. However, the tran-
sition from natural forests to rubber plantations has significant ecological impacts on the 
water balance, carbon cycle, biodiversity, and ecosystem function [1–4]. Knowledge of the 
spatial extent and dynamic of rubber plantations is significant to ensure the sustainability 
of the natural rubber industry, including plantation management, rubber futures, national 
economic policy, and ecological conservation. 

Remote sensing technology is an important tool in mapping rubber plantations at 
local and regional scales [5]. Since 2012, rubber’s unique phenological characteristics have 
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been widely exploited in the delineation of rubber plantations [5]. When rubber trees were 
introduced from the Amazon to Southeast Asia in the nineteenth century, rubber trees 
became deciduous in the winter or dry season with seasonal drought and cold stresses [6]. 
For rubber trees, most leaves fall off during the defoliation process before new leaves 
emerge in the refoliation process [7]. In contrast, most other tropical forests are evergreen 
forests, having strong resistance against influences from the physical environment, such 
as temperature and precipitation. Multiple phenology-based features using vegetation in-
dices [8–16] have been exploited to map rubber plantations and have shown some ad-
vantages [5]. (1) It is easier to distinguish rubber trees from cropland and natural forest 
[17]; (2) it helps to identify and outline rubber plantations within fragmented tropical 
mountainous lands [12]. 

Hainan Province is China’s second-largest natural rubber planting area after Yunnan 
Province. Several studies have been published to map rubber plantations in Hainan Prov-
ince [8,13,15,16,18–20]. Among these studies, the decision tree classifier with multiple phe-
nology vegetation indices was the most common approach. Dong et al. [16] and Chen et 
al. [18] utilized the L-band PALSAR product to map forests and then extracted rubber 
plantations from the forest map according to their phenological features based on MODIS 
and Landsat data, respectively. Han et al. [13] developed a simple decision rule based on 
band value changes, vegetation index changes, and phenological phase changes (defolia-
tion and foliation) to distinguish rubber plantations from other land-cover types. Cui et 
al. [8] explored the suitability of Planet Scope imagery for mapping rubber plantations, 
and the spectral features, index features, and textural features were comprehensively uti-
lized. These studies obtained high classification accuracies of 85%, 95.2%, 92.17%, and 
95.18%, respectively, but there are still three major issues that influence the rubber plan-
tation mapping results. (1) The mapping of rubber plantations in previous studies was 
mainly based on MODIS [16] or Landsat data [13,15,18]. The 250 m spatial resolution of 
MODIS products is relatively coarse, making it difficult to delineate the border of rubber 
plantations in Hainan Province with fragmented vegetation landscapes. As for Landsat 
data, it is difficult to obtain valid cloud-free imageries due to the cloudy weather condition 
in Hainan Province, the short period of rubber defoliation, and the 16-day repeat cycle of 
Landsat satellites. (2) Previous studies [8,9,13,15,16,21] focused on the discrimination of 
deciduous rubber plantations from evergreen natural forests, but little consideration was 
given to other tropical tree species. Hainan Province is abundant with tropical tree species, 
such as Eucalyptus, Areca Palm, and Coconut Palm, and they are widely distributed. 
Some tropical economic forests were mentioned briefly [16,22], but the difference between 
rubber tree plantations and the economic forests has not yet been explored. (3) The defo-
liation and foliation periods were regarded as the optimal timing for distinguishing rub-
ber trees from evergreen natural forests [8,11,23]. These two key periods were also called 
the rubber defoliation and foliation (RDF) period [18], leaf-off and leaf-on phases [24], 
senescence and regreening periods [22], and the wintering period [5,25]. However, the 
timing of the two periods was defined differently, for example, late February to April [15], 
January to March [10,15], January to April [8], December to late February [23], and No-
vember to March [11]. This confusion may affect the selection of imageries. 

As stated above, Hainan Province is a large cloudy area with complex vegetation 
landscapes. Cloud-free multiphenology imageries are necessary to generate an accurate 
map of rubber plantations, and these imageries must be able to distinguish rubber trees 
from other tropical tree species. Compared to MODIS and Landsat data, Sentinel-2 can 
acquire optical imagery at high spatial (maximum 10 m) and temporal resolution (2–5 
days revisit time at the equator). The combination of freely available satellite imagery, 
high resolution, a swath width of 290 km, and frequent revisit times has greatly enhanced 
the feasibility of mapping rubber plantations in large cloudy areas. In addition, Sentinel-
2 incorporates three new spectral bands in the red-edge region, centered at 705, 740, and 
783 nm, respectively. Recently, many studies have investigated the utility of Sentinel-2 
imageries for precise regional-tree-species mapping [26–30]. The novel red-edge bands are 
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significant for tree species classification [26,31–33]. Particularly, multitemporal Sentinel-2 
[26], dense Sentinel-2 time series [28], and phenology/seasonal Sentinel-2 composites [29] 
can improve the classification of tree species. For rubber plantation mapping, Xiao et al. 
showed the significant potential of Sentinel-2 imageries with red-edge spectral indices [9]. 
However, the nonrubber tree species distinguished from rubber plantations were still 
only natural forests. 

This study’s main objective was to investigate the utility of phenology-based Senti-
nel-2 composites for rubber plantation mapping in a large cloudy area with complex veg-
etation landscapes. Specifically, the following questions were addressed: Which pheno-
logical stage of rubber trees is important for rubber plantation mapping? What combina-
tions of rubber tree phenological stages contribute to increasing mapping results? Which 
bands of Sentinel-2 are important for rubber plantation mapping? How does the band 
importance of Sentinel-2 vary over the phenological stages of rubber trees? 

2. Materials and Methods 
2.1. Study Area 

Hainan Province is located in the southern part of China (Figure 1). It is characterized 
by a marine tropical monsoon climate. The annual average precipitation is more than 1600 
mm, and the mean annual temperature is 23~25 °C. The annual minimum temperature is 
generally above 5 °C. 

 

 
Figure 1. Location of Hainan Province in China and field samples. 

Before the 20th century, Hainan Province was dominated by tropical natural forests, 
and rubber trees were introduced from British Malaysia. Since the 1950s, rubber trees have 
been planted in large quantities through the deforestation of natural forests. After half a 
century of development, Hainan Province has become the second-largest rubber-planting 
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area in China after Yunnan Province, and natural rubber production accounts for about 
40.5% of China’s total production. 

The deciduous habit of rubber trees is one of its most critical phenological character-
istics, allowing annual leaf renewal [34]. Generally, the defoliation periods of rubber trees 
last for about one month between February and March [21]. In this study, according to 
rubber trees’ phenology and growth rhythms [35], the growth cycle of rubber trees was 
divided into four phenological stages: ① resting phase, ② recovery growth phase, ③ 
vigorous growth phase, and ④ slowdown growth phase. The photos in Figure 2 show the 
status of rubber trees at the four phenological stages, respectively. Detailed descriptions 
of the four phenological stages and their timing will be presented in Section 3.1. 

In addition to rubber trees, there are a variety of tropical economic tree species in 
Hainan Province, such as Eucalyptus, Coconut, Areca nut, and Litchi. All the economic 
forests, including rubber trees, are widely distributed in the study area, with complex and 
fragmented landscapes. 

    
(a) (b) (c) (d) 

Figure 2. Photos of rubber plantations at different phenological stages. (a) Resting phase. (b) Recov-
ery growth phase. (c) Vigorous growth phase. (d) Slowdown growth phase. 

2.2. Data 
2.2.1. Sentinel-2 Data 

The Sentinel-2 mission is based on a constellation of two satellites, Sentinel-2A (S2A) 
and Sentinel-2B (S2B). Combining S2A and S2B can provide a five-day revisit time at the 
equator and better temporal resolution at higher latitudes. In this study, we collected all 
the Sentinel-2 Level 2A products of the study area acquired from 1 January 2019 to 31 
December 2021. The Sentinel-2 Level 2A products were downloaded from the Copernicus 
Open Access Hub of the European Space Agency (ESA). The Level-2A product is com-
posed of 100 × 100 km2 tiles, and Hainan Province is covered by eight tiles, as shown in 
Figure 3. 

Hainan Province has cloudy weather all year round. The average percentages of Sen-
tinel-2 images with cloud cover (CC) less than 10% for the four phenological stages were 
29.57%, 14.36%, 14.21%, and 16.65%, respectively. Therefore, for each phenological stage, 
it is tough to obtain less-cloud or cloud-free Sentinel-2 images for all eight tiles. In this 
study, to obtain four cloud-free composites for the entire study area in Section 2.4.1, Sen-
tinel-2 images with an estimated CC ≤ 75% were selected for further preprocessing. 

The preprocessing of Sentinel-2 imageries included cloud and cloud shadow mask-
ing. The cloud masks were converted from the layers of Sentinel-2 cloud probability, and 
the cloud shadow masks were generated based on the intersection of cloud projection and 
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near-infrared (NIR) band darkness. Finally, the 20 m bands were resampled to 10 m reso-
lution using nearest neighbor resampling, and the 10 Sentinel-2 10/20 m bands (B2, B3, B4, 
B5, B6, B7, B8, B8A, B11, and B12) were merged into a single raster dataset. 

 
Figure 3. Hainan land cover from “ChinaCover2020” and Sentinel-2 tiles for the study area. 

2.2.2. MODIS Data 
Due to the frequent cloudy weather in Hainan Province, it is tough to construct con-

sistent year-long Sentinel-2 time series with reliable data quality. Therefore, in this study, 
we used coarse spatial resolution MODIS data to delineate the phenological stages of rub-
ber trees. The timing of the lowest NDVI according to the MODIS-NDVI time series curve 
has been used to determine the periods of rubber tree defoliation and foliation [8,13,36]. 
This study used two MODIS-NDVI products with 250 m resolution, MOD13Q1-NDVI and 
MYD13Q1-NDVI. The two products showed high compatibility [37,38], and it has been 
shown that they can be used in combination [25,39]. These products were obtained 
through the online MODIS data repository 
(https://modis.gsfc.nasa.gov/data/dataprod/mod13.php, accessed on 3 March 2022). 

The two NDVI products for the study area from January 2019 to December 2021 were 
rearranged by the property of start time. Subsequently, the combined NDVI time series 
were smoothed using the locally linear regression smoothing technique [40]. 

2.2.3. Land Cover Data 
The main objective of this study was to distinguish rubber plantations from other 

tropical tree species. Therefore, we used the Hainan land cover dataset from “Chi-
naCover2020” to mask non-forest land (Figure 3). The “ChinaCover” product was gener-
ated based on an object-based approach [41,42], and the latest version is “Chi-
naCover2020” with a 10 m resolution. The classification accuracy of the Hainan land cover 
dataset was evaluated using 1200 independent ground survey samples (712 samples for 
forest and 488 for non-forest) that were collected using a random sampling approach [43]. 
The producer’s accuracy and user’s accuracy for the forest category were higher than 95%. 
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Therefore, the forest map can serve as a reliable base dataset for rubber plantations’ de-
lineation. 

2.2.4. Rubber Plantations’ Area Data from Statistical Yearbook 
The Statistical Bureau of Hainan Province (SBHP) published annual reports on the 

rubber plantations’ statistical data [44]. The data on rubber plantations were from the Sta-
tistical Survey System on Agriculture, Forestry, Animal Husbandry and Fishery of Hainan 
Province. Statistical departments at all levels collected data by means of sample surveys, 
key surveys, or comprehensive surveys and reported them layer by layer according to the 
actual local conditions. 

The area of rubber plantations was recorded for each of the 18 counties in Hainan 
Province. According to the statistical yearbook, in 2020, the rubber plantation area was 
5316.72 km2. In this study, this dataset was used to assess the accuracy of the resultant 
rubber plantation map at the county level. 

2.2.5. Field Survey Data 
Two field works were conducted in August 2017 and October 2020. The primary pur-

pose of the field surveys was to collect samples for updating the “ChinaCover” product. 
As shown in Figure 1, the field surveys cover all counties in Hainan Province. The refer-
ence samples were selected following two rules: the samples were located at the center of 
homogeneous forest patches, and all the trees in a plot were mature forests. 

The typical tropical tree species in Hainan Province are Rubber tree, Eucalyptus, Li-
tchi, Coconut Palm, Areca Palm, and Casuarina. In addition, the natural forest is mainly 
distributed in the central mountainous areas of Hainan, which the field surveys did not 
cover, so we collected the natural forest samples from the high-resolution images in 
Google Earth, as shown in Figure 1. 

In total, 2604 reference samples were collected. All samples were divided into two 
sets, one designed for training and the other for assessing classification accuracy. For con-
venience, coded names were given for each tree species, as shown in Table 1. 

Table 1. Number of training and validating samples. 

Coded Name Tree Species Training Samples Validating Samples Total 
RT Rubber tree 150 200 350 
LC Lychee 150 225 375 
CA Casuarina 150 191 341 
CP Coconut Palm 150 218 368 
EU Eucalyptus 150 221 371 
AP Areca Palm 150 212 362 
NF Natural forest 150 287 437 

 Total 1050 1554 2604 

2.3. Experimental Design 
A comprehensive overview of this study is shown in Figure 4. First, the temporal 

behaviors based on MODIS-NDVI were studied to delineate the phenological features of 
rubber trees and determine the timing of the four phenological stages. Next, phenology-
based image compositing was used to generate four Sentinel-2 composites, and 15 dataset 
groups were generated with different phenological stage combinations. Then, using the 
random forest classifier and Jeffries Matusita distance, the classification accuracy and class 
separability were analyzed for the 15 dataset groups. After that, the spatial distribution of 
the resultant rubber plantation map was further validated based on the Statistical Yearbook 
of Hainan Province in 2020. At last, the mean decrease in accuracy was used to assess the 
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feature importance of Sentinel-2 bands and rubber trees’ phenological stages for rubber 
plantation mapping. 

15 dataset groups

Sentinel-2 Time 
SeriesMODIS-NDVIField Data

Phenological stages 
delineating

Phenological based composites

Phenological traits 
comparison with other 

tree species

Class 
separability

Phenological stage 
importanceBand importance Phenological stage  

combination selection

Resting

Recovery 
growth

Vigorous 
growth

Slowdown 
growth

Double-stage Three-stage All-stageMono-stage

RF classifier J-M distance

Accuracy 
assessmentRubber map Feature 

importance

Hainan 
Yearbook

Statistical data 
validation  

Figure 4. The framework of rubber plantation mapping for the study area using phenology-based 
Sentinel-2 composites. 

2.4. Methodology 
2.4.1. Phenology-Based Image Compositing 

Image compositing is an approach to reduce a series of images into a single image 
[45]. Recently, it has been introduced to generate cloud-free Sentinel-2 composite datasets 
at large scales [46,47]. Additionally, the phenological and seasonal Sentinel-2 composites 
have been used for tree species mapping [29]. 

In this study, we adopted the technique of median compositing to generate compo-
siting images for each Sentinel-2 tile and phenological stage. The temporal intervals in the 
compositing process were set following the timing of the corresponding phenological 
stages, which will be presented in Section 3.1. When there was no good-quality observa-
tion during the phenological stage, we filled the data gap with the nearest good-quality 
observation in the Sentinel-2 time series. At last, four Hainan Sentinel-2 composites were 
generated based on the seamless mosaic tool in ENVI 5.3. The four composites were 
named as ① Resting, ② Recovery, ③ Vigorous, and ④ Slowdown, respectively, corre-
sponding to the four phenological stages. 

To further evaluate the importance of the different phenological stages and the po-
tential of multistage combinations for rubber plantation mapping, the four Hainan Senti-
nel-2 composites were rearranged as 15 dataset groups: four mono-stage images, six dou-
ble-stage combinations, four three-stage combinations, and one all-stage combination. For 
convenience, the 15 dataset groups were named by the serial numbers of the correspond-
ing phenological stages. Taking the all-stage combination as an example, it was called 
①②③④ for short. 
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2.4.2. Class Separability Based on Jeffries Matusita Distance 
The performance of the 15 dataset groups in separating rubber trees from other tree 

species was assessed using the Jeffries Matusita (JM) distance in this study. The JM dis-
tance is the average distance between two class density functions, and it can be calculated 
as [48]: 

𝐽𝐽𝐽𝐽𝑖𝑖𝑖𝑖 = 2�1 − 𝑒𝑒−𝐵𝐵𝑖𝑖𝑖𝑖� (1) 

where the 𝐵𝐵𝑖𝑖𝑖𝑖  is Bhattacharyya distance as 

𝐵𝐵𝑖𝑖𝑖𝑖 =
1
8
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𝑐𝑐𝑖𝑖 + 𝑐𝑐𝑖𝑖
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−1
�𝜇𝜇𝑖𝑖 − 𝜇𝜇𝑖𝑖� +

1
2
𝑙𝑙𝑙𝑙 �

1
2

det (𝑐𝑐𝑖𝑖 + 𝑐𝑐𝑖𝑖)

�det (𝑐𝑐𝑖𝑖)det (𝑐𝑐𝑖𝑖)
� (2) 

where 𝜇𝜇𝑖𝑖 and 𝑐𝑐𝑖𝑖 are the mean and covariance matrix of the i-th category. The JM distance 
is a parametric test, ranging between 0 and 2. It provides an easy comparison of class 
separability, with 0 indicating no separability and 2 complete separation. 

2.4.3. Random Forest Classifier and Feature Importance 
In this study, the random forest (RF) classifier was used to map rubber plantations. 

RF is a supervised machine learning algorithm for classification and regression. It is an 
ensemble of decision trees, which are constructed based on the bootstrap aggregated sam-
pling (bagging). RF takes the majority vote of the decision trees for classification. In this 
study, the randomForest package in the software R was employed to build the RF model 
[49]. Unified parameters were set in the RF model for all 15 dataset groups. The number 
of features for each split (parameter mtry) was set as the square root of the total feature 
number. The number of decision trees (ntree) in the RF model was set to 500, as this value 
was commonly used for remote sensing classification [29]. 

In addition, the mean decrease in accuracy (MDA) was used to assess the importance 
of the 10 Sentinel-2 bands and four phenological stages for rubber plantation discrimina-
tion. MDA, also known as permutation importance, is one of the most efficient feature 
importance measures for the random forest. 

2.4.4. Accuracy Assessment 
To assess the performance of Sentinel-2 images on rubber plantations discrimination, 

we carried out two levels of classification accuracy. (1) Confusion matrix based on the 
validating samples, with the estimated user’s accuracy (UA), producer’s (PA) accuracy, 
and F1 score; (2) statistical data validation at the county scale. 

3. Results 
3.1. Phenological Stages Delineation of Rubber Trees 

The temporal profile of rubber trees from 2019 to 2021 was plotted based on the 
MODIS-NDVI, as shown in Figure 5. The blue and orange curves represent the original 
and smoothed NDVI time series. The troughs of the smoothed curve are indicated with 
red arrows and the corresponding dates. 

In Figure 5, the four phenological stages are labeled by the corresponding numbers, 
and the vertical blue dotted lines separate the timings of the stages. The resting stage lasts 
for about 50 days [50]. During this stage, the old leaves of rubber trees have turned red 
and yellow, and concentrate on falling off the rubber trees. According to the long-term 
collection of fallen leaves on a field, the amount of fallen leaves accounts for more than 
70% of the whole year [50]. In this study, the resting stage’s start date and end date were 
set 25 days before and after the dates of troughs. In the recovery growth stage, the rubber 
trees sprout new leaves, and the first awning leaves complete the process of leaf develop-
ment. During this stage, the number of leaves accounts for about 70% of the whole year 
[20]. This stage lasts for about 50 days after the resting stage. The slowdown growth stage 
lasts for about 50 days before the resting stage. In this stage, affected by cold air masses, 
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the rubber trees gradually enter the defoliation period. The rubber growth tends to stop, 
and the old leaves begin to turn red. The vigorous growth stage is the longest stage in the 
rubber trees’ growth cycle, lasting for about 210 days, from middle May to late November. 
In this stage, the rubber trees’ leaf area index maintains a high level. The main causes of 
NDVI fluctuation are atmospheric conditions and precipitation. 

 
Figure 5. MODIS-NDVI variation curves for rubber plantations from 2019 to 2021. ①: Resting stage, 
②: Recovery growth stage, ③: Vigorous growth stage, ④: Slowdown growth stage. 

3.2. Separability between Rubber Trees and Other Tree Species 
Table 2 shows the J m distance between rubber trees and other tree species. In this 

study, we separated the J m distance into four levels and marked it with different colors: 
strong (1.9–2.0, blue), good (1.8–1.9, green), weak (1.7–1.8, yellow), and poor (<1.7, pink). 
Taking the dataset group ①③ (combination of the resting stage and vigorous growth 
stage) as an example, the J m distance between rubber trees and Lychee was 1.85, corre-
sponding to the level of good separability. 

The J m distance in Table 2 varied greatly with tree species and dataset groups (phe-
nological stage combination). Casuarina and Coconut Palm were most easily distinguish-
able from rubber trees among the six tree species. For all the 15 dataset groups, the J m 
distances were larger than 1.9, which indicates strong separability. As for natural forest, 
when the dataset groups contained two or more phenological stages, it was easily distin-
guishable from rubber trees with strong separability. However, when only one phenolog-
ical stage was contained, the separability between natural forest and rubber trees was less 
than 1.8, corresponding to weak or poor separability. As for Lychee, Areca Palm, and Eu-
calyptus, when three or more phenological stages were contained, the J m distance was at 
the level of strong separability. When a single phenological stage was contained, the J m 
distance was less than 1.7, and these three tree species were difficult to distinguish from 
rubber trees. 

A J m distance larger than 1.8 is regarded as satisfactory discrimination between dif-
ferent classes. In general, based on Sentinel-2 data, any combination of two phenological 
stages was good enough for distinguishing rubber plantations from the other six tree spe-
cies. 
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Table 2. Class separability between rubber trees and other tree species based on J m distance. 

Tree species LC CA CP EU AP NF 
① 1.50  1.98  1.96  1.21  1.62  1.70  
② 1.58  1.97  1.98  1.57  1.67  1.77  
③ 1.47  1.98  1.97  1.41  1.63  1.74  
④ 1.59  1.98  1.98  1.41  1.58  1.68  
①② 1.88  1.99  1.99  1.84  1.93  1.96  
①③ 1.85  1.99  1.99  1.80  1.91  1.93  
①④ 1.86  1.99  1.99  1.84  1.89  1.95  
②③ 1.86  1.99  1.99  1.87  1.90  1.94  
②④ 1.88  1.99  1.99  1.89  1.88  1.96  
③④ 1.87  1.99  1.99  1.86  1.86  1.93  
①②③ 1.96  1.99  1.99  1.97  1.97  1.99  
①②④ 1.97  1.99  1.99  1.97  1.98  1.99  
①③④ 1.96  1.99  1.99  1.96  1.97  1.99  
②③④ 1.96  1.99  1.99  1.96  1.98  1.99  
①②③④ 1.99  1.99  1.99  1.99  1.99  1.99  

. LC: Lychee, CA: 
Casuarina, CP: Coconut Palm, EU: Eucalyptus, AP: Areca Palm, NF: Natural Forest. ①: Resting 
stage, ②: Recovery growth stage, ③: Vigorous growth stage, ④: Slowdown growth stage. 

3.3. Accuracy Assessment Using Survey Data 
The rubber plantation mapping results based on the 15 dataset groups were validated 

using the 1554 validating samples. The measures UA, PA, F1 score, and true positive (TP) 
for rubber plantations are shown in Table 3. In addition, the sources of commission and 
omission errors for rubber plantations are also included in Table 3. 

Judging by the UA, PA, and F1 score, it was apparent that the dataset group of all-
stage combination (①②③④) was superior to other 14 dataset groups. The UA, PA, and 
F1 score for rubber plantations were 81.0%, 81.4%, and 0.83, respectively. The best dataset 
group with three phenological stages was the combination of the resting, recovery growth, 
and slowdown growth stage (①②④), with a UA, PA, F1, and true positive of 79%, 
83.6%, 0.81, and 158, respectively. The best dataset group with two phenological stages 
was the combination of recovery growth and slowdown growth stage (②④), with a UA, 
PA, F1, and true positive of 78.5%, 80.5%, 0.79, and 157, respectively. In general, the more 
phenological stage in the dataset group, the higher the F1 score. However, when the da-
taset group contained more than three phenological stages, the difference in mapping ac-
curacy was slight. 

As to the four mono-stage dataset groups, the recovery growth stage (②) performed 
best with a UA, PA, F1, and true positive of 77.5%, 79.1%, 0.78, and 155, while the resting 
stage (①) performed worst with a UA, PA, F1, and true positive of 71%, 73.1%, 0.72 and 
142, respectively. 

The commission and omission errors were mainly from Eucalyptus and Areca Palm, 
accounting for about two-thirds of the total errors. The rest of the classification errors were 
from Lychee and the natural forest. The classification errors from Casuarina and Coconut 
Palm were negligible. 

  

J-M distance <1.7 poor 1.7~1.8 weak 1.8~1.9 good >1.9 strong
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Table 3. Accuracy assessment of rubber plantation mapping results. 

Tree  LC CA CP EU AP NF RT 
Species EC/EO EC/EO EC/EO EC/EO EC/EO EC/EO TP PA% UA F1 
① 10/5 1/0 1/1 18/26 14/8 14/12 142 71.00% 73.10% 0.72  
② 6/5 0/1 0/0 16/13 14/14 9/8 155 77.50% 79.10% 0.78  
③ 13/9 1/1 1/2 18/15 11/11 6/2 150 75.00% 78.90% 0.77  
④ 14/5 2/0 1/1 22/19 6/9 10/16 145 72.50% 73.20% 0.73  
①② 8/5 0/0 1/1 12/13 14/14 8/11 157 77.50% 78.10% 0.78  
①③ 8/3 0/0 2/1 14/12 14/16 7/9 156 78.00% 78.80% 0.78  
①④ 12/2 1/0 1/0 22/14 11/13 5/11 148 74.00% 78.70% 0.76  
②③ 9/3 0/0 0/0 15/14 15/13 7/7 154 77.00% 80.60% 0.79  
②④ 9/3 0/0 0/0 14/17 14/12 6/6 157 78.50% 80.50% 0.79  
③④ 15/6 0/0 1/0 18/17 6/4 10/5 150 75.00% 82.40% 0.79  
①②③ 7/3 0/0 0/1 13/14 16/12 7/5 157 78.50% 81.80% 0.80  
①②④ 8/3 0/0 0/0 12/15 16/10 6/3 158 79.00% 83.60% 0.81  
①③④ 10/2 0/0 0/1 20/12 10/10 7/8 153 76.50% 82.30% 0.79  
②③④ 8/2 0/1 0/0 13/15 16/8 8/2 155 77.50% 84.70% 0.81  
①②③④ 7/3 0/0 0/0 13/12 12/12 6/3 162 81.00% 84.40% 0.83  

EC: errors of commission, EO: errors of omission, TP: true positive, PA: producer’s accuracy, UA: 
user’s accuracy, F1: F1 score; LC: Lychee, CA: Casuarina, CP: Coconut Palm, EU: Eucalyptus, AP: 
Areca Palm, NF: Natural Forest, RT: Rubber tree; ①: Resting stage, ②: Recovery growth stage, ③: 
Vigorous growth stage, ④: Slowdown growth stage. 

3.4. Rubber Plantation Map and Statistical Data Validation 
The result of the rubber plantation map based on the all-stage combination dataset 

group (①②③④) is shown in Figure 6. The distribution of rubber plantations was in 
good agreement with the resultant maps in previous studies [13,15,16,18]. 

The codes labeled in Figure 6 correspond to the 18 counties in Hainan Province, and 
the one-to-one correspondence is shown in Table 4. The densest rubber plantation area 
was located in the northwest of Hainan Province, including the counties of Danzhou (3), 
Chengmai (11), Lingao (12), and Baisha (13), where there is the largest natural rubber pro-
duction base in Hainan Province. The numbers behind the counties correspond to the 
codes in Figure 6. 

The spatial distribution of the resultant map was further validated based on the Sta-
tistical Yearbook of Hainan Province in 2020. This study estimated the rubber plantation area 
of Hainan in 2020 was approximately 5473 km2, which is about 2.93% higher than the 2020 
statistical data (5316 km2). Additionally, a county-level comparison of rubber plantation 
area between this study and the statistical yearbook is shown in Table 4. The 18 counties 
were sorted based on the rubber plantation area estimated in this work. In Table 5, the 
accuracy at the county level was calculated as follows: 

Accuracy = �1 −
𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷𝑒𝑒𝑙𝑙𝑐𝑐𝑒𝑒)

𝑌𝑌𝑒𝑒𝑎𝑎𝐷𝐷𝑎𝑎𝑌𝑌𝑌𝑌𝑌𝑌
� × 100 (3) 

where the operator 𝑎𝑎𝑎𝑎𝑎𝑎() denotes the absolute value, and the area weight is the propor-
tion of each county’s total Hainan Province area. The area-weighted accuracy in total is 
the sum of the area-weighted accuracy for each county. The accuracy of the rubber plan-
tations area at the county level ranged from 48.24% in Lingshui (16) to 95.09% in 
Chengmai (11). In total, the accuracy was as high as 97.05%, and the area-weighted accu-
racy was 82.47. Therefore, it could be concluded that the resultant map of rubber planta-
tions had high accuracy in county-level spatial distribution. 
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Figure 6. Spatial distribution of rubber plantations in Hainan Province in 2020. 

Table 4. Accuracy assessment at the county level using statistical data. 

ID County 
Our Work  Yearbook Difference Accuracy 

Area Weight 
Area-Weighted  

(km2) (km2) (km2) (%) Accuracy  
3 Danzhou 1055.07  870.84  184.23  78.84  0.10  7.88  

18 Qiongzhong 595.91  559.12  36.79  93.42  0.08  7.47  
13 Baisha 579.16  632.81  −53.65  91.52  0.06  5.49  
11 Chengmai 483.52  508.47  −24.95  95.09  0.06  5.71  
15 Ledong 356.14  315.88  40.26  87.25  0.08  6.98  
12 Lingao 322.54  219.91  102.63  53.33  0.04  2.13  
5 Qionghai 314.61  350.46  −35.85  89.77  0.05  4.49  

10 Tunchang 279.10  364.67  −85.57  76.53  0.04  3.06  
7 Wanning 228.17  265.62  −37.45  85.90  0.06  5.15  

14 Chanjiang 205.56  153.60  51.96  66.17  0.05  3.31  
17 Baoting 187.25  224.79  −37.54  83.30  0.03  2.50  
4 Wuzhishan 186.59  161.38  25.21  84.38  0.03  2.53  
9 Dingan 174.33  205.62  −31.29  84.78  0.04  3.39  
2 Sanya 156.48  122.54  33.94  72.30  0.05  3.62  
1 Haikou 136.16  161.38  −25.22  84.37  0.06  5.06  
8 Dongfang 94.62  99.89  -5.27  94.72  0.07  6.63  

16 Lingshui 81.22  53.52  27.70  48.24  0.03  1.45  
6 Wenchang 37.04  46.22  −9.18  80.14  0.07  5.61  
 Total 5473.47 5316.72 156.75 97.05  82.47 
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Table 5. Feature importance for S2 bands and rubber tree phenological phases. 

  Resting Recovery Vigorous Slowdown Sum 

Visible 
B2 17.64 16.65 7.67 14.01 55.97 
B3 13.74 16.03 8.23 11.13 49.14 
B4 13.62 13.79 4.97 12.74 45.11 

Red edge 
B5 8.12 8.39 4.53 7.26 28.29 
B6 3.91 9.64 13.72 8.52 35.79 
B7 3.08 11.09 12.98 5.53 32.69 

NIR 
B8 3.4 8.92 11.06 5.18 28.55 

B8A 3.77 9.15 10.44 4.65 28.01 

SWIR 
B11 4.96 8.55 14.21 13.28 41.02 
B12 4.46 7.67 10.95 9.63 32.71 

Sum 76.71 109.88 98.76 91.92   
 

3.5. Feature Importance 
Table 5 shows the feature importance for the rubber tree discrimination that em-

ployed all four phenological stages (dataset group ①②③④). The colored cells denote 
the MDA values for each feature. The bottom row in Table 5 shows the sum of the feature 
importance for each phenological stage, and the last column offers the sum of the feature 
importance for each Sentinel-2 band. 

The recovery growth stage was the most important phase, with a cumulative MDA 
of 109.88, followed by the vigorous and slowdown growth stages, with an MDA of 98.76 
and 91.72, respectively. The resting stage was the least important phase with an MDA of 
76.71. 

The visible bands were much more important in the resting, recovery growth, and 
slowdown growth stages than in the vigorous growth stage. The SWIR bands showed 
much higher feature importance in the vigorous growth and slowdown growth stages 
than in the resting and recovery growth stages. Two red-edge bands (B6, B7) and the two 
NIR bands showed higher feature importance in the recovery growth and vigorous 
growth stages than in the resting and slowdown growth stages. Only the red-edge band 
B5 always had low importance values during all four phenological stages. 

The importance of each Sentinel-2 band was uneven when summarized over the four 
phenological stages. The three visible bands (B2, B3, and B4) were the most important, 
followed by the two SWIR bands (B11 and B12) and red-edge band B6. The remaining 
bands in the red-edge region (B5 and B7) and the NIR region (B8 and B8A) showed low 
importance values. 

4. Discussion 
4.1. Capability of Sentinel-2 for Rubber Plantation Mapping 

Xiao et al. [9] have presented the potential for mapping rubber plantations at a re-
gional scale from three advantages of Sentinel-2 imagery, i.e., the three red-edge bands, 
10/20 m spatial resolution, and 5 days’ revisiting time. The study area of this study [9] is 
a relatively small area, which facilitates the selection of cloud-free imagery. However, for 
a large area such as Hainan Province, with complex vegetation landscapes and frequent 
cloudy weather, the capability of Sentinel-2 for rubber plantation mapping needs to be 
further explored. 

New in this study was the phenology-based image compositing for rubber tree dis-
crimination. Recent studies have reported the advantages of time series images [28,29] or 
phenological features [51] for tree species classification. Compared to these studies, our 
approach is more suitable for rubber plantation mapping in a large area. 
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First, image compositing is necessary due to the high probability of CC in Hainan 
Province. The convolution filter to generate gap-free time series [28] is not recommended 
if the study area has high CC values as the Hainan Province. Due to climatological gradi-
ents and orbit swath overlaps, large areas exhibit higher variability in data availability 
[52,53]. In this case, image compositing with the same time intervals for different Sentinel-
2 tiles can ensure the effectiveness of the rubber tree identification model for the whole 
area. 

Second, the time intervals of image composition are set according to the timings of 
the rubber trees’ phenological stages. The timings of the phenological stages are deter-
mined based on the smoothed annual MODIS-NDVI curve. For tree species classification, 
it has been highlighted that input features should be chosen according to the considered 
species and their phenological characteristics in order to include key phenological stages 
that enhance their separability [29]. However, the phenology of rubber trees is highly sen-
sitive to climate change, particularly rainfall and temperature [25,54,55]. The changes in 
climatic factors may delay or advance the defoliation period. As shown in Section 3.1, the 
timings of the phenological stages change over the three years. Additionally, the durations 
of the slowdown growth, resting, and recovery growth stages are short. Therefore, the 
three-monthly or seasonal compositing techniques [29] are unsuitable for rubber tree 
mapping. 

Third, phenological features (e.g., the start time of the phenological stage and length 
of the growing season) have proven helpful in tree species classification [51]. However, 
these metrics have rarely been utilized in rubber tree mapping. The main reason is still 
the frequent cloudy weather in the distribution areas of the rubber trees. With poor tem-
poral accuracy, the derived phenological features could have little impact on rubber tree 
mapping accuracy. 

4.2. Phenological Stage Importance 
Regarding the importance of phenological stage for rubber tree mapping, based on 

the J m distance in Table 2, the MDA in Table 5, and the F1-score in Table 3, it can be 
concluded that the recovery growth stage plays the most important role, while the resting 
phase plays the least important. 

The importance of the phenological stage is directly associated with phenological 
events (or status) of rubber trees and other tree species. In the recovery growth stage, for 
rubber plantations, the canopy recovers with new leaves’ emergence and formation, while 
for other tree species, many leaves fall off trees due to spring drought. Shi et al. [56] ana-
lyzed the seasonal dynamics of litterfall production of tropical natural forests in Hainan 
Province. Results showed that spring (March and April) was one of the two peak seasons 
for litterfall production, and the main influencing factor was drought. In general, new 
leaves have higher chlorophyll contents than old leaves. The differences in phenological 
traits between leaf on and leaf off, coupled with the spectral differences between fresh 
leaves and old leaves, are the main reasons for the most important role of the recovery 
growth stage. 

Unexpectedly, the resting stage plays the least important role among the four pheno-
logical stages. As almost all the leaves of rubber trees drop off in the resting stage, it was 
regarded as the optimal time window or the key phenological stage for mapping rubber 
trees [8,9,23]. The reason for the least important role of the resting stage could be twofold: 
understory vegetation in rubber plantations or unsynchronized phenology of rubber 
trees. Chen et al. [18] also noted they were the two important factors that affect the rubber 
tree mapping accuracy. In the resting stage, the canopy’s opening accelerates the growth 
of understory vegetation. The mixture of understory vegetation and withered leaves 
makes the spectrum signature of rubber plantations uncertain. As for the unsynchronized 
phenology, Hu et al. reported that the spatial characteristics of rubber tree phenology 
were consistent with the spatial distribution of terrain and elevation in Hainan Province 
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[57]. Chen et al. [18] noted that the phenology of rubber trees was closely related to the 
factors of stand age, site-specific environment, etc. 

The least important role of the resting stage may change if the texture features based 
on high spatial resolution images are considered for rubber tree mapping. The forest tex-
ture is closely related to the canopy structure, which is defined by foliage properties and 
branch arrangement [58]. In the resting phase, the defoliation of rubber trees exposes 
crown branches and increases canopy roughness. While for other tree species, leaves still 
dominate the crown. These differences enhance the separability between rubber trees and 
other tree species. 

4.3. Band Importance 
The feature importance of Sentinel-2 bands for rubber tree mapping partly agrees 

with previous studies using Sentinel-2 for tree species classification [26,29,31,33,59]. It 
should be noted that in previous studies, band importance was calculated for all tree spe-
cies, but in this study, feature importance was quantified specifically for rubber trees. In 
this study, the band importance in different phenological stages can be associated with 
phenological events of rubber trees. 

In the vigorous growth stage, all the tree species have lush foliage. The red-edge 
bands B6 and B7, the two NIR bands, and the two SWIR bands play important roles with 
high MDA values, which agree well with the results in [26,31,33,59]. Immitzer et al. [33] 
and Nelson et al. [59] reported that the red-edge bands B6 and B7, the narrow NIR band, 
and the SWIR 2 band were among the most important bands. Persson et al. [26] also re-
ported that the two SWIR bands were among the highest-ranked bands. The red band (B4) 
and red-edge band (B5) showed the lowest importance, which partly agrees with the pre-
vious results that the red band of a summer acquisition ranked considerably lower than 
most other summer bands [29,31,32]. 

In the slowdown growth stage, the leaves of rubber trees gradually turn red and yel-
low, but for other tree species, the leaves are still green. The red-edge bands B6, B7, and 
the two NIR bands turn less important, while the SWIR band B11 still shows the second-
highest importance. This result is also confirmed by Koller et al., that the SWIR region is 
especially sensitive to leaf water content, implying that species-specific dynamics of leaf 
water content during phases of phenological transition help to discriminate tree species 
[29]. The three visible bands (B2, B3, and B4) play important roles in the slowdown growth 
stage, since the difference between the yellow (or red) leaves and the green leaves is visible 
to the naked eye. 

In the resting stage, as discussed in Section 4.2, the spectral signatures of rubber plan-
tations are actually from the mixture of understory vegetation and withered leaves. Due 
to the uncertainty of the mixing ratio, the bands from red-edge to SWIR further decline in 
importance; however, the three visible bands show higher importance. 

In the recovery growth stage, new green leaves are gradually restored in the canopy. 
Due to the clear difference between fresh leaves and old leaves in the visible region, the 
three visible bands remain the top three important features. This result is also confirmed 
by Persson et al., that the blue and green bands from May were in the top seven highest-
ranked bands [26]. In addition, Immitzer et al. showed the importance of the blue band 
[33], and Nelson reported that the red band was more important, probably since an image 
from early May was included [59]. 

4.4. Research Limitations and Prospects 
(1) Previous studies [28,29,60] have confirmed the usefulness of vegetation indices (such 

as NDVI and EVI) for tree species classification. In the scope of rubber tree mapping, 
the spectral-indices-based decision trees have been used to discriminate rubber trees 
from natural forests. It can be expected that the spectral indices are helpful for rubber 
tree mapping. In addition, several red-edge-related spectral indices can be obtained 
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based on Sentinel-2 imagery [61], and the importance of red-edge bands can be ex-
plored deeply. 

(2) In this study, based on the RF algorithm, the MDA was used to evaluate the feature 
importance of the phenological stages and the Sentinel-2 bands for rubber plantation 
discrimination. However, the selection of features with high importance does not 
warrant that this is the best set of features for a given problem [62]. Features with 
high correlation may reduce the reliability of the RF-based MDA importance, and 
have a negative effect on the feature selection. Different solutions have been pro-
posed to overcome some of the known flaws of MDA [63], and several methods have 
been proposed to select the optimal subset of features [64]. These techniques have 
been used in forest parameter monitoring, such as tree species diversity [65], growing 
stock volume [66], and forest stand parameters [66]. However, the impacts of de-
pendent input features on the RF-based MDA importance for tree species classifica-
tion have not been discussed. In this study, there is no doubt that there is a high 
correlation between the Sentinel-2 imageries with adjacent phenological stages. In 
addition, the adjacent bands of Sentinel-2 data are possibly correlated to each other 
because of the continuity of the bands. Therefore, the feature importance of the phe-
nological stages and the Sentinel-2 bands for rubber tree discrimination needs to be 
explored deeply in the future. 

(3) In this study, the four Hainan Sentinel-2 composites were generated based on image-
ries of three years due to the high cloud cover. This technique is time-consuming and 
easily affected by the frequent deforestation and reforestation in Hainan Province. 
Our results showed that any dataset group with two phenological stages was suffi-
cient for rubber tree mapping. Actually, for each Sentinel-2 tile, it is achievable to 
composite two cloud-free images annually with different phenological stages. There-
fore, based on the four Hainan Sentinel-2 composites, future studies should tap the 
potential of dataset groups with double phenological stages. Standardizing the rule 
sets for identifying rubber plantations, especially in decision trees, could facilitate the 
rubber plantation mapping annually. 

(4) As we know, the first Sentinel-2 satellite was launched in 2015. If we want to map the 
rubber plantations in Hainan Province before the Sentinel-2 data was available, we 
still have to resort to Landsat series data. Given the high cloud cover in Hainan Prov-
ince and the 16-day repeat cycle of Landsat satellites, it is tough to generate four Hai-
nan compositing Landsat images corresponding to the four phenological stages. Re-
cent studies have shown the harmonization of Landsat and Sentinel-2 data [67], and 
the combination of Sentinel-2 and Landsat for land surface phenology characterizing 
[68,69]. Therefore, simulated Hainan Landsat images can be generated by adjusting 
Sentinel-2 radiometry to replicate the spectral bandpasses of Landsat 5/TM or 8/OLI 
for the bands common to both sensors. In the future, the rubber tree mapping model 
based on the simulated Landsat images should be explored and will be used to mon-
itor the dynamics of rubber plantations during 1990–2020. 

5. Conclusions 
Knowledge of the spatial extent of rubber plantations at a regional scale is significant 

to ensure the sustainability of the natural rubber industry and ecological conservation. 
This work used three years of Sentinel-2 data to map rubber plantations in Hainan Prov-
ince, China. Unlike previous studies, six tropical tree species were involved in being dis-
tinguished from rubber trees, and the growth cycle of rubber trees was divided into four 
stages: resting, recovery growth, vigorous growth, and slowdown growth stage. A de-
tailed MODIS-NDVI curve was used to determine the timings of the four phenological 
stages, and accordingly, four Sentinel-2 composites were generated. The random forest 
classifier and the four phenological stage composites were used to identify rubber trees. 
The capability of phenology-based Sentinel-2 composites for mapping rubber plantations 
was shown in two levels of classification accuracy: the F1 score based on survey samples 
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was 0.83, and the area-weighted accuracy at the county level based on the Statistical Year-
book of Hainan Province was 82.47%. 

Although our study demonstrated the capability of the phenology-based Sentinel-2 
image compositing approach for mapping rubber plantations, it is time-consuming and 
easily affected by frequent deforestation and reforestation. In the future, the utilization of 
vegetation indices and red-edge-related spectral indices will be specifically addressed. 
Rule-based decision trees should be built for any two phenological stages to facilitate the 
rubber plantation mapping annually. Moreover, based on the four compositing images in 
this work, the potential of Landsat data in mapping rubber plantations deserves further 
exploration. 
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