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Abstract: The navigation of future interplanetary spacecraft will require an increasing degree of
autonomy to enhance space system performance. A real-time trajectory determination is of paramount
importance to reduce the risks of operations devoted to the exploration of celestial bodies in the solar
system and to reduce the dependence and the loading on the ground systems. We present a technique
for a sequential estimation of spacecraft orbits through the processing of line-of-sight relative velocity
measurements that are acquired by the novel inter-satellite tracking system. This estimation scheme
is based on the extended Kalman filter and is tested and validated in a realistic Mars mission scenario.
Our numerical simulations suggest that the proposed navigation system can provide accuracies of a
few meters in position and a few millimeters per second in velocity.

Keywords: autonomous navigation; inter-satellite tracking; sequential estimation; deep space navi-
gation; Mars mission

1. Introduction

The navigation of deep space probes has traditionally relied on radio tracking data
acquired by ground-based stations [1]. To enable tracking and navigation capabilities,
interplanetary spacecraft are equipped with onboard telecommunication systems that
allow the establishment of radio frequency links with ground stations. The measurements
of the spacecraft’s relative position (range) and velocity (range-rate) with respect to the
station can be derived by observing the properties of the radio signals received on the
ground. Deep space navigation is then accomplished by analyzing these radiometric data
in the precise orbit determination (POD) process, which provides a refined estimate of the
spacecraft trajectory by fitting the data through a thorough modeling of the dynamics and
the radio measurements.

Deep space radio tracking data are collected by ground stations and processed on
the ground. Autonomous navigation systems will require the processing of data onboard
the spacecraft to enable deep space operations. A real-time trajectory determination can
improve the reliability of the navigation system during critical mission phases, including
aerobraking maneuvers [2], celestial bodies approach and landing [3,4], planetary flyby [5],
or orbital insertion maneuvers. This capability would also enable mission cost savings by
significantly reducing ground station operations.

Alternative methods of interplanetary spacecraft navigation are obtained through
the acquisition and processing of imaging data [6], star sensors assisted by light beacons
mounted on the observed spacecraft [7], and inter-satellite ranging radio systems that
measure the relative distance between two satellites [8,9].

Optical data support autonomous navigation systems, as demonstrated by the two
asteroid sample return missions, OSIRIS-REx [10] and Hayabusa 2 [11]. The image-based
navigation system used for OSIRIS-REx relies on Natural Feature Tracking (NFT), which
compares observed images to digital elevation models of the asteroid (101955) Bennu
available on the computer onboard [12]. The Hayabusa 2 flight system enables the tracking
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of artificial landmarks, called Target Markers [13], which were previously deployed on the
surface of the asteroid (162173) Ryugu [14]. Other techniques for spacecraft autonomous
navigation have been proposed in the literature, accounting for celestial bodies observations
that may provide information on the spacecraft’s relative position and velocity. Yim
et al. [15] proposed an autonomous navigation system based on measurements of the
Doppler shift induced by the relative motion of the spacecraft with respect to the Sun.
These data are collected by an onboard spectrometer that images the light of the Sun
and measures the shift induced by the relative velocity on the received spectral lines.
Bradley et al. [16] developed a navigation scheme based on the optical data collected by
observing lunar landmarks, artificial satellites, and asteroids. Other concepts are based on
the observation of the highly stable and predictable signals emitted by X-ray pulsars. This
concept is based on accurate measurements of the time of arrival of the pulsar’s signal at a
detector hosted onboard the spacecraft [17]. By comparing this measurement with the time
of arrival of the signal at a reference point (e.g., the Solar System barycenter) predicted by a
model of the pulsar, the position of the spacecraft with respect to the reference point can be
constrained. The simultaneous observation of three different pulsars can be used to resolve
the absolute position of the spacecraft. Variations of this concept include the measurement
of the difference in the time of arrival between two or more spacecraft [18,19], proposed to
reduce the errors associated with the uncertainty in the knowledge of the pulsar position.

The scheme of the navigation system presented in this study is based on line-of-sight
(LOS) measurements between two or more spacecraft in orbit about the same celestial
body. The first assessment of this navigation technique was provided by Markley [20],
investigating the observability of the system. The main conclusion of this study was that
the dynamical system is observable in most orbital configurations, except for coplanar
circular orbit geometries. This analysis was carried out by assuming a spherical symmetric
gravity field described by the 1/r2 law only. Psiaki [21] expanded on this work and also
proved that the coplanar geometry is observable if the asymmetries of the central body’s
gravity field generated by the quadrupole terms (e.g., J2) are accounted for. A remarkable
exception occurs for low-inclination orbital configurations.

The LOS measurements involved in spaceborne navigation systems consist of obser-
vations of the relative position, velocity, and angles collected by the instruments onboard
the observer spacecraft. In this work, we propose a navigation system based on accurate
inter-satellite radio tracking by measuring the relative velocity between two spacecraft as
the Doppler shift of the radio signal. This radio system was conceived to combine inter-
satellite radio data with ground-based radio data, leading to significant enhancements in
deep space navigation [22,23]. Radio science investigations can also be conducted by using
this instrument as a scientific payload to yield high-resolution maps of celestial bodies’
gravity fields [24]. Here, we consider the navigation performances of the navigation system
based on the sequential processing of the inter-satellite tracking data only. The a priori
knowledge of the initial state and covariance is provided by ground-based tracking, which
can be combined with inter-satellite tracking to provide a very accurate initial knowledge
of the state [22]. The trajectory is then reconstructed by the sequential processing of LOS
measurements only. To study the performances of this navigation scheme, we implemented
software that sequentially processes the inter-satellite Doppler data through an extended
Kalman filter (EKF). Numerical simulations are carried out by accounting for a mission
scenario of a pair of small satellites in the same near-polar orbit about Mars and a relative
distance of ~300 km. We processed the simulated inter-satellite data in our sequential
POD software to reconstruct the trajectories of both spacecraft and provide uncertainties.
Our method was developed to deal with observability issues caused by measurement and
orbit geometry.

This paper is organized as follows. In Section 2, we introduce the theoretical back-
ground of our work, including the tracking configuration (Section 2.1), our implementation
of the EKF for the autonomous navigation system (Section 2.2), the setup of the numeri-
cal simulations carried out to define the achievable accuracies of the navigation system
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(Section 2.3), and the tuning of the Kalman filter (Section 2.4). In Section 3, we present
an analysis of the system observability (Section 3.1), and the results of the numerical
simulations (Section 3.2). Finally, we provide a summary of the work in Section 4.

2. Data and Methods
2.1. Inter-Satellite Tracking System

The concept of inter-satellite tracking was first proposed by M. Wolff [25] to accurately
measure the gravity field of the Earth. This tracking scheme was successfully employed by
the NASA missions Gravity Recovery and Climate Experiment (GRACE) [26] and Gravity
Recovery and Interior Laboratory (GRAIL) [27] to map with outstanding resolution the
Earth’s [28] and the Moon’s [29] gravity fields, respectively. Highly accurate measurements
collected by the inter-satellite tracking system adopted by these two missions consisted of
satellite-to-satellite range observations and were based on a dual one-way ranging (DOWR)
scheme [30]. The generation of these high-quality observables required an extremely precise
synchronization of the two spacecraft onboard clocks [31]. The GRACE twin satellites were
equipped with Global Positioning System (GPS) receivers to provide accurate time-tagging
to the inter-satellite measurements. Since GPS support is not available in orbit about the
Moon, GRAIL hosted a sophisticated subsystem dedicated to synchronizing the spacecraft
clocks with the ground station clocks [32]. The sub-nanosecond synchronization between
the clocks enabled measurements of the inter-satellite range-rate with an accuracy of
0.03 µm s−1–0.06 µm s−1 [33].

The architecture considered in this work simplifies the design of the tracking system
in order to be compliant with the mass and power constraints of interplanetary missions. A
detailed description of the instrument is provided in [22,24]. One of the two satellites hosts
an Ultra-Stable Oscillator (USO) to establish a two-way radio-frequency link. The inter-
satellite range-rate (i.e., the LOS relative velocity) is measured by observing the Doppler
shift induced by the relative motion between the two satellites. We refer to the spacecraft
that hosts the USO as the observer, while the other one is the observed spacecraft. The error
budget of this Doppler measurement is 0.6 µm s−1 at 10-s integration time, as described in
detail by Genova & Petricca [22].

2.2. Sequential Estimator Based on the Extended Kalman Filter

The standard techniques of deep space radio tracking data processing are based on
least-squares estimators [34] that enable the analysis of range and range-rate measurements
acquired by Earth stations. By combining the tracking data in different batches, this
approach provides an estimation of the parameters of interest at a reference epoch. The set
of the parameters adjusted in the filter includes the position and velocity of the spacecraft,
the quantities that describe the dynamical model of the spacecraft (e.g., gravitational
parameter GM of the central body, spherical harmonics of the gravity field, atmospheric
drag coefficients). The parameter adjustment is obtained by minimizing the difference
(i.e., the observation residuals) between the observed measurements and the observables
computed through the dynamical and measurement models implemented in the filter.

Inter-satellite data can be directly processed onboard, and the approach that is adopted
to analyze these measurements is different compared to ground tracking data. To enable a
real-time estimation of the spacecraft trajectory, sequential processing of the measurements
acquired by the navigation system can be employed to compute a new estimate of the state
vector. This estimation scheme is well-suited for real-time space applications since it is
independent of the system’s state history. The Kalman filter [35] is a class of sequential
processors widely used in engineering applications. If the dynamical system considered is
linear and both measurement and dynamical noise models can be described by Gaussian
probability density functions, the Kalman filter provides the optimal, minimum variance
estimate of the parameters. The non-linearity of the dynamical equations involved in orbital
dynamics requires the linearization of the system and the formulation of the problem
in terms of the estimation of perturbation from a reference state. To reduce the errors
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associated with higher-order terms truncation in the linearization process, the reference
state is updated each time a new measurement is available. This algorithm, referred to as the
extended Kalman filter (EK) used in this work, and its block diagram for the autonomous
navigation system is presented in Figure 1.
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The non-linear dynamical model of spacecraft motion equations is described by:

.
x(t) = F(x, t) + w(t) (1)

where x is the n× 1 state vector, which consists of n parameters adjusted in the filter, includ-
ing spacecraft position and velocity, F(x, t) is the non-linear expression of the dynamical
model, and w(t) is a n× 1 vector that represents the process noise. We assume here that
the state vector is 6× 1 by accounting for position and velocity of the observed spacecraft
only. The measurement model is given by:

zk = hk(xk, tk) + vk (2)

where zk is each inter-satellite Doppler observable acquired at time tk, hk is the non-linear
measurement model, and vk is the observation error. We assume that both the process and
observation noise are zero-mean Gaussian processes, with covariance matrices denoted as
Q and Rk, respectively. The process and measurement noise are,

w ∼ N (0, Q)
vk ∼ N (0, Rk)

(3)

where Q and Rk are retrieved through a thorough tuning of the filter. The quality of
the estimate strongly depends on the modeling of these matrices [36,37], and Section 3.2
describes the method adopted in this study to enable an accurate tuning.
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Equations (1) and (2) are usually linearized by assuming that the state vector is close
to a reference state. By expanding in Taylor series about the reference state and retaining
only first-order terms:

.
x(t) = A(t)x(t) + w(t)

zk = Hkxk + vk
(4)

where A(t) and Hk are the Jacobian matrices of the state and inter-satellite observation
model, respectively. The difference between the observed measurement zk acquired by
the onboard system and the computed observable hk(xk, tk) is the observation residual. The
inter-satellite observation description and equation are provided in [22]. By accounting for
the relevant dynamical and measurement effects, the residuals should resemble a white
Gaussian noise associated with the measurement noise consistent with Rk.

The EKF provides an estimate of the state xk and the associated covariance Pk at each
time tk a new measurement is available. This filter consists of two phases, a prediction (also
known as time update) and a correction (measurement update). In the first phase, the state
and covariance are propagated from the current time step tk to the next time step tk+1. If an
estimate of the state x̂k is available, either from the filter initialization or estimated at the
previous time step, the time update of the state is carried out by integrating the dynamical
equation of the spacecraft:

xk+1 = F(x̂k) (5)

The estimate of the covariance of the state P̂k is mapped out to the next time step by
using the linearized expression involving the state transition matrix Φ(tk+1, tk),

Pk+1 = Φ(tk+1, tk)P̂kΦT(tk+1, tk) + Q (6)

The updated vector xk+1 and associated covariance Pk+1 are known as predicted or
a priori, since they are retrieved through the model integration. The correction phase is
then carried out by refining the predicted values with the measurements collected by the
intersatellite tracking system. The updated estimate of the state x̂k+1 is:

x̂k+1 = xk+1 + Kk+1[zk − hk(xk, tk)] (7)

where the Kalman gain Kk+1 is defined as

Kk+1 = Pk+1HT
k+1

(
Hk+1Pk+1HT

k+1 + Rk+1

)−1
(8)

The estimated covariance P̂k+1 is computed as follows,

P̂k+1 = (I − Kk+1Hk+1)Pk+1 (9)

The estimated values of state and covariance are known as posteriori estimates.
To precisely adjust the spacecraft position and velocity, both vectors are expressed

in the radial-transverse-normal (RTN) reference frame centered in the spacecraft center-
of-mass. The orthonormal axes of this frame are the radial direction R aligned with the
position vector of the spacecraft with respect to the central body, the normal direction N
(cross-track) parallel to the orbital angular momentum (i.e., normal to the orbital plane), and
the transverse direction T. Since the two spacecraft are in a coplanar orbit, the inter-satellite
Doppler data are almost exclusively affected by the radial and transverse components of the
position and velocity vectors, providing poor constraints on the position and velocity com-
ponents normal to the orbital plane. The weak observability of these parameters can affect
the estimation of the spacecraft state by introducing numerical degeneracies, leading to the
divergence of the estimated parameters covariance matrix. To deal with singularity issues,
we exclude the cross-track components in the estimation of the state and the covariance
matrix in the spacecraft-centered radial, transverse, and normal (RTN) reference frame. The
dynamical equations (Equation (5)) are integrated into the International Celestial Reference
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Frame (ICRF), which is inertial. Before the measurement update (Equations (7)–(9)), the
propagated state is expressed in the RTN frame through the following rotation,

RTN xk+1 = RTN
ICRFR xk+1 (10)

where RTN
ICRFR is the matrix that defines the rotation from ICRF to RTN. To obtain the

predicted covariance in the RTN frame, the state transition matrix must be referenced to
the RTN frame through the rotation matrix R6×6:

R6×6 =

[RTN
ICRFR 03×3
03×3

RTN
ICRFR

]
(11)

where 03×3 is a 3 × 3 zero matrix. The state transition matrix in RTN is:

RTNΦ = R6×6ΦRT
6×6 (12)

The covariance matrix is, therefore, directly computed in the RTN frame by using
Equation (9) with the state transition matrix given by Equation (12).

The correction phase then allows us to incorporate the new measurement and provide
a new estimate of the state in the RTN frame. The a posteriori estimate of the state is
computed by using Equation (7), which requires the Jacobian of the observation model to
be expressed in the RTN frame. In this step, we only estimate the radial and transverse
components of the position and velocity vectors, while the normal components are directly
provided by the trajectory integration:

RTN x̂k+1 =



R̂k+1
T̂k+1
Nk+1
V̂Rk+1
V̂Tk+1
VNk+1

 (13)

where R̂k+1, T̂k+1, V̂Rk+1, V̂Tk+1 are the updated radial and transverse position and velocity
components, and Nk+1, VNk+1 are the cross-track components obtained from the trajectory
integration. The updated state vector is then referenced to the ICRF frame and used as the
new initial conditions in the subsequent time step.

The state vector only includes the position and velocity of the observer because the
state of the secondary spacecraft is unobservable. The knowledge of both spacecraft trajec-
tories can be obtained through the combination of deep space and inter-satellite tracking
data with a least-squares approach [22]. The errors accumulated in the knowledge of the
secondary spacecraft trajectory and of the normal component of the primary spacecraft
may lead to the divergence of the sequential processor. To reduce the errors, the filter can
be reinitialized by obtaining a new estimate of both the trajectories and the associated
covariances through the combination of a batch of inter-satellite and ground-based tracking
data [22].

We note that the weak observability of the cross-track components derives from the
coplanarity of the two spacecraft orbits. Our choice of this orbital geometry is based on
a mission scenario already considered for radio science investigations [24] and naviga-
tion [22] that involves the inter-satellite tracking system considered here. Changes in the
orbital plane inclination between the two satellites could improve the observability of the
dynamical system.

An alternative approach could be the inclusion in the filter of the cross-track com-
ponents as considered parameters to account for the effects of the uncertainty in their
knowledge on the other estimated parameters. However, the correlations between the R-,
T-components, and the N-components computed by estimating all the parameters are close
to zero. Since the cross-track state is largely uncorrelated from the radial and transverse
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state, this approach would lead to the same results as excluding the normal components
from the estimation process.

To better understand the reliability of the state estimation from a given set of measure-
ments, we study the observability of the system through the following matrix [38,39],

Z =


H(tk)

H(tk)A2(tk)
...

H(tk)An−1(tk)

 (14)

where n is the dimension of the state of the system. The dynamical system is observable
if the rank of the observability matrix, Z, is equal to n. If one or more parameters are not
observable by the measurements processed in the filter, the observability matrix is singular,
and its rank is less than n. When the system is not observable or weakly observable, the
Kalman filter yields extremely large formal uncertainties, leading to unreliable estimates.

2.3. Numerical Simulation Setup

The scenario that is assumed in our numerical simulations is based on a dual-SmallSat
mission [22–24] with a nominal orbit configuration similar to the Mars Reconnaissance
Orbiter (MRO) mission [40]. This orbit is near-polar (93◦ inclination), with a pericenter
located across Mars’ south at 250 km altitude and the apocenter at 320 km. An inter-satellite
distance of 300 km is adopted to enable an accurate recovery of the static and time-varying
gravity field of Mars [24]. Figure 2 shows this orbital configuration and the RTN reference
frame used in the Kalman filter.

Figure 2. Orbital configuration of the dual-SmallSat mission and the orbital RTN frame. The R and
T vectors denote the radial and transverse directions, and the cross-track direction is normal to the
orbital plane.

We carried out numerical simulations by assuming that the Small-Sat host onboarded
a telecommunication system for inter-satellite tracking. The first step consisted of the gen-
eration of the synthetic dataset of inter-satellite Doppler measurements by simulating the
reference trajectory. The dynamical model includes the central body gravity field expressed
in spherical harmonics to degree and order 120 [41], the gravitational influence of the Sun
and the other planets of the solar system, the solar radiation pressure, and the atmospheric
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drag by assuming the atmospheric density from the semi-empirical Mars Global Reference
Atmospheric Model (GRAM) 2010 [42]. The spacecraft shape and thermo-optical proper-
ties are based on the MRO spacecraft design [40]. Both spacecraft are characterized by a
cross-section area equal to 4 m2 and specular and diffusive reflectivity of 0.52 and 0.07. The
mass of each probe is 200 kg [24]. Table 1 summarizes the properties of the dynamical and
measurement models adopted in our numerical simulations.

Table 1. Properties of the dynamical and measurement models.

Dynamical Models

Gravity Field GMM-3 to degree and order 120 [41]
Atmospheric Drag Mars GRAM 2010 [42]

Solar Radiation Pressure Cross-sectional area 4 m2

Specular and diffusive reflectivity 0.52 and 0.07
Spacecraft Mass 200 kg

Measurement Models
Intersatellite Distance 300 km

Data Noise 0.6 µm s−1

Data Count Time 10 s

The EKF presented in Section 2.2 is initialized by using as initial position and velocity
the MRO-like reference trajectory for both observed and observer spacecraft with an initial
inter-satellite distance of 300 km. The initial guess of the state vector is perturbed to account
for errors in the preliminary knowledge of the spacecraft trajectory. To investigate the
statistics of the Kalman filter (i.e., the initial covariance in the RTN frame RTN P0, the process
and measurement noise covariance Q and Rk), we proceed with the filter tuning and a
thorough study of the system observability.

2.4. Filter Tuning

The tuning of the Kalman filter consists of the selection of the process and measurement
noise statistics, which strongly affect the performance of the filter. The Kalman gain Kk is
controlled by the process and measurement noise covariances through Equation (8). Once
a new measurement is acquired, it is combined with the dynamical model to provide an
updated estimate of the system’s state and covariance. The gain of the filter opportunely
scales the information provided by the new measurements with respect to the predictions
retrieved by integrating the dynamical model. By increasing the elements of the observation
noise covariance Rk, the processed measurements are deweigthed, leading to lower Kalman
gains. The addition of the process noise Q places more weight on the information given by
the measurements with respect to the prediction.

We tuned the filter adopted in this work by using a trial-and-error approach. After
each trial, the trajectory reconstruction error and estimated covariance are compared to
determine whether the filter output is statistically consistent (i.e., errors lower than formal
uncertainties). Since the observation noise affecting the inter-satellite Doppler data is
directly added as white Gaussian noise in the generation of the synthetic observables,
we assumed a measurement covariance Rk of 4 × 10−8 Hz2, which is

(
0.6 µm s−1)2 as

inter-satellite range-rate. Different values of Rk were tested, but the performances of the
filter are not significantly affected by the absolute value of this quantity.

The tuning of the filter is obtained by scaling the process noise covariance matrix Q,
which is assumed to be diagonal, as follows,

Q =


QR 0 0 0
0 QT 0 0
0 0 QVR 0
0 0 0 QVT

 (15)

By assuming QR = QT = QP and QVR = QVT = QV , we studied the effects of
different process noise covariances on the trajectory reconstruction of the observed space-
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craft. Figures 3 and 4 show the position and velocity reconstruction errors, which are the
discrepancies between the simulated and adjusted trajectory, as function of QP and QV .

Figure 3. Radial and transverse position reconstruction errors of the observed spacecraft for different
values of the process noise covariance, with Rk = 4× 10−8 Hz2 and σP = 20 m, σV = 2 ms−1.

Figure 4. Radial and transverse velocity reconstruction errors of the observed spacecraft for different
values of the process noise covariance, with Rk = 4× 10−8 Hz2 and σP = 20 m, σV = 2 ms−1.

The pair of process noise covariances QP = 10−10 km2 and QV = 10−14 km2s−2

provide more accurate adjustment of both position and velocity of the spacecraft. A lower
value of QP enables a better determination of the radial position only, limiting an accurate
retrieval of the transverse position. This filter output is explained by a significant decrease
in the Kalman gain, leading to a worse transient response. A similar effect is observed in
the velocity determination, although a lower QV prevents an accurate estimation of the
radial velocity.

The initial covariance matrix RTN P0 has also a strong impact on the filter behavior,
and it is, in general, considered an additional tuning factor. A significant difference in this
matrix, with respect to the measurement and process noise, is its poor contribution to the
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steady-state properties of the system state. The initial covariance matrix may affect the
transient response, and it is tuned by modeling it as a diagonal matrix,

RTN P0 =


σ2

R,0 0 0 0
0 σ2

T,0 0 0
0 0 σ2

VR,0
0

0 0 0 σ2
VT,0

 (16)

where σR,0 = σT,0 = σP and σVR ,0 = σVT ,0 = σV are the a priori uncertainties on the position
and velocity components, respectively. Figures 5 and 6 show the errors we obtained in the
position and velocity determination with different values of the initial uncertainties.

Figure 5. Radial and transverse position reconstruction errors for different values of the initial
covariance, with Rk = 4× 10−8 Hz2 and QP = 10−10 km2, QV = 10−14 km2s−2.

Figure 6. Radial and transverse velocity reconstruction errors for different values of the initial
covariance, with Rk = 4× 10−8 Hz2 and QP = 10−10 km2, QV = 10−14 km2s−2.

The errors in the estimated velocity are not significantly affected by the assumed initial
covariance, with a root mean square (RMS) value of 1.74 mms−1, 1.59 mms−1, 2.25 mms−1

for σV equal to 1 m s−1, 2 m s−1, 3 m s−1, respectively. The determination of the position
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is more sensitive to the a priori covariance matrix RTN P0, especially for the transverse
direction. Since deep space tracking for the MRO spacecraft enabled accuracies of ~1 m
radially and ~10–20 m along-track [43], we assumed as conservative a priori uncertainty
σP = 20 m. This constraint in the position shows the good performances of the filter, leading
to errors lower than 2 m. A looser a priori uncertainty leads to larger errors (>2 m) in the
sequential reconstruction of the transverse position, suggesting that the combination of deep
space and inter-satellite tracking is necessary to enhance the precise orbit determination.

3. Results
3.1. Observability of the System

To investigate the observability of the system, we computed the observability matrix
according to Equation (14). The condition number of this matrix is usually used as a metric
to evaluate the observability of a system and to determine whether the state of the system
can be reliably estimated through the Kalman filter [38,39,44]. The condition number is
computed by implementing the estimation scheme presented in Section 2.2. We present
two cases that account for radial and transverse directions only and for all three position
components, including the normal direction. Figure 7 shows the temporal evolution of
the observability condition number by assuming a reduced (i.e., four parameters that are
position and velocity in the radial and transverse directions) and full state vector.
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If the normal position and velocity are adjusted in the filter, the observability condition
number is strongly inflated, yielding from four to seven orders of magnitude larger values
compared to the estimation of radial and transverse directions only. Our results suggest
that the observability matrix is close to a singularity, and the system is weakly observable.
The cross-track components of position and velocity are then not observable with the
inter-satellite Doppler tracking data. When including these parameters in the estimation
process, unreliable estimates of the system state result from the EKF. Additional evidence
that these measurements are not well-suited for the adjustment of the state normal direction
is provided by the elements of the Jacobian matrix, Hk, of the inter-satellite observation
model. The partial derivatives of the observables with respect to the state information on
the sensitivity of the data to the estimated parameters. Figures 8 and 9 show the elements of
the matrix Hk that corresponds to the sensitivity of the inter-satellite Doppler measurements
to position and velocity, respectively.
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Figure 8. Sensitivity of the intersatellite Doppler data to the position components.

Figure 9. Sensitivity of the inter-satellite Doppler data to the velocity components.

A lower sensitivity of the normal component compared to the orbital plane directions
is observed in both position and velocity. This effect is caused by the coplanarity of the
spacecraft orbits that prevent the inter-satellite data from constraining the state cross-track
direction. This is further indicated by the anti-correlation between the condition number of
the observability matrix (Figure 7b) and the sensitivity to the normal position component
(Figure 8). The estimation scheme presented in this work is then used to precisely adjust
the state radial and transverse directions.

3.2. Sequential Orbit Reconstruction

To account for errors in the initial conditions of the spacecraft state associated with the
preliminary solution based on processing deep space tracking data only [22], we perturbed
the initial state of the observed spacecraft by 1.5 m and 1.5 mm/s with respect to the
simulated reference trajectory. The filter is then initialized with the assumptions reported
in Table 2 and used to reconstruct the trajectory of the observed spacecraft by processing
the inter-satellite Doppler measurements for 24 h. The measurement count time is 10 s. The
position and velocity reconstruction errors with the estimated uncertainty are shown in
Figures 10 and 11, respectively.
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Table 2. Setup of the Kalman filter.

Parameter Value

Initial Covariance Matrix

σR,0 20 m
σT,0 20 m
σVR,0 2 ms−1

σVT,0 2 ms−1

Process Noise

QR 10−10 km2

QT 10−10 km2

QVR 10−14 km2s−2

QVT 10−14 km2s−2

Observation Noise Rk 4× 10−8 Hz2

Figure 10. Position reconstruction errors in the RTN frame (blue line) and estimated 3-σ uncertainties
(shaded area).

Figure 11. Velocity reconstruction errors in the RTN frame (blue line) and estimated 3-σ uncertainties
(shaded area).
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After a transient response, the Kalman filter can accurately reconstruct the trajectory
of the spacecraft with position and velocity errors that are statistically consistent with the
formal uncertainties. Extremely high accuracies are obtained for both radial and transverse
components with three-standard-deviation formal uncertainties of ~3 m and ~3 mm s−1

in position and velocity, respectively. Figure 12 shows the residuals of the inter-satellite
measurements after the filter transient response.
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Since the cross-track is not corrected with the measurements, the error affecting its
knowledge grows in time. To evaluate the benefit of the navigation scheme presented
here for ground operations, we extended our numerical simulations to 3 days and 7 days.
The results show an error in the normal position of ~20 m and ~60 m, respectively. In
this study, we did not consider any error affecting the cross-track dynamics (e.g., error
on the initial normal position and velocity or mismodeling of the spacecraft dynamics).
Considering such errors may lead to larger errors on the normal components. When the
errors in the knowledge of the spacecraft position become large, they can be reduced by
using ground-based tracking data and re-initializing the filter with the new solution.

4. Conclusions

Future space missions will require an increasing degree of autonomy to reach un-
explored environments and to safely operate assets during risky science phases. The
navigation of deep space probes is still exclusively based on the remote processing of
ground station tracking systems, which prevent the real-time adjustment of spacecraft tra-
jectories. A navigation scheme is elaborated by sequentially processing satellite-to-satellite
Doppler measurements acquired by a sophisticated, accurate inter-satellite radio tracking
system. This system was conceived for radio science investigations [22], and it can provide
highly accurate navigation capabilities for both spacecraft if inter-satellite data are jointly
processed with the tracking data collected by the ground stations [24]. This combination
provides accurate knowledge of the initial states of both spacecraft, which can be used to
initialize the navigation scheme presented here. The joint processing of inter-satellite and
ground-based tracking data can be used to update the estimate of both spacecraft trajecto-
ries when they are affected by significant errors (e.g., recovery after safe mode). Although
the system presented is not designed to enable fully autonomous navigation capabilities in
deep space, it can significantly reduce the dependence on ground systems by providing
onboard trajectory determination through sequential processing of the inter-satellite data.

To analyze the performances and functionalities of this onboard system, software to
process the inter-satellite measurements was designed and implemented in this study. By
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adopting an extended Kalman filter scheme, we were able to study the observability and
simulate the navigation accuracies expected for the proposed system. This approach is
not well suited for the joint estimation of the state vectors for both observer and observed
spacecraft. A precise knowledge of both spacecraft orbits can only be obtained through the
combined processing of deep space and inter-satellite tracking data with a least-squares
filter [24]. Our sequential algorithm allows for the retrieval of the position and velocity of
the observed spacecraft only.

Because of the coplanarity of the two SmallSat orbits, the cross-track components of
both position and velocity cannot be constrained with the inter-satellite measurements,
as confirmed by our observability analysis of the system. This weak observability may
significantly affect the estimation process, leading to numerical degeneracies and to high
uncertainties regarding the observed spacecraft position and velocity. For this reason, we
do not adjust the position and velocity components in the normal directions, leading to a
reduced state of the system. The cross-track component is fully determined by the direct
integration of the dynamical equations, and it is not corrected by the inter-satellite data.
The errors that accumulate in the knowledge of the cross-track components can be reduced
by periodically updating the knowledge of the spacecraft trajectory through ground-based
tracking. Alternatively, additional measurements can be considered to improve the ob-
servability of the cross-track components, such as angle-based measurements provided by
optical data or observations collected by radar or laser trackers onboard the primary space-
craft [45]. These measurements are more sensitive to the normal components of position
and velocity than inter-satellite data and can be used to correct the errors affecting them.

Our estimation scheme provides a reliable estimate of the spacecraft state in the orbital
plane components, leading to 3 − σ uncertainties that are ~3 m in position and 3 mm s−1 in
velocity. This level of accuracy is a significant enhancement in orbit reconstruction, which
is at least an order of magnitude worse with deep space tracking data only. Our results
strongly support the development of an inter-satellite tracking system for navigation
in deep space, leading to the extremely precise positioning of space probes across the
solar system.
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