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Abstract: Satellites are an effective source of atmospheric carbon dioxide (CO2) monitoring; however,
city-scale monitoring of atmospheric CO2 through space-borne observations is still a challenging
task due to the trivial change in atmospheric CO2 concentration compared to its natural variability
and background concentration. In this study, we attempted to evaluate the potential of space-based
observations to monitor atmospheric CO2 changes at the city scale through simple data-driven
analyses. We used the column-averaged dry-air mole fraction of CO2 (XCO2) from the Carbon
Observatory 2 (OCO-2) and the anthropogenic CO2 emissions provided by the Open-Data Inventory
for Anthropogenic Carbon dioxide (ODIAC) product to explain the scenario of CO2 over 120 districts
of Pakistan. To study the anthropogenic CO2 through space-borne observations, XCO2 anomalies
(MXCO2) were estimated from OCO-2 retrievals within the spatial boundary of each district, and
then the overall spatial distribution pattern of the MXCO2 was analyzed with several datasets
including the ODIAC emissions, NO2 tropospheric column, fire locations, cropland, nighttime lights
and population density. All the datasets showed a similarity in the spatial distribution pattern.
The satellite detected higher CO2 concentrations over the cities located along the China–Pakistan
Economic Corridor (CPEC) routes. The CPEC is a large-scale trading partnership between Pakistan
and China and large-scale development has been carried out along the CPEC routes over the last
decade. Furthermore, the cities were ranked based on mean ODIAC emissions and MXCO2 estimates.
The satellite-derived estimates showed a good consistency with the ODIAC emissions at higher
values; however, deviations between the two datasets were observed at lower values. To further
study the relationship of MXCO2 and ODIAC emissions with each other and with some other datasets
such as population density and NO2 tropospheric column, statistical analyses were carried out among
the datasets. Strong and significant correlations were observed among all the datasets.

Keywords: climate change; carbon dioxide; OCO-2; Pakistan; CPEC

1. Introduction

Atmospheric carbon dioxide (CO2) is an important greenhouse gas (GHG) due to
its significant contribution to climate change [1]. The concentration of atmospheric CO2
is continuously increasing primarily due to anthropogenic activities [2], and if it keeps
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on increasing at the same rate, then around 1.5 ◦C of global warming may be reached by
the middle of this century, which may cause more climate extremes [3]. Under the Paris
agreement, it has been pledged to limit global warming to well below 2 ◦C relative to
the pre-industrial levels [4]. To meet the goals of the Paris agreement, immediate efforts
are required to reduce anthropogenic emissions including CO2 emissions. Moreover, the
regular monitoring of CO2 emissions using reliable datasets is also important to investigate
the spatiotemporal trends of CO2 and evaluate the effectiveness of the reduction policies.
However, larger uncertainties in the existing datasets and the unavailability of any reliable
global system for monitoring CO2 emissions from local sources create a hindrance in
monitoring CO2 at smaller scales with sufficient accuracy [5].

The atmospheric CO2 concentration is continuously increasing, and accurate measure-
ment of changes in the concentration of atmospheric CO2 is a prerequisite to determining
its influence on climate change. Several networks have been established in the world
for the precise monitoring of atmospheric CO2 including the Global Atmospheric Watch
(GAW) sites [6], the Collaborative Carbon Column Observing Network (COCCON) [7,8],
and the Total Carbon Column Observing Network (TCCON) [9]. However, the measure-
ments obtained from these ground stations are not sufficient for the accurate monitoring of
atmospheric CO2 at regional and global scales due to certain limitations including their
uneven distribution and limited spatial coverage [10]. Atmospheric CO2 monitoring has
been improved with the launch of satellites because satellites can cover a very large area
and provide large quantities of sampling data. The information related to atmospheric
CO2 concentration has been retrieved using various sensors onboard different satellites.
For instance, the concentration of atmospheric CO2 has been retrieved using the thermal
infrared (TIR) bands of the Infrared Atmospheric Sounding Interferometer (IASI) [11],
the Atmospheric Infrared Sounder (AIRS) [12], and Tropospheric Emission Spectrometer
(TES) [13]; however, the TIR bands have lower sensitivity to the lower troposphere where
most of the CO2 sources and sinks reside. The Scanning Imaging Absorption Spectrometer
for Atmospheric Chartography (SCIAMACHY) employed on the European Space Agency’s
(ESA) ENVISAT was the pathfinder instrument that first detected atmospheric CO2 signals
using shortwave infrared (SWIR) and near-infrared (NIR) bands, which were more sensi-
tive to lower tropospheric CO2 concentrations and provided a reliable column-averaged
dry-air mole fraction of CO2 (XCO2) observations at global scales [14]. SCIAMACHY
suspended its services in 2012; however, several satellites have been launched since then for
the exclusive monitoring of greenhouse gases with great spatiotemporal resolutions. The
Greenhouse Gases Observing Satellite (GOSAT) was the first satellite that was launched by
Japan in 2009 for the monitoring of atmospheric CO2 and methane (CH4) [15]. In 2014, the
National Aeronautics and Space Administration (NASA) launched a satellite, the Orbing
Carbon Observatory 2 (OCO-2) that is dedicatedly monitoring the atmospheric CO2 and
providing high-resolution observations. The Chinese CO2-monitoring satellite TanSat that
launched in December 2016 is also capable of providing space-based CO2 measurements
and preliminary XCO2 maps generated using the satellite measurements, which have been
discussed in a recent study [16]. Moreover, most recently GOSAT-2 and OCO-3 have also
been successfully launched for monitoring atmospheric CO2 and the initial results have
been discussed in recent studies [17,18].

The global climate crisis poses several threats to Pakistan and the German Watch, an
independent development and environmental non-governmental organization (NGO) that
lists Pakistan among the ten countries that have been most affected by climate change
during the last two decades. According to the Global Climate Risk Index (GCRI), Pakistan
has suffered serious economic losses per unit GDP (Gross Domestic Product) due to 152 ex-
treme weather events from 1999 to 2018 [19]. In a report published by the ActionAid, Bread
for the World, and the Climate Action Network—South Asia (CANSA), it has been notified
that even with the active emission reduction efforts, around 600,000 people will migrate by
2030 due to the impacts of climate change in Pakistan, and this number will be doubled if
active actions are not carried out. The Government of Pakistan (GOP) is actively working
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at policy, management, and operational levels to deal with the effects of climate change.
The Eco-system Restoration Initiative (ESRI) has been launched by the GOP to facilitate the
transition towards an environmentally resilient Pakistan by mainstreaming adaptation and
mitigation through ecological initiatives. The ESRI includes several programs including
biodiversity conservation, mass-scale afforestation, and formulating environmental policies
in line with the objectives of the country’s Nationally Determined Contribution (NDC) and
attaining Land Degradation Neutrality (LDN). Monitoring the long-term trends of CO2
over Pakistan under the background of climate change is important for predicting future
CO2 scenarios in the country.

OCO-2 was not a mapping mission, but it was designed as a sampling mission, so it
samples a small portion of the globe every day [20]. OCO-2 was launched with a primary
objective to monitor the atmospheric CO2 at a regional scale; however, several studies have
used the OCO-2 dataset for local-scale studies due to its precise measurements [4,21–25].
In this study, we used the XCO2 retrievals from OCO-2 along with other datasets including
the ODIAC CO2 emissions, and the Ozone Monitoring Instrument (OMI) NO2 tropospheric
column to study the CO2 scenario over 120 districts of Pakistan. Moreover, the districts were
also ranked based on mean anthropogenic CO2 concentrations and emissions. Additionally,
spatial distribution patterns of various datasets were also compared. The description of
the methods and datasets is given in Section 2; results are discussed in Section 4 and
conclusions are provided in Section 5.

2. Materials and Methods
2.1. Study Area

Pakistan, with a population of around 220 million, is the fifth-most populated country
in the world and is located in south Asia between 23◦35′ to 37◦05′ north and 60◦50′ to 77◦50′

east [26]. Geographically, it shares its borders with the largest CO2-emitting nations such as
China, India, and Iran. Administratively, Pakistan is divided into six units: Azad Kashmir,
Gilgit Baltistan, Balochistan, Khyber Pakhtunkhwa, Punjab, and Sindh. Punjab is the most
populous administrative unit followed by Sindh, Khyber Pakhtunkhwa, and Balochistan.
In terms of area, Balochistan is the largest administrative unit of Pakistan followed by
Punjab, Sindh, and Khyber Pakhtunkhwa. The administrative units are further subdivided
into districts and this study is carried out over 120 districts in Pakistan. Although Pakistan
has more than 120 districts in total, some smaller districts are merged into the neighboring
districts to meet the defined area requirements (>1000 km2). The area requirements were
defined so that the number of satellites were sufficient. The spatial boundaries of these
districts located in various administrative units are shown in Figure 1a. In addition, the
topography and landcover distribution of Pakistan are shown in Figure 1b,c, respectively.

2.2. Datasets
2.2.1. OCO-2 XCO2 Dataset

OCO-2 was successfully launched by NASA from the Vandenberg Air Force Base in
California on 2 July 2014 for the exclusive monitoring of atmospheric CO2 at regional levels.
After completing a series of check-out activities and orbit-raising maneuvers, it joined
the front of the Afternoon Constellation (A-Train) on 3 August 2014 [20]. The referenced
constellation consisted of six satellites orbiting around the earth at an altitude of 705 km.
OCO-2 completes an orbit in 98.8 min and samples at a local time of about 1:30 pm, and it
has a set of 233 orbit paths that repeat in 16-day cycles. OCO-2 has been routinely providing
around 1 million soundings every day since 6 September 2014. The spatial resolution of
OCO-2 at nadir is about 1.3 × 2.25 km.
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Figure 1. (a) District and administrative unit boundaries, (b) topography and (c) landcover map of 
Pakistan. The shaded area shows the disputed territory of Kashmir. 
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Figure 1. (a) District and administrative unit boundaries, (b) topography and (c) landcover map of
Pakistan. The shaded area shows the disputed territory of Kashmir.

The spectrometer installed on the OCO-2 satellite measures the near-infrared spectra
of sunlight reflected off the Earth’s surface in three spectral regions centered at 0.765,
1.61, and 2.06 µm [27,28]. OCO-2 observations are processed using the Atmospheric CO2
Observations from Space (ACOS) Full Physics (FP) retrieval algorithm to generate a level 2
(L2) product that provides XCO2 retrievals. Technical details about the ACOS FP algorithm
are given in the previous literature [29,30]. Several versions of XCO2 L2 products have
been released by the OCO-2 team and have been regularly validated against accurate
measurements [2,31–34]. The validation results showed that the OCO-2 datasets were
consistent and reliable for atmospheric CO2 monitoring. A recent study [35] compared
the latest OCO-2 XCO2 product (v10) against accurate measurements and reported a
sounding precision of ~0.8 ppm over land and ~0.5 ppm over water, and RMS biases of
0.5–0.7 ppm over both land and water. Our study incorporated the latest ACOS/XCO2
Lite product version (v10r) that was available to download from the EARTHDATA website
(https://earthdata.nasa.gov/, accessed on 15 February 2022).

2.2.2. ODIAC CO2 Dataset

The Open-Data Inventory for Anthropogenic Carbon dioxide (ODIAC) is a high-
resolution fossil fuel CO2 (ffCO2) emission dataset that was originally developed in 2009
at the National Institute of Environmental Studies (NIES), Japan [36]. ODIAC first time-
incorporated the individual power plant emissions and nighttime light datasets to estimate
and spatially distribute the CO2 emissions. Several changes have been made since the
first version of the product and details about the evolution are given in a recent study [37].
The current version of the ODIAC dataset (ODIAC2020b) available at the time of this
study provided monthly CO2 emissions in two spatial resolutions, i.e., 1 × 1 km and
1 × 1 degree [38]. We used the 1 × 1 km version of the product to study the CO2 emission
scenario over Pakistan. This global monthly CO2 emission dataset spanning from 2000 to

https://earthdata.nasa.gov/
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2019 downscaled the national level emission statistics from the Carbon Dioxide Information
Analysis Center (CDIAC) [39] and the global fuel statistical review data from the British
Petroleum Company (after 2014) to 1 km resolution [40]. The downscaling was carried
out based on 1 km global nighttime light data provided by the Defense Meteorological
Satellite Program (DMSP) satellite and Carbon Monitoring for Action (CARMA) database.
The ODIAC anthropogenic CO2 dataset has been widely accepted by the carbon cycle
community and several researchers have used the dataset to investigate anthropogenic car-
bon emissions for smaller to larger-scale studies [4,40,41]. The dataset can be downloaded
from the NIES website (https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2020b.html,
accessed on 26 March 2022).

2.2.3. Other Datasets

The description of the other datasets used in this study is given in the following:

1. The Ozone Monitoring Instrument (OMI) NO2 tropospheric column dataset [42] from
2015 to 2020 was obtained from the EARTHDATA website (https://earthdata.nasa.
gov/, accessed on 1 March 2022).

2. The Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights data [43]
was downloaded from (https://eogdata.mines.edu/products/vnl/, accessed on 15
February 2022).

3. Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 global monthly
Fire Location product (MCD14ML) from 2015 to 2020 was downloaded from (https:
//firms.modaps.eosdis.nasa.gov/download/, accessed on 27 February 2022).

4. LandScan population density data [44] from 2015 to 2019 was downloaded from
(https://landscan.ornl.gov/, accessed on 27 February 2022).

5. Copernicus landcover data [45] from 2015 to 2019 was downloaded from the Coperni-
cus Global Land Service website (https://land.copernicus.eu/global/products/lc,
accessed on 11 February 2022).

2.3. Methodology

To understand the CO2 scenario over Pakistan, the following methodology was adopted:

1. The OCO-2 dataset comes with a quality flag to distinguish the cloud-contaminated
and cloud-free XCO2 retrievals (OCO-2 Data User Guide). It is generally advised to
use cloud-free observations for local- and regional-level studies because the cloud-
contaminated retrievals contain biases that might compromise the quality of the
results. In this study, we incorporated the cloud-free OCO-2 retrievals with the daily
standard deviation of the soundings less than 1 ppm. To determine the monthly,
annual, and seasonal spatiotemporal trends of atmospheric CO2, the OCO-2 XCO2
retrievals were averaged on monthly, annual, and seasonal time intervals within
the 0.5 × 0.5 degree spatial grid and the spatial boundaries of the administrative
units (districts and provinces). Seasons were defined based on three months, i.e., DJF
(December, January, February), MAM (March, April, May), JJA (June, July, August),
and SON (September, October, November). To avoid uncertainties, the administrative
boundaries with fewer than 300 satellite observations were not considered in the study.
Moreover, the districts with an area <1000 km2 were also not included in the study.

2. Previous studies [41,46–48] have suggested that anthropogenic CO2 could be detected
using space-borne CO2 observations. However, estimating the anthropogenic CO2
concentration through these space-based observations is a challenging task. CO2 is a
greenhouse gas with a longer atmospheric life and a very large background concen-
tration. Because of this, XCO2 retrieved through satellite-based observations varies by
only about 2% from pole to pole and over the seasonal cycle. The seasonal variability
and the larger background concentration of atmospheric CO2 must be removed to de-

https://db.cger.nies.go.jp/dataset/ODIAC/DL_odiac2020b.html
https://earthdata.nasa.gov/
https://earthdata.nasa.gov/
https://eogdata.mines.edu/products/vnl/
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termine the anthropogenic CO2 concentration. To do this, XCO2 anomalies (MXCO2)
were calculated using an approach suggested by [46,47]:

MXCO2 = XCO2 (ind) − XCO2 (dbg) (1)

where MXCO2 is the XCO2 anomaly, XCO2 (ind) is the individual OCO-2 XCO2
retrieval, and XCO2 (dbg) is the XCO2 daily background. The daily background
concentration was estimated by calculating the daily median of XCO2 retrievals over
the study area. The benefit of this method is that it provides the XCO2 anomaly for a
single point. More details about the method are given in [46,47]. Once MXCO2 was
calculated against each OCO-2 retrieval, the mean of MXCO2 was estimated within a
spatial grid of 0.5 × 0.5 degrees and the spatial boundaries of the administrative areas
for a defined period. MXCO2 returns positive and negative values. Positive values
show that CO2 is being emitted into the atmosphere (sources) while negative values
represent that CO2 is being absorbed on the surface (sinks).

3. The mean anthropogenic CO2 emissions for each district was calculated by averaging
the ODIAC CO2 datasets from 2015 to 2019 and then summing the pixels/cells
within the spatial boundaries of the districts. ODIAC results were combined with
other datasets including the satellite-based XCO2 anomalies, OMI NO2 tropospheric
column, nighttime lights data, and population density to study the spatial distribution
of CO2 over the study area.

4. The ODIAC CO2 and OCO-2-derived MXCO2 datasets were compared in terms of
correlation, spatial distribution, and ranking of districts based on the mean CO2
emissions and mean MXCO2 concentration values. Moreover, the relationship of the
ODIAC and OCO-2 datasets with other datasets such as population density and NO2
tropospheric column was also studied through cluster-based correlation analyses. To
create the clusters, we segmented the datasets using the method described in [41,49],
and then finally the correlation analyses were carried out.

3. Results
3.1. Spatial Distribution of OCO-2 XCO2 Retrievals

Figure 2 shows the spatial distribution of monthly averaged XCO2 retrievals over
districts of Pakistan against the number of cloud-free OCO-2 soundings observed by each
of the districts for a period of six years from 2015 to 2020. Overall, the satellite-based
observations are good in quantity in January and February, and this quantity gradually
keeps on decreasing from March and reaches a minimum in August, and then it starts
increasing and reaches the maximum in December. This temporal change in the quantity
of satellite-based observations is more significant in the districts located in Punjab and
Sindh. Moreover, the results from Figure 2 show that the monthly averaged concentration
of atmospheric CO2 shows an increasing trend in January over most parts of the country
and reaches the maximum concentration in May, then it starts decreasing and reaches
the minimum concentration in September, and then again it starts increasing and follows
this trend until the end of the year. The interannual variation trend of atmospheric CO2
is also shown in Figure 3b. The highest concentration of atmospheric CO2 during the
pre-monsoon period can be attributed to several phenomena. For instance, a large amount
of biomass burning takes place during this period and it significantly contributes to the
increased levels of atmospheric CO2 [50,51]. The higher temperature and radiation pre-
vailing during summer stimulate the assimilation of atmospheric CO2 in the daytime and
respiration at night [52]. Moreover, the speed of the wind is low during the pre-monsoon
period, causing a slight mixing in the boundary layer that is also a potential reason for
increased atmospheric CO2 [53]. The concentration of atmospheric CO2 decreases during
the monsoon period. A recent study [54] also reported a decreased atmospheric CO2
concentration during the monsoon over Oman. During the rainy season, the soil moisture
is increased, thereby enhancing the photosynthesis process, which eventually decreases the
atmospheric CO2 [55]. The low temperature due to the presence of clouds reduces the leaf
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and respiration rate, which also increases the carbon uptake. After the monsoon period,
the atmospheric CO2 again starts increasing, which might be linked to the consumption
of fossil fuels during winter that produces an excessive amount of CO2 and emits it into
the atmosphere [34]. This increasing trend that starts in September reaches its peak in
May. Moreover, microbial activity also increases after winter, which also complements the
increases in the atmospheric CO2 [53,56].
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Figure 3 shows the long-term time series (Figure 3a), monthly averaged (Figure 3b),
and seasonal-averaged concentrations (Figure 3c) of atmospheric CO2 over various admin-
istrative units of Pakistan including Punjab, Sindh, KPK, and Balochistan for a period of six
years from 2015 to 2020. Gilgit Baltistan and Kashmir were not included in the analysis due
to the insufficient number of OCO-2 retrievals. A similar varying trend of atmospheric CO2
concentration was observed in all the provinces of Pakistan; however, some differences
were found in the magnitudes. The atmospheric CO2 concentrations during each month
were higher than those in the same month of the previous year (Figure 3a). It reflected a
continuous increase in CO2 concentrations. The seasonal-averaged XCO2 concentration
of various provinces is shown in Figure 3c. Atmospheric CO2 concentration was higher
during DJF and MAM, and lower in JJA, and SON. There was a slight difference between
the magnitudes of seasonal-averaged XCO2 concentrations among the various provinces.

3.2. Spatial Distribution of MXCO2 and Anthropogenic CO2 Emissions

Figure 4b,c show the spatial distribution of the total number of cloud-free OCO-2
retrievals over a spatial grid of 0.5 × 0.5 degrees and within the district boundaries of
Pakistan from 2015 to 2020. Overall, the number of observations was sufficient for most
of the areas; however, the northern areas including Gilgit Baltistan and Kashmir received
the lowest number of OCO-2 retrievals. Any district with observations of fewer than
300 retrievals was not considered in the study.

Figure 4d,e show the annually averaged XCO2 concentration over a spatial grid of
0.5 × 0.5 degrees and within the district boundaries of Pakistan from 2015 to 2020. While
the MXCO2 estimated using the OCO-2 retrievals is also displayed over a 0.5 × 0.5 degree
spatial grid and the spatial boundaries of the districts (Figure 4f,g). MXCO2 represents
anthropogenic CO2 concentrations. Surprisingly, higher MXCO2 concentrations were
observed over the districts located along the China–Pakistan Economic Corridor (CPEC)
routes shown in Figure 4a. Moreover, most of the districts in Punjab and Sindh are
surrounded by cropland (Figure 1b). The spatial pattern of increased MXCO2 over Punjab
and Sindh was somehow similar to that of the cropland (Figures 1b and 4f,g). This higher
concentration of MXCO2 over the cropland might be due to the pre- and post-harvest
burning. A fire location product derived using the MODIS data from 2015 to 2020 is also
shown in Figure 4h, which also exhibited a similar spatial distribution pattern. Moreover,
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NO2 is an indicator of atmospheric pollution, and it is co-emitted with CO2 when fossil fuels
are combusted at high temperatures. It has a short lifetime on the order of hours, so NO2
columns often greatly exceed the background and noise levels of modern satellite sensors
near sources, which makes it a suitable tracer of recently emitted CO2 [4]. Figure 4i shows
the spatial distribution of mean NO2 tropospheric columns from 2015 to 2020. The spatial
distribution pattern of increased NO2 is similar to that of MXCO2. Figure 4k shows the
mean spatial distribution of anthropogenic CO2 emissions from 2015 to 2019 over Pakistan,
estimated using the ODIAC dataset. The emission pattern showed that CO2 emissions were
higher in Punjab followed by Sindh, KPK, and Balochistan. The anthropogenic emission
pattern was similar to OCO-2-derived MXCO2 (Figure 4f,g,k) over Punjab and Sindh where
the CO2 emissions were higher. However, this pattern was slightly different for other
provinces where the emissions were lower. The mean nighttime lights dataset provided by
the VIIRS from 2015 to 2019 is also displayed in Figure 4l. The results from both the ODIAC
and nighttime light datasets showed similarities in spatial patterns as well as magnitudes.
Moreover, the spatial distribution of the satellite-based MXCO2 (Figure 4f,g) was also
compared with that of the population density (Figure 4j) and a similarity between the
spatial distributions of the two datasets was observed. In summary, the MXCO2 derived
using OCO-2 retrievals showed a spatial distribution pattern similar to cropland, fire
locations, NO2 tropospheric column, population density, ODIAC emissions, and nighttime
lights. To further determine the relationship of MXCO2 with these variables, statistical
analyses were carried out between MXCO2 and other datasets including the population
density and the NO2 tropospheric column, and the results are described in Section 3.3.

Figure 5a shows the multiyear mean XCO2 concentration in Pakistani districts. The
results showed that the atmospheric CO2 concentration was continuously increasing in
most of the districts. Figure 5b shows the mean MXCO2 concentrations in districts for five
years from January 2015 to December 2019. The districts were ranked based on the mean
MXCO2 concentration. The results showed that the districts with the highest concentrations
of atmospheric CO2 were either among the most populous cities, industrial in nature or
experiencing large-scale construction or economic activities. For instance, Karachi, the
capital of Sindh, is the largest city in Pakistan with an estimated GDP of $164 billion
(PPP) as of 2019 [57]. Being ranked as a beta-global city, Karachi is Pakistan’s premier
industrial and economic hub with the two largest seaports, the Port of Karachi and Port
Bin Qasim. Lahore is the second-largest city of Pakistan and the capital of Punjab with an
estimated GDP of $65.14 billion (PPP) as of 2017 [58] and a projected average growth rate of
5.6% [22]. The ODIAC inventory v2019 suggested that Lahore whole-city CO2ff emissions
increased by about 646 kt C/year during October 2014–May 2019, translating into a total
change of 27% over 2015–2019 (i.e., a mean annual 5.9% increase), which is consistent with
Pakistan’s national emission estimates of 5.05% during 2001–2018 [59]. Sialkot, Narowal,
Nowshera, Multan, and Faisalabad are the cities where large-scale industrial activities are
carried out. Islamabad is the capital of Pakistan. Kohistan and Mohmand were also listed
among the districts with the highest MXCO2 concentrations. These cities contain large
reservoir-based dams [60]. The reservoir-based dams emit a significant amount of CO2
into the atmosphere, and the dams located in tropical regions have even larger emissions
compared to boreal and temperate regions [61]. Most of the districts showing the lowest
MXCO2 concentrations were located in the Balochistan and KPK provinces. The districts
located in KPK were mainly mountainous areas covered with forests (Figure 1b,c) and in
the case of Balochistan, the districts with the lowest MXCO2 concentrations had the lowest
population density, which indicated less human activity. Some districts, such as Umerkot,
Mithi, and Mastung, belonging to the Sindh and Balochistan provinces, also had the lowest
atmospheric CO2, and these districts were mainly covered with deserts. Figure 5c shows
the annually averaged MXCO2 concentrations in districts of Pakistan from 2015 to 2019.
The districts where MXCO2 concentrations were increasing were located in Punjab and
Sindh; however, most of the districts with decreased annual concentrations were in the
KPK and Balochistan provinces. In 2014, the government of KPK launched the Billion Tree
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Tsunami (BTT) project as a response to the challenge of global warming [62]. The project
restored 350,000 hectares of forests and degraded land [63]. The BTT project was completed
in August 2017, ahead of schedule. The decreased concentration of MXCO2 in KPK areas
might be attributed to the large-scale afforestation; however, more evidence is needed to
support the statement. Overall, as per the OCO-2 MXCO2 results, Punjab showed the
highest MXCO2 concentration followed by Sindh, KPK, and Balochistan.
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Mean CO2 emissions for districts were also calculated and the districts were then
ranked based on the amount of mean CO2 emissions (Figure 6a). The larger districts of
Punjab and Sindh such as Karachi, Lahore, Multan, Muzaffargarh, Faisalabad, Rawalpindi,
Hyderabad, and Dadu showed higher CO2 emissions. These districts were also listed
among the ones with higher MXCO2 concentrations estimated using OCO-2 XCO2 retrievals
(Figure 5b). These areas are among the most populated districts of Pakistan and experience
large-scale economic activities. Based on the ODIAC CO2 emission dataset, most of the
districts with the lowest amounts of CO2 emissions were located in Balochistan. The spatial
distribution of the ODIAC dataset largely relies on nighttime lights, which result due to
human activity. Balochistan is the largest province of Pakistan in terms of area with the
lowest population density (Figure 4j). The low ODIAC CO2 emissions in districts located
in Balochistan might be due to the lower population density, which results in producing
fewer of the nighttime lights that primarily control the spatial distribution of the ODIAC
emissions. Figure 6b shows the annually averaged CO2 emissions for each district of
Pakistan, and the results show that CO2 emissions were continuously increasing in most of
the districts located in the Punjab and Sindh provinces.

3.3. Correlation Analysis

Figure 7 shows the correlation analysis of the OCO-2 MXCO2 and ODIAC CO2 emis-
sions between each other and with some other datasets such as population density and the
OMI NO2 tropospheric column. Population growth is one of the major causes of increased
CO2 emissions in developed as well as developing countries, whereas the impact of popu-
lation growth on CO2 emissions has not received enough attention. NO2 is an indicator of
atmospheric pollution, and it is co-emitted with CO2 when fossil fuels are combusted at
high temperatures.
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Previous studies showed that compared to the single sounding of XCO2, clusters of
satellite-based XCO2 retrievals showed a better and more significant correlation with other
variables, which might be due to the fact that a single sounding is an instantaneous snapshot
of the realistic atmosphere [41,48]. Therefore, we segmented the datasets and created
clusters following the method described in [49] and then finally carried out correlation
analyses between the datasets.

Figure 7a shows the scatterplot and correlation between ODIAC CO2 emissions and
OCO-2 XCO2 anomalies (MXCO2). The two datasets showed correlation coefficients (rp
represents Pearson’s correlation and rs represents Spearman’s correlation) of above 0.5,
and this correlation was significantly improved (over 0.91) when the analysis was carried
out between higher values of the two datasets (Figure 7b). Figure 7c shows the scatterplot
and correlation between the OCO-2 anomalies and population density derived using the
Landscan data. XCO2 anomalies showed a positive correlation with the population density,
and this correlation was also improved when the analysis was carried out between higher
values (Figure 7d). Figure 7e shows the scatterplot between the ODIAC emissions and
the population density. ODIAC showed a relatively better correlation with the population
density compared to OCO-2 XCO2 anomalies, and unlike OCO-2, the correlation between
the ODIAC and population density was improved when the analysis was carried out
after removing higher values (Figure 7f). However, both the OCO-2 and ODIAC datasets
showed a positive correlation with the population density. Figure 7g shows the scatterplot
and correlation between the XCO2 anomalies and NO2 tropospheric columns retrieved
from OMI observations. Both of the datasets showed a positive correlation, and the
correlation was improved when the analysis was carried out with higher values (Figure 7h).
Hakkarainen et al. correlated OCO-2-based XCO2 anomalies with OMI NO2 tropospheric
column over various regions and reported a good correlation between the two datasets [46].
Figure 7i,j show the scatterplot and correlation between the ODIAC CO2 emissions and
NO2 tropospheric column, and both datasets showed a good correlation. The ODIAC
dataset showed a better correlation with the NO2 tropospheric column compared to the
OCO-2 XCO2 anomalies. In all the correlation analyses carried out between the OCO-2
XCO2 anomalies and other variables, the common results showed a relatively weaker
correlation at lower values and the results significantly improved when the analyses were
carried out with higher values.
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Figure 7. (a) Scatterplot between ODIAC and OCO-2 anomalies (MXCO2), (b) scatterplot between
ODIAC and OCO-2 anomalies at higher values, (c) scatterplot between OCO-2 and population
density, (d) scatterplot between OCO-2 and population density at higher values, (e) scatterplot
between ODIAC emissions and population density, (f) scatterplot between ODIAC emissions and
population density at lower values, (g) scatterplot between OCO-2 and NO2 tropospheric column,
(h) scatterplot between OCO-2 and NO2 tropospheric column at higher values, (i) scatterplot between
ODIAC emissions and NO2 tropospheric column, and (j) scatterplot between ODIAC and NO2

tropospheric column at higher values. The Pearson and the Spearman correlations are represented by
rp and rs, respectively.
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4. Discussion

The temporal change in the quantity of satellite-based observations was more signifi-
cant in the districts located in Punjab and Sindh. Pakistan is a monsoon-influenced country
and generally, in Pakistan, March to May is treated as pre-monsoon, June to August as
monsoon and September to November as post-monsoon season [2]. The rainy season in the
country starts during the pre-monsoon period and meets the occurrence of the summer
monsoon, from June to August, which is a major source of precipitation. The decreased
number of OCO-2 soundings during the pre-monsoon and monsoon periods might be due
to the presence of clouds, because the space-based observations are vulnerable to clouds
and aerosols [33]. GOSAT and OCO-2 are processed using the ACOS FP algorithm that has
evolved over time to improve the quality as well as the quantity of the retrievals. A recent
study [64] showed that out of 37 million soundings collected by GOSAT through June
2020, only 5.4 % of the soundings (2 × 106) were finally assigned a “good” XCO2 quality
flag when processed using the ACOS FP algorithm, and other soundings were discarded
due to the presence of clouds and other artefacts. Moreover, northern parts of the country
including Gilgit Baltistan and Kashmir consistently had the lowest number of OCO-2
retrievals throughout the year. These areas are covered with the highest mountain ranges
that are mostly covered with snow. The satellite observations over such complex areas
showed larger uncertainties, did not meet the filtering criteria of the retrieval algorithms
and were finally discarded.

The satellite-detected XCO2 anomaly (MXCO2) exhibited a spatial distribution similar
to the CPEC route, NO2 tropospheric column, population density, fire location, cropland,
and nighttime lights. The CPEC, a large-scale trading partnership between Pakistan and
China, is a collection of infrastructure projects including a comprehensive road network
connecting the Gwadar port to China [65–67]. Rapid development has been carried out
on the CPEC project during the last decade. The notable works include the construction
of the road network shown in Figure 4a, special economic zones along the CPEC routes,
and several energy projects. The rapid development along the CPEC road network might
be a potential reason for the increased levels of atmospheric CO2 concentration in the
neighboring districts. NO2 is emitted when fossil fuels are burned at high temperatures,
thus it is also an indicator of pollution. Hakkarainen et al. compared the spatial distribution
of XCO2 anomalies derived using OCO-2 retrievals with that of NO2 tropospheric columns
over various regions of the world and reported that both of the datasets showed similarities
in terms of spatial distribution patterns [46,47]. In the case of the MXCO2–ODIAC com-
parison, similarity in the spatial distribution pattern of the two datasets was found over
the areas which had higher anthropogenic emissions; however, some differences were also
observed over the areas which had lower amounts of anthropogenic emissions. Several
regional-scale studies have been carried out comparing the ODIAC CO2 emissions with the
satellite-based XCO2 anomalies and reported that the ODIAC dataset showed a good agree-
ment with satellite-based XCO2 concentration at higher values, whereas notable deviations
occurred at lower values. Yang et al. studied the correlation between the ODIAC emissions
and XCO2 anomalies derived using GOSAT retrievals over China and reported that the
correlation between the two datasets was improved at higher values [48]. Similar results
were reported by [41,46] when OCO-2-based XCO2 anomalies were compared with the
ODIAC CO2 emissions. The differences between these two datasets are due to the different
approaches to measurement. Bottom-up-approach-based inventories, i.e., ODIAC and
CDIAC, estimate the CO2 emissions based on standardized protocols, combining activity
data such as fuel production and consumption as well as traffic-monitoring data with
pre-calculated emission factors for specific sources across different activity sectors. The
datasets are distributed by either spatial proxies, i.e., nighttime lights, population density,
or through combinations of line sources such as on-road emissions and point sources such
as power plants [22]. ODIAC incorporates the nighttime lights and power plant point
sources to produce a high-resolution CO2 emission dataset [37,38].
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Furthermore, MXCO2 exhibited good correlations with various variables such as
the ODIAC CO2 emissions, population density, and NO2 tropospheric columns at higher
values; however, these correlations deteriorated at lower values. The larger deviation
between smaller values of the datasets might be due to several reasons: (i) The ODIAC
and population datasets may contain uncertainties due to data gaps, inaccurate calculation
factors, inaccurate data, and the unavailability of statistics, especially for developing
countries; (ii) uncertainties may be present in the XCO2 anomalies that are likely to be
produced by the CO2 uptake of the biosphere, which remains in the XCO2 anomalies.

5. Summary and Conclusions

In this work, we used OCO-2 and the ODIAC CO2 datasets to study the scenario of
CO2 over 120 districts of Pakistan. The spatial coverage of OCO-2, spatial distribution,
and monthly and seasonal variations of atmospheric CO2 were studied in detail. OCO-2
provided a reasonable spatial coverage over Pakistan except for the northern areas, which
are mostly covered with the highest mountain ranges. Moreover, the quantity of OCO-2
retrievals started decreasing during the pre-monsoon season and reached the minimum
during the monsoon season (June to August). This might be due to the presence of clouds
that strongly affected the space-borne observations. The concentration of atmospheric
CO2 was continuously increasing in Pakistan with significant seasonal fluctuations. The
maximum and minimum concentrations of atmospheric CO2 were observed in May and
September, respectively. Moreover, the atmospheric CO2 concentration was higher during
DJF and MAM, and lower in JJA and SON. A slight difference in the concentration of
atmospheric CO2 was also observed between various administrative units of Pakistan.

To study the anthropogenic CO2 using a satellite dataset, OCO-2 retrievals were
deseasonalized and detrended by calculating the XCO2 anomalies (MXCO2). The spa-
tial distribution pattern of MXCO2 showed higher concentrations over the cities located
along the CPEC routes. The spatial distribution pattern of the satellite-based MXCO2 was
compared with those of various datasets including the ODIAC CO2 emissions, OMI NO2
tropospheric column, population density, nighttime lights, fire locations, and cropland,
and all the datasets showed a similarity in the spatial distribution pattern. Mean MXCO2
concentrations were calculated within the spatial boundaries of districts, and the districts
were then ranked based on the mean MXCO2 concentrations. The cities showing the highest
MXCO2 concentrations were either metropolitan cities or experiencing large-scale economic
activities. Karachi, Lahore, Faisalabad, Multan, Sialkot and Narowal were among the cities
with the highest MXCO2 concentrations. The cities with the lowest MXCO2 concentrations
were mostly located in the KPK and Balochistan provinces. Moreover, Punjab showed the
highest anthropogenic CO2 concentration among the administrative units, followed by
Sindh, KPK, and Balochistan.

Anthropogenic CO2 emissions over Pakistan were studied using the ODIAC dataset.
The spatial distribution pattern of the ODIAC emissions was also similar to those of the
satellite-derived MXCO2, OMI NO2 tropospheric column, and population density. The
ODIAC spatial distribution pattern showed some deviations from that of the satellite-
derived MXCO2 over the areas where population density was significantly low. This might
be due to the fact that the ODIAC dataset largely relied on nighttime lights for the spatial
distribution, and nighttime light is difficult to detect from a satellite over the areas with
lower human activity. To determine the anthropogenic CO2 emissions in each district,
the mean CO2 emissions were estimated for each of the districts, and the districts were
then ranked based on the mean CO2 emissions. The districts with the highest MXCO2
concentrations such as Karachi, Lahore, Muzaffargarh, Multan, Faisalabad, and Rawalpindi
were also among the cities with the highest CO2 emissions. The results showed that CO2
emissions were increasing in most of the cities.

The spatial distribution patterns of the satellite-derived MXCO2 and ODIAC CO2
emissions showed a similar trend with the population density and NO2 tropospheric
column. Therefore, to study the relationship between various variables, cluster-based
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correlation analyses were carried out. The results showed that OCO-2 MXCO2 showed a
positive and significant correlation with the ODIAC CO2 emissions, and these correlations
improved when the analysis was carried out with higher values. Both the OCO-2 and
ODIAC datasets showed positive and significant correlations with the NO2 tropospheric
column and population density. The common results of OCO-2 MXCO2 with all the
variables showed that the correlation was improved when the smaller values were removed.
This might be due to the uncertainties in the MXCO2 caused by CO2 uptake of the biosphere
or atmospheric transport. However, the matter needs further investigation.

Several satellites are now orbiting around the earth and continuously monitoring
atmospheric CO2. In the future, we intend to study the potential of joint utilization of
multiple CO2-monitoring satellite datasets along with atmospheric transport modeling to
monitor the atmospheric CO2 at local scales.
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