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Abstract: The protection of mangroves through nature reserves has been demonstrated to be effective.
There were many studies evaluating the mangrove protection effect. However, the evaluation of
mangrove growth quality with positive or negative growth trends, as well as restoration potential
against disturbance in nature reserves, is still lacking. Thus, this study proposed a hierarchical
evaluation framework for mangrove protection in nature reserves, which takes long-term metrics at
three levels of loss and gain areas, patch pattern dynamics, and pixel growth trends into account. The
continuous change detection and classification (CCDC) was utilized to identify the change condition
of mangroves in six nature reserves of the Guangdong–Hong Kong–Macao Greater Bay Area. The
Entropy Weight Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was utilized
for scores evaluation of protection effort comparison from 2000 to 2020. The study results had the
following three main findings. Firstly, the mangrove forest area increased by about 294.66 ha in four
reserves and slightly decreased by about 58.86 ha in two. Most reserves showed an improved patches
intact pattern and more positive growth trends. Secondly, the establishment of nature reserves and
afforestation were the main causes of mangrove area gain. Until 2010, aquaculture, agriculture, and
urban development were the biggest threats to mangroves. Finally, the protection of the reserves was
successful in the early decades, but the general evaluation scores showed a decline in recent years
once we considered the growth trends for quality. The proposed hierarchical evaluation methods
provide a new sight to research the impacts of abrupt change and protection resilience status of the
gradual restoration of nature reserves.

Keywords: GBA; nature reserve; evaluation for mangrove protection; CCDC; Landsat time series;
entropy weight TOPSIS

1. Introduction

Mangroves are dynamic ecosystems found in tropical and subtropical coastal intertidal
zones. They are essential for preserving the shoreline, biodiversity, and essential ecosystem
services [1,2]. They also help lessen the devasting effects of natural disasters such as
hurricanes and tsunamis. However, mangrove distribution and habitat quality change
quickly due to human activities [3–5] and the majority of mangrove loss (62%) around the
world has been a result of human impact along the coast since the start of the 21st century [3].
In two decades, China’s mangrove area fell by over 50% [6]. Anthropogenic disturbance is
the primary cause of mangrove loss in Asia, accounting for 75% of total loss [4]. Mangrove

Remote Sens. 2022, 14, 6026. https://doi.org/10.3390/rs14236026 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs14236026
https://doi.org/10.3390/rs14236026
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5695-5485
https://doi.org/10.3390/rs14236026
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs14236026?type=check_update&version=2


Remote Sens. 2022, 14, 6026 2 of 25

destruction is typically caused by inappropriate rapid urbanization [3,4,6], the expansion
of aquaculture and agriculture [7], pollution, and overextraction [5].

A key step in alleviating the negative effects of human activity on mangrove forests
is the establishment of nature reserves [8] which were proven to be more effective [9–11].
The Ramsar Convention, which was formed in 1971 [12], indicates that it should establish
reserves to promote wetlands and waterfowl conservation. Accordingly, deforestation
rates of mangroves have declined in the past decade [5] and mangrove losses caused
by direct human intervention have declined by 73% [3]. Therefore, China has taken a
variety of measures to preserve and rehabilitate mangroves, including establishing nature
reserves and introducing the national key ecological and financial improvement plan [13].
Without the intensive deforestation and occupation of mangroves, we wonder whether
traditional evaluation metrics, such as area loss, are reliable and effective for nature reserve
evaluation [14].

Recently, increasingly more studies have begun to quantify the effects of conserva-
tion [15], using mangrove-evaluation metrics such as habitat cover and biodiversity [11],
connectivity and fragmentation [16], and even geographical distribution [17], as well as the
causes of loss [3]. Temporally, the area and landscape of forests, as well as their dynamic
changes [18–22], are the most commonly used indicators in the effectiveness analysis of
forests in nature reserves. In other words, most studies have concentrated on assessing a
specific moment or interval. However, existing research has confirmed that mangroves’
resistance to disasters [23,24] and the biodiversity [11] of coastal ecosystems are related
to growth quality. To detect the growth status, such as degradation and recovery of man-
groves that have been protected, gradual change detection needs long-term mission data.
Although the area and landscape dynamics have been used to assess the conservation effect
of mangrove nature reserves [18], few studies have identified the growth quality and trends
for mangrove resilience in nature reserves.

Monitoring the obvious loss and restoration of mangroves is easily accomplished and
shows what happened, while the growth trends of individual mangroves in a nature reserve
can help predict what will be. Today, optical sensors, such as those used in the Landsat
missions, have the unique advantage of providing seamless global long-term observations
that radar or lidar sensors cannot. Methods that use dense Landsat Time Series (LTS) have
shown an enhanced capability for recording vegetation phenology and various kinds of
inter-annual land [25–27]. The utilization of dense LTS not only fills spatial and temporal
data gaps in cloudy regions [28,29] but can also track growth trends, including in wild
forests and urban green spaces [25,30]. However, as we all know, wetlands are one of
the most difficult land cover classifications to map using satellite data [31], particularly
mangroves with coastal tidal wetlands that are highly dynamic in terms of water level from
tide and sea level changes [32,33]. As a result, there is uncertainty existing when using LTS
data to map mangrove classification and it is imperative to develop novel methods and
evaluation strategies that integrate the trajectories of mangrove disturbance and recovery
for the accurate mapping of the growth trends.

In this study, the continuous change detection and classification (CCDC) method [34]
was employed to track the loss–restoration of mangroves with both positive (increasing)
and negative (decreasing) trends. CCDC employs a per-pixel fitting method to capture
seasonal dynamics of land cover as well as trends in inter-year greening and browning,
included in the urban area and carbon dynamics [25,35]. One advantage of model fitting is
that it lessens reliance on individual observations and can reduce the requirement for a full
cloudless image, which is particularly helpful for monitoring mangrove ecosystems [36–39].
Mangrove growth trends without changes depend on the long-term trend to describe the
slope changes before and after the restoration.

The mangroves in the GBA are distributed widely, and nature reserves in the GBA are
typical in the north of the world’s mangrove distribution area. The GBA has experienced a
population and economic boost since the 1980s with a significant amount of land reclama-
tion [1]. Despite the existence of numerous nature reserves, protecting mangroves is a great
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challenge due to intensive human disturbance in their early decades, such as reclamation
and landfills [1,5], and the protective effects of recent ecological restoration are frequently
unknown to management. It is important to develop an evaluation method, especially for
the ten thousand ha mangrove afforestation project in Guangdong province. The nature
reserves in the Guangdong–Hong Kong–Macao Greater Bay Area were chosen for this
study to evaluate mangrove protection in nature reserves to address the stated research
gaps and the current state of mangroves.

Herein, the evaluation sheds light on the area dynamics, landscape fragmentation,
and growth quality, delineating the information at three levels, including the area statistics,
patch pattern dynamics, and the growth trends of individual pixels, respectively. The
spatial-temporal indicators promote the evaluation of the protective effect of mangroves
using time-series Landsat imageries. The Technique for Order Preference by Similarity
to Ideal Solution (TOPSIS) method, first proposed by Hwang and Yoon in 1981 [40], was
utilized to assess multiple factors comprehensively [41,42]. Hence, the entropy weight
combined with TOPSIS was determined more objectively according to the data of indicators
for mangrove conservation.

Therefore, three main studies were performed to answer the following: (1) What were
the mangroves’ changes in area, landscape, and growth quality in nature reserves of GBA
from 2000 to 2020? (2) What are the main drivers of the changes in mangrove reserves?
(3) How can mangroves obtain good protection?

2. Materials and Methods
2.1. Study Area of Nature Reserves

The Greater Bay Area (GBA) (20◦41′–25◦26′N, 111◦24′–115◦25′E) is an urban agglomer-
ation that includes two special administrative regions of Hong Kong and Macao, as well as
Guangzhou, Shenzhen, Zhuhai, Foshan, Zhongshan, Dongguan, Huizhou, Jiangmen, and
Zhaoqing in Guangdong Province. It is located in south China, covering a region that in-
cludes the Pearl River Delta and central Guangdong Province. It is susceptible to typhoons,
heavy rains, droughts, etc. [1,43]. Guangzhou, Shenzhen, and Jiangmen are frequently
impacted by natural and human interference causes. Six nature reserves in GBA have been
chosen for analysis, as shown in Figure 1, to determine in detail the changes in mangroves
there. These nature reserves are Nansha Wetland Park (NWP), Qi’ao Island Mangrove
Nature Reserve (QIMNR), Guangdong Taishan Zhenhaiwan Mangrove National Wetland
Park (GTZMNWP), Guangdong Zhongshan Cuiheng National Wetland Park (GZCNWP),
Mai Po Marshes Nature Reserve (MPMNR), and Futian Mangrove National Nature Reserve
(FMNNR). Table 1 displays the fundamental details of the six nature reserves.
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Table 1. Overview of the features used for mapping terraces.

Name of
Reserve Location

Climate Conditions

Conservation
Areas (ha)

Starting
Time

Protection
Type

Annual Average
Temperature

(°C)

Annual Average
Precipitation

(mm)
Climate Type

NWP 22◦26′–23◦6′N
113◦13′–113◦43′E 626.7 2014 Local 21.8 1635.6 South Asian subtropical

ocean monsoon climate

GTZMNWP 21◦44′–21◦56′30”N
112◦24′–112◦33′E 10,080 2004 Local 21.3~22.8 2183.3 Tropical monsoon climate

GZCNWP 22◦30′–22◦32′N
113◦34′–113◦35′E 625.6 2017 National 21.6 1731 Tropical monsoon climate

FMNNR 114◦03′E, 22◦32′N 368 1984 National 22.55 1926.8 Sub-tropical maritime
climate

MPMNR 113◦59′–114◦03′E,
22◦29′–22◦31′N 1500 1983 National 22.55 1926.8 South Asian tropical

monsoon climate

QIMNR 113◦36′40′′–113◦39′15′′E
22◦23′40′′–22◦27′38′′N 5103.77 1999 Provincial - - Tropical monsoon climate

2.2. Data Source and Processing

Landsat data, AW3D data, the 2017 tidal flat map of southern China [44], and auxiliary
data, including nature reserve boundary and administrative boundary along the coast of
GBA, are used in the study. This study uses all available Landsat surface reflectance data
acquired from 2000 to 2020, including Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI.
The effect of the atmosphere on spectral reflections of earth objects is eliminated by using
the sensor-specific algorithm (i.e., LEDAPS) [45]. The AW3D data were released by the
Japan Aerospace Exploration Agency (JAXA) in 2016. The data were used to provide terrain
information and help identify low-lying vegetation. Mangrove mainly grows in areas with
elevation values less than 10 m and slopes less than 10◦ [46]. The tidal flat map can reflect
short-term changes in inter-tidal areas, used as a constraint on the distribution of mangroves
in estuaries. A 5 km buffer zone of the administrative boundary along the coast of GBA
was generated to define a preliminary area in which the potential mangrove locations may
have been. The nature reserve boundary was digitized by manual interpretation. The pixel
size is 30 × 30 m in this research.

2.3. Hierarchical Evaluation Method

Mangrove classification and the effect evaluation of mangroves in nature reserves from
2000 to 2020 are the two primary sections of this study. In this study, the effect of nature
reserves was quantitatively analyzed while considering the growth quality of mangroves.
Figure 2 displays a flowchart of the research process.

In this session, three levels made up the hierarchical evaluation of the protection
pattern: area statistics, patch pattern dynamics, and growth trends of individual pixels,
respectively. First, though the area is not the only metric with which trends in mangroves
should be assessed, area growth provides compelling evidence of a shift in the impact of
protection [47]. Second, landscape metrics can quantitatively capture the geographical
structure, configuration, and function of the landscape, making them trustworthy indicators
for evaluating the conservation effects of nature reserves [48]. Finally, the capacity of
mangroves to provide ecosystem services is directly correlated with their growth quality,
and mangrove growth trends discovered by change detection can be used to describe the
growth quality. In general, the CCDC algorithm classified the mangrove area and the
number of landscape patches and was used to detect mangrove growth trends. The entropy
weight TOPSIS model was then used to measure the effect of protection. These three aspects
can be utilized to evaluate the mangrove forest from various perspectives and levels.
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2.3.1. Long-Term Mangrove Dynamics with CCDC

Once data were pre-processed, we applied the Continuous Change Detection and Clas-
sification (CCDC) method to provide data on the timing and magnitude of class changes
(e.g., mangrove to non-mangrove) as well as details on trends over time. CCDC is designed
to work with multi-band Landsat data and focuses on changes in land cover class whereby
breaks in the time series are identified, and each segment (period between breaks) is classi-
fied independently. Time-series models used in CCDC are harmonic models with trend
components that record information about inter-annual changes in time series, and periodic
components that record information about intra-annual changes and breakpoints [34]. The
two components of the CCDC algorithm are cover/use change when the difference value
was larger than three times the Root Mean Square Error (RMSE). In the classification section,
the harmonic coefficients with the trend terms of the time-series model for each band were
employed by CCDC as the classification features, and a random forest classifier was used to
classify the ground objects. Equation (1) is the harmonic model formula that the algorithm
uses [49].

In this study, CCDC algorithms are used to analyze Landsat time-series images to
quantify mangrove changes over the years from 2000 to 2020. After building the initial
model, change was detected based on the spectral bands (from Blue to SWIR2), the time
segments were recorded, and then we built the harmonic regression fitting for spectral
indices. For mangrove monitoring especially, we not only used spectral bands (from Blue to
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SWIR2) but also NDVI, LSWI, and Modified Normalized Difference Water Index (MNDWI),
which were fitted with harmonic equations to record the status of mangrove, water surface,
and tidal inundation. Herein, land cover/use in this study was divided into 6 types, as
shown in Table 2, namely, mangrove, water, impervious, other vegetation, crop, and tidal.

p̂(i, x) = a0,i +
3

∑
k=1

{
ak,i cos(

2kπ

T
x) + bk,i sin(

2kπ

T
x)
}
+ c1,ix (1)

where p̂(i, x): Surface reflectance for the ith Landsat Band at x Julian date from model
prediction.

x: Julian date
i: The ith Landsat Band (i = 1, 2, 3, 4, 5, and 7)
k: Temporal frequency of the harmonic component (k = 1, 2, and 3)
T: Number of days per year (T = 365.25)
a0,i: Coefficient for overall value for the ith Landsat Band
c1,i: Coefficient for inter-annual change (slope) for the ith Landsat band
ak,i, bk,i: Coefficients for intra-annual change, intra-annual bimodal change, and intra-
annual trimodal change for the ith Landsat band, k = 1, 2, and 3, respectively.

Table 2. Definitions of 6 types of land use in this study.

Land Cover Type Example Image Definition

Mangrove
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where ),(ˆ xip : Surface reflectance for the ith Landsat Band at x Julian date from model 
prediction. 

x: Julian date 
i: The ith Landsat Band (i = 1, 2, 3, 4, 5, and 7) 
k: Temporal frequency of the harmonic component (k = 1, 2, and 3) 
T: Number of days per year (T = 365.25) 
a0,i: Coefficient for overall value for the ith Landsat Band 
c1,i: Coefficient for inter-annual change (slope) for the ith Landsat band 
ak,i, bk,i: Coefficients for intra-annual change, intra-annual bimodal change, and intra-

annual trimodal change for the ith Landsat band, k = 1, 2, and 3, respectively 

Table 2. Definitions of 6 types of land use in this study. 

Land Cover Type Example Image Definition 

Mangrove 

 

Growing mangrove plant communities with no obvious 
bare land or tidal flats 

Water 

 

Aquaculture without mangroves on the surface and base, 
seawater, rivers, and the landscape water inside the city 

Impervious 

 

Unutilized land, artificial features (such as villages, roads, 
and other construction land), or large tracts of wasteland 

partially occupied by construction 

Unutilized land, artificial features (such as villages, roads, and other
construction land), or large tracts of wasteland partially occupied

by construction

Other vegetation
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2.3.2. Accuracy Assessment for Mangrove Changes

To assess the classification, 1487 pixels were randomly collected as the validation sam-
ples from 8 classes, including the stable classes and mangrove gain and loss [50]. Figure 3
displays the spatial distribution of validation sample locations. Each pixel identified the
ground cover of Google Earth high-resolution images from 2000 to 2020. To measure the
error between the reference and the estimated value, a confusion matrix of the method was
evaluated [51,52].
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2.3.3. Spatiotemporal Area and Landscape Pattern Dynamics

Mangrove gain and loss were used to depict the transitions between mangroves
and other land covers and were compared among the six nature reserves for driving
forces analysis. Using buffer distance analysis, the rational allocation and utilization of
resources can be guided, and the main driving factors are aquaculture, crop, and impervious.
Moreover, the degree of influence of these three land covers on mangrove area change is
analyzed, so as to support decision-making.

Analyzing the landscape characteristics of mangrove forests was beneficial in pro-
viding the basis for mangrove protection. There are many different types of landscape
indices, but they can not represent the landscape pattern exclusively. Instead, a single index
expresses the meaning of landscape by comparing the values of the landscape indices. Thus,
this study used fragmentation to express the continuity of mangroves. The fragmentation
process was a landscape change from a single, homogeneous, continuous ensemble to
complex, heterogeneous, and discontinuous areas due to natural or human disturbance.
Forest fragmentation is mainly manifested by an increase in the number of plaques and a
decrease in the average plaque area, irregularly shaped plaques, a reduction in the habitat
area, and the isolation of forest plaques from one another to form forest islands [48]. The
fragmentation index is used to reflect the degree of the mangrove landscape fragmenta-
tion, reflecting the complexity of the landscape spatial structure. The fragmentation index
calculates by Equation (2) [53]

FIi =
NP
CA

(2)

where FIi is the fragmentation of landscape i, NP is the number of patches of landscape
i, and CA is the total area of landscape i. The change in the overall mangrove landscape
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is expressed by the fragmentation of the mangrove landscape, and the closer the fracture
value is to 0, the higher the continuity and integrity of the mangrove landscape.

2.3.4. Growth Trends of Stable Mangrove

If the stable mangrove indicates that the mangrove did not experience changes to other
land use/covers, the positive or negative growth trend is a crucial criterion for evaluating
the growth quality. The Red band and NDVI (Normalized Difference Vegetation Index)
can judge growth trends using the statistics from more than 10,000 pixels with the positive
trend detected by CCDC. The detailed steps were as follows (as shown in Figure 4):
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Step 1: Calculate the trend median of the red band of stable mangroves before and
after the breakpoint detected by CCDC, represented by Rafter and Rbefore.

If Ra f ter < Rbe f ore, then move to step 2; otherwise, it is a negative trend.
Step 2: Calculate the slope of NDVI of stable mangroves after the breakpoint, repre-

sented by NDVIafter, and the difference at the breakpoint which means the value after the
breakpoint minus before, represented by D. There are 3 rules.

Rule 1: When NDVIa f ter > 0 and D > 0, it is a positive growth trend.

Rule 2: When NDVIa f ter< 0 and D > 0 and
∣∣∣NDVIa f ter

∣∣∣ < 0.5|D|, it is positive
growth trend.

Rule 3: When NDVIa f ter> 0 and D < 0 and
∣∣∣NDVIa f ter

∣∣∣ > 0.5|D|, it is positive
growth trend.

Hence, using a different combination of scenarios of NDVI trends, the difference D
and the growth trend magnitude, the pixels were regarded as a positive growth trend. In
addition to these cases, the rest are considered to be negative growth trends. Moreover,
each pixel generally changed no more than twice, but very few pixels had two changes in
2000–2020, dominated by a single positive and single negative growth trend.

2.3.5. Comprehensive Score Evaluation Using the Entropy Weight TOPSIS Method

Based on the area, landscape, and growth trends of mangroves in nature reserves, man-
grove loss (ML), mangrove gain (MG), fragmentation index (FI), stable mangrove positive
trend (SMP), and stable mangrove negative trend (SMN) were determined as the evaluation
indicators in this study. The nature reserves in this study were thoroughly assessed using
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the Entropy Weight TOPSIS approach, which not only reduces the interference of subjective
human factors but also makes the results more objective and reasonable.

Its key tenet is to weigh each index in accordance with how significantly each differs
from the others. The primary calculation is separated into three steps.

Create an evaluation matrix consisting of m samples and n indicators, with the inter-
section of each alternative and criteria given as xij; we, therefore, have a matrix (xij)m×n.

a. Data normalization.

The inverse technique results in a positive change to the negative index. Metrics for
forward normalization were normalized by Formula (3)

x′ij =
xij√

∑m
k=1 xij

2
(i = 1, 2, . . . , m; j = 1, 2, . . . , n) (3)

where xij is the jth indicator value of the ith sample after forward; the normalized indicator
value is given as x′ij; m is the number of samples; n is the number of indicators.

b. Information entropy calculation.

Calculate the information entropy of the jth index by Equation (4).

Sj = −∑m
k=1 xijlogxij (4)

c. Weight calculation.

Calculate the weight of the jth index by Equation (5).

Wj =
1− Sj

n−∑n
k=1 Sj

(5)

The strategy known as TOPSIS (technology for order preference by the similarity to
an ideal solution) is also “a rough idea of the ideal outcome Sorting technique”. It is an
evaluation technique that considers how close an object is to an ideal evaluation scheme,
leading to precise evaluation results and a flexible and convenient calculating process.

a. Calculate the weighted normalized decision matrix by Equation (6).

zij = x′ij × wj (6)

where wj =
Wj

∑n
k=1 WK

, j = 1, 2, · · · , n so that ∑n
k=1 WK = 1, and Wj is the original weight

given to the indicator jth, j = 1, 2, · · · , n.
b. Determine the worst alternative d−j and the best alternative d+j by Equation (7).{

d+j = max
{

zij
}

d−j = min
{

zij
} (i = 1, 2, . . . , m) (7)

c. Calculate the weighted European-type distance between the target sample i and the
best/worse condition d+j /d−j by Equation (8).

D+
j =

√
∑n

j=1

(
zij − d+j

)2

D−j =

√
∑n

j=1

(
zij − d−j

)2
(8)

where D−i is the weighted European-type distance between the worst solution and ob-
ject; D+

i is the weighted European-type distance between the best solution and object.
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d. Calculate the similarity to the worst condition.

Protection effectiveness of nature reserves is expressed by relative proximity value
(Ci), which is the comprehensive score. It is an evaluation method to determine the relative
proximity between the evaluation object and the ideal scheme of the many evaluation
objects. The formula is shown in Equation (9):

Ci =
D−i

D+
i + D−i

(0 ≤ Ci ≤ 1) (9)

The closer the Ci is to 1, the closer the object is to the most effective protection, that is,
the object is relatively superior.

3. Results and Analysis
3.1. Accuracy Assessment

The percentage of test points that fall into the right classification category during the
classification process is known as user accuracy. Producer accuracy is that the category’s
ground truth reference data are correctly categorized in this classification. As Table 3 shows,
the overall accuracy is 98.71%, and the producer and user accuracy of mangroves is 98.94%
and 88.57%, respectively. Due to the efficiency of the entire classification, a low omission
error was recognized for mangrove loss due to the high user accuracy. This is crucial for
assessing the dynamics of mangrove nature reserves.

Table 3. Accuracy assessment and area mapping for stable land cover and mangrove loss and gain
from 2000 to 2020.

Class

Ground
Truth (Pixels)

Crop Other
Vegetation Impervious Mangrove Tidal Water Mangrove

Loss
Mangrove

Gain Total Map
AREA [ha]

Crop 93 1 0 0 0 4 0 0 98 79,156.70
Other vegetation 4 416 4 0 0 4 0 0 428 434,893.60

Impervious 1 1 176 0 0 1 0 0 179 165,427.31
Mangrove 0 4 0 62 1 0 2 1 70 2455.08

Tidal 0 0 0 0 49 0 0 0 49 9302.18
Water 0 0 1 0 0 602 0 0 603 966,564.66

Mangrove loss 0 6 0 0 2 0 20 2 30 1099.85
Mangrove gain 0 3 0 1 0 0 3 23 30 699.61

Total 98 431 181 63 52 611 25 26 1487 1,659,598.98

Area-estimation
(ha) 80,106.69 424,862.43 168,322.14 2197.82 9410.57 973,181.22 873.34 644.76 1,659,598.98

Overall accuracy 98.71%
user accuracy 94.90% 97.20% 98.32% 88.57% 100% 99.83% 66.67% 76.67%

producer accuracy 93.77% 99.49% 96.63% 98.94% 98.85% 99.16% 83.96% 83.19%

3.2. Spatiotemporal Dynamics in Nature Reserves
3.2.1. Classification Mapping

This study examines the spatiotemporal changes in mangroves in nature reserves for
five years, from 2000 to 2020. The spatiotemporal evolution of mangrove forests in QIMNR
and MPMNR is depicted in Figure 5. In the QIMNR and MPMNR, there are obviously
more huge patches of mangroves, and the landscape is more connected. Figures A1–A4
of Appendix A contain further data regarding nature reserves. Figure A3 illustrates the
expansion of the FMNNR’s large patch mangrove. Other nature reserves have many
small areas of mangroves and mangrove patches that vary widely. Mangroves appear to
be broken up more noticeably. Mangrove forests in Nansha expanded to the southwest,
mangrove forests in Zhongshan on the west side of the Cuiheng River channel significantly
declined, and mangrove forests in Taishan Town Bay were evenly distributed across the
nature reserve.
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(D,J): 2010, (E,K): 2015, (F,L): 2020.

3.2.2. Mangrove Area Dynamics

Table 4 details the temporal and spatial changes in mangrove pixels and their pro-
portion to each nature reserve in the study area from 2000 to 2020. After determining the
general size of the nature reserves from the data, remote-sensing extraction was used to
determine the entire area (in pixels) of the reserves. When considering the entire mangrove
area, in the past 20 years, mangroves have grown in size across the NWP, QIMNR, MPMNR,
and FMNNR. In the nature reserves of the GTZMNWP and GZCNWP, the overall area
of mangroves has somewhat shrunk. The area of mangroves in the QIMNR increased
from 17.785 to 23.743%, and the MPMNR changed from 36.185 to 38.251%. The NWP
has experienced significant expansion, with the distribution range drastically growing
from 2.419 to 31.247%. However, the area of mangroves in the FMNNR, GTZMNWP, and
GZCNWP largely remained or slightly declined.
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Table 4. Mangrove proportion of total pixels in nature reserves.

Nature Reserve Total Pixel
2000 2005 2010 2015 2020

Pixel % Pixel % Pixel % Pixel % Pixel %

NWP 5415 131 2.419 743 13.721 1486 27.442 1660 30.656 1692 31.247
GTZMNWP 147,629 11,154 7.555 11,162 7.561 10,896 7.381 10,748 7.280 10,707 7.253
GZCNWP 7470 885 11.847 695 9.304 688 9.210 716 9.585 678 9.076

QIMNR 24,357 4332 17.785 5342 21.932 5705 23.422 5776 23.714 5783 23.743
MPMNR 9001 3257 36.185 3296 36.618 3415 37.940 3434 38.151 3443 38.251
FMNNR 5804 1366 23.535 1372 23.639 1384 23.846 1416 24.397 1442 24.845

3.2.3. Mangrove Loss and Gain

As Table 5 lists, in each nature reserve, the proportion of pixels in the mangrove forest
changed between 2000 and 2020, suggesting a significant change. The total net change ratio
implies that overall mangrove losses outweighed gains in the GTZMNWP and GZCNWP,
but overall gains outweighed losses in the NWP, QIMNR, MPMNR, and FMNNR. The
percentage of mangroves in the GTZMNWP was basically steady overall. With a net change
of −2.771%, the percentage of mangrove pixels in the GZCNWP progressively declined.
Mangrove pixels became more widespread over time in the QIMNR, NWP, MPMNR, and
FMNNR, with net changes of 5.957%, 28.827%, 2.066%, and 1.309%, respectively. Among
these, the NWP was the nature reserve with the largest variety in the mangrove pixels.

Table 5. The Proportion of Mangrove Changing Pixels in Each Nature Reserve.

Change (%) 2000–2005 2005–2010 2010–2015 2015–2020 Total Net Change (%)

NWP 11.302 13.721 3.213 0.591 28.827
GTZMNWP 0.005 −0.180 −0.100 −0.028 −0.303
GZCNWP −2.544 −0.094 0.375 −0.509 −2.771

QIMNR 4.147 1.490 0.291 0.029 5.957
MPMNR 0.433 1.322 0.211 0.100 2.066
FMNNR 0.103 0.207 0.551 0.448 1.309

Figure 6 suggests mangrove transitions in the QIMNR and MPMNR. The mangrove
area in the QIMNR and MPMNR increased significantly. In the QIMNR, a project to
introduce and expand mangrove plant communities was implemented. As the introduction
of mangroves slowed the growth of Spartina alterniflora, the amount of other vegetation
progressively decreased, and mangroves gradually grew. Mangrove protection in the
MPMNR was carried out earlier, and the protection measures were relatively effective.
Additionally, the MPMNR was not open to the public, greatly reducing human interference,
which resulted in a reduced loss of mangroves and a greater conversion of mangroves into
other vegetation. However, serious pollution from household, industrial, and agricultural
waste has always been the main issue that has kept the Mai Po wetland system from
growing healthily. Mangrove loss and gain in other nature reserves can be found in
Appendix A, Figures A5 and A6.
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3.2.4. Influence of Main Drive Factors on Mangrove

With a significant amount of aquaculture in the GTZMNWP, QIMNR, MPMNR, and
GZCNWP with easily distinguishable aquaculture, crop, and impervious area, exploring
the causes of mangrove loss can provide an important reference for mangrove conservation.
All of this information can be obtained by visually interpreting images. Therefore, the four
nature reserves were selected to analyze the effects of aquaculture, crop, and impervious
area on mangrove loss in the reserves.

In four nature reserves, the statistical distances between mangroves and impact factors
are illustrated in Tables A1–A4. According to the results in the tables, it can be seen that
all the mangrove loss in the GTZMNWP occurred within 500 m of aquaculture, with
about 90% of the loss occurring within 100 m. The GZCNWP lost all of its mangrove
forests within 500 m of crop and impervious area. The percentage of mangrove loss within
500 m of aquaculture in the four time periods of the QIMNR was 59%, 65%, 80%, and
98%, respectively. A tiny percentage of mangroves was lost beyond 500 m of aquaculture
because mangrove cultivation has an effect on the mangroves in the nature reserve. The
MPMNR lost fewer mangroves, but those losses were mostly within 200 m of aquaculture.
In summary, the closer the mangroves in the nature reserve were to artificial ponds, crops
and impervious areas, the greater the impact was, and more than 90% occurred within
500 m of artificial ponds, crops, and impervious areas.

3.3. Landscape Pattern of Mangrove

The results of Figure 7 indicate that the fragmentation of nature reserves changed
significantly during 2000–2020 and show the spatio-temporal change in mangrove forest
fragmentation. Compared to the QIMNR, MPMNR, and FMNNR, the degree of fragmenta-
tion in the NWP, GTZMNWP, and GZCNWP was significantly high. The result suggests
that the continuity of mangrove forests in the QIMNR, MPMNR, and FMNNR was higher
than in the NWP, GTZMNWP, and GZCNWP. The magnitude of the change in NWP was
decreased, indicating that the connectivity of mangrove forests in Nansha was increased.
The GTZMNWP’s fragmentation pattern was similar to the NWP’s. The FMNNR’s frag-
mentation had deteriorated, which showed that the connection of the landscape was also
declining. This demonstrated that changes in fragmentation were unstable because the
number of mangrove patches changed faster. Other nature reserves had only minor and
stable fragmentation changes.
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Figure 7. Fragmentation change of mangrove forests for nature reserves from 2000 to 2020.

3.4. Mangrove Growth Trends

Figures 8, A7 and A8 indicate the growth trends of stable mangrove forests in the
nature reserve from 2000 to 2020. Green means the pixel of the mangrove grew positively.
Red means the pixel of the mangrove grew negatively. Orange means the pixel show a
positive/negative growth trend and then a negative/positive one. Due to various factors,
mangrove growth quality almost changed during 20 years. Therefore, the growth quality
of mangroves has been relatively unstable in the 20 years observed. As the change in the
mangrove growth trend is spatially fragmented, there are few changes every five years,
and there are only two or fewer changes in a period of 20 years. Thus, the change in the
mangrove growth trend is shown in a single image. As shown in Figure 9, in the six nature
reserves every five years, it is evident that the positive growth trend pixels of mangroves
were virtually more than the number of negative pixels, showing that the reserve had an
effect on preserving the mangrove growth trends.
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3.5. Comprehensive Score Evaluation

Table 6 shows the weight value of each index of nature reserves. The greater the
index values changed from 2000 to 2020, the higher the weight values. The weight value of
the stable mangrove negative growth trend is the highest of the five indices of the NWP,
meaning that there is a great change in stable mangrove negative growth trend. Figure 8
shows this result of the NWP, so there is the highest negative growth trend pixel in NWP in
2015–2020. Meanwhile, it had the fewest positive growth trend pixels. Additionally, the
weight of the stable mangrove positive growth trend is the lowest of the five indices of
the NWP. Thus, the comprehensive score of the NWP in 2015–2020 is lower. Other nature
reserves also found similar results. Consequently, the comprehensive score tends to decline.

Table 6. The weight of each index of nature reserves.

Weight F MG SMP ML SMN

NWP 0.215 0.215 0.175 0.178 0.217
GTZMNWP 0.189 0.215 0.189 0.196 0.211
GZCNWP 0.150 0.164 0.228 0.209 0.248

QIMNR 0.157 0.241 0.179 0.174 0.249
MPMNR 0.160 0.221 0.191 0.252 0.177
FMNNR 0.171 0.190 0.174 0.230 0.235

Figure 10 depicts the comprehensive evaluation score of the effect of each nature
reserve in four time periods, with the result of the conservation effect being relatively
acceptable. The overall score of the NWP, GZCNWP, MPMNR, and FMNNR rose and then
declined. The overall score of the GTZMNWR and QIMNR tended to decline. The overall
score was higher when comparing the mangrove landscape, area, and stable mangrove
growth trends of nature reserves, indicating that the mangrove landscape fragmentation
was relatively small, and there were relatively more mangrove pixels that grew better and
were obtained. The lower overall score indicated the inverse. Compared with the protective
effects of different nature reserves, the QIMNR and MPMNR had been relatively poor over
the last five years.
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4. Discussion
4.1. Driving Factors Analysis of Mangrove Protection Dynamics

The quantitative analysis of the driving factors of mangrove change in this paper
can reflect the distance between mangroves and aquaculture, crop, or impervious areas,
which can be used to analyze the impact of other factors on mangrove change, as shown
in Tables A1–A4. As a result, the greater the losses in the mangroves, the closer they were
to these land uses/covers. However, based on experiment results, this transformation
between mangroves and these three types of land-use transitions in nature reserves largely
did not occur, but some research confirmed that most mangroves were lost to aquaculture
and agriculture [3,5,54,55]. Therefore, it is clear that mangrove protection was impacted by
the reserve-protection regulations. This demonstrates another influence on the protection
of mangroves in the nature reserve. While nature reserve protection and management
help reduce the impact of anthropogenic activities on mangroves [9,11,22], this impact
indirectly changes the biological and physical processes that affect mangrove reproduction
and nutrient transport [56]. Moreover, sea-level rise caused by climate change is the biggest
natural threat to mangrove protection [57]. Accordingly, up until 2010, aquaculture, agri-
culture, and urban development were the biggest threats to mangroves [1,3,5,7]. However,
the establishment of nature reserves and afforestation has grown in popularity in the last
decade [5]. Thus, when considering nature reserve protection and management, the indirect
influence on mangrove, such as the growth trend, appears even more necessary to consider.

Using a land use/cover transition matrix to examine the process and patterns of
land use/cover change is a common strategy [58–60]. However, the transition is unable
to react to the overall change in mangroves. For instance, in Nansha District, mangrove
areas increased and the landscape pattern was improved due to the artificial planting
of mangroves in 1998 and the subsequent focus on safeguarding mangrove regions in
2014. On the other hand, a negative trend of mangrove growth happened in NWP in 2014,
because large-scale development and construction in Nansha District polluted the water of
the Pearl River. Thus, the hierarchical evaluation framework for mangrove protection is
necessary. Although the mangrove quantity and landscape both improved, suggesting the
effect of protection in some aspects, the mangrove growth quality plays a key role in the
evaluation process. The comprehensive score of NWP declined obviously after 2015 due to
a slow increase in the mangrove area and an increase in negative mangrove growth.
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Unlike previous studies, our analysis provides a new perspective (growth trends)
for analyzing the potential drivers. The diminishing growth trend leads to lower growth
quality, increasing the likelihood of mangrove loss. Due to their tiny areas, significant
organic and heavy metal pollution, and adverse effects on mangrove growth trends, the
mangroves of FMNNR and NWP have low ecological service functions [61]. Due to these
uncertainties, mangroves may grow negatively. There was a large increase in the mangrove
area before 2010 in QIMNR, but after that, the negative growth mangrove pixels number
declined while the positive opposite and fragmentation changed into bad. Obviously,
the comprehensive scores declined from 2000 to 2020 in the QIMNR. Additionally, the
MPMNR is a similar case. Thus, we conclude that the protective effect of the QIMNR
and MPMNR was relatively poor in the past five years. In general, it is proven that the
mangrove growth trends play an important role in analyzing the nature reserve mangrove
change. In the future, possible mangrove transitions can be analyzed from the perspective
of growth trends.

4.2. Advantages and Limitations of the Evaluation Method

Unlike previous studies, a hierarchical evaluation framework was established to
analyze mangrove conservation efforts at three levels. On the one hand, it is feasible to
analyze and evaluate mangrove changes and drivers in a few nature reserves by area
and landscape [1,22,57]. When the number of reserves is considerable, comparing the
effectiveness of the reserves becomes challenging. There are significant differences in
disturbed and undisturbed mangrove areas, and mangrove growth quality can impact
adjacent ecosystems [62], which in turn affects the health of mangroves. Due to the sensitive
effects of mangroves on human activities, this study added the mangrove growth quality
to the model and formed a hierarchical evaluation framework. Therefore, this study
monitored the disturbed mangroves, distinguishes between positive and negative growth
trends of mangroves, and uses them as evaluation indicators. On the other hand, few
studies have evaluated mangrove growth quality [23]. Liu et al. conducted a nationwide
assessment of the conservation effect of mangrove reserves from a landscape perspective.
Jia et al. [18] conducted a national-scale evaluation of the conservation effectiveness, mainly
in terms of mangrove areas. Zheng et al. [20] evaluated the conservation effectiveness of
China’s national wetland reserves from three aspects: conservation value, wetland changes,
and functional zoning adjustment. Although the indicators they used were valid and
comprehensive, none considered mangrove growth quality.

Additionally, there are still limitations to the remote-sensing-based hierarchical evalu-
ation framework. It is related to the size of the pixel and accuracy. The detection outcomes
are more logical when employing the CCDC algorithm, which applies the per-pixel-model-
fitting method to capture seasonal dynamics and inter-year greening and browning trends
of various land cover types while also accounting for time correlations [25,34]. However,
the discrete pixels may be incorrectly classified as mangrove pixels or some pixels’ miss-
ing points may result in mangrove discontinuities [34], which will increase the number
of mangrove patches and increase the fragmentation of the overall mangrove landscape.
The time series model could be overfitted as well, and three consecutive changes in the
atmosphere could result in incorrect classification. However, the CCDC method can
achieve high-precision classification, and this study used the conversion of mangroves
and other land covers/uses as one of the evaluation elements to reflect the quantitative
change in mangroves.

The production accuracy of mangrove areas was 98.94%, user accuracy was 88.57%,
and the overall accuracy is 98.71% as shown in Table 3. Zhen et al. [63] used a support
vector machine classification method to classify the land use based on a combination of SAR
and optical data, with an overall accuracy of 95.04%, a production accuracy of 94.2% and a
user accuracy of 96.7%. Jia et al. [22] had an overall accuracy of 92% in the classification
of nature reserves in Hong Kong and Shenzhen. Ghorbanian et al. [64] used a random
forest classifier within the Google Earth Engine cloud computing platform resulting in an
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accurate mangrove ecosystem map with an average overall accuracy of 93.23%. Compared
with the classification accuracy of these research efforts, the classification accuracy of this
study is good. Overall, the obtained classification results are reasonable. It is reasonable
that the scores declined because the influence was stressed by mangrove growth trends.

There will be more options in the future for the indicators applied in the hierarchical
evaluation framework. At first, mangrove species were not considered in this study.
Different mangrove species would show different protection effects. Furthermore, the bird
species and the effect of mangrove forests resisting wave disasters, etc., are key factors to
express whether the nature reserve affects mangrove protection. Additionally, the data
used in this study has a resolution of 30 m. However, the 10 m image data in future studies
can provide a more refined research scale, and distinguish the protective effect of different
mangrove species through species classification.

5. Conclusions

Using a hierarchical evaluation framework, the effect of mangrove protection and
spatiotemporal changes in nature reserves, as well as driving factors, were quantified from
time-series remote-sensing images in this study. We found three conclusions for nature
reserves of mangroves in the GBA at three levels: (1) From 2000 to 2020, the mangrove forest
area rose in the NWP, QIMNR, MPMNR, and FMNNR, while it decreased in GTZMNWP
and GZCNWP. The mangrove landscape in nature reserves tends to be more complete
and continuous, except for the FMNNR. The positive growth trend of mangroves in the
nature reserve is better guaranteed gradually. (2) The establishment of nature reserves
and the artificial planting of mangroves were the main causes of mangrove gain. Man-
groves have been impacted by human activity in both positive and negative ways. The
protection of mangroves in nature reserves increased the size of mangroves, whereas aqua-
culture activity and its associated effects resulted in some indirect influences on mangroves.
(3) The effect of mangrove protection in the six nature reserves tends to be less effective
when adding growth trends, according to the results of the comprehensive evaluation scores.

Therefore, the recommendations made in this study for the long-term protection of
mangroves in nature reserves mostly focus on maintaining the existing mangroves, contin-
uously expanding the mangrove area, providing a more integrated mangrove landscape,
and promoting a positive trend in mangrove growth. Later, mangrove structures then
should be considered in the hierarchical evaluation framework. Other important factors,
such as mangrove and bird species, should be considered when assessing the protection of
mangroves in the future.
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Appendix A

The figures of spatiotemporal mangrove change, mangrove transition and growth
trends in other nature reserves, and the tables of the distance analysis of driving factors
mentioned in this study.
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Table A1. The quantity relationship of lost mangrove pixels and the distances between mangroves
and driving factors in GTZMNWP.

GTZMNWP
Pixel

m

D ≤ 50 50 < D ≤ 100 100 < D ≤ 200 200 < D ≤ 500 500 < D

2000–2005 143 16 5 0 0
2005–2010 313 8 9 2 0
2010–2015 170 24 8 6 0
2015–2020 162 75 48 15 0

Table A2. The quantity relationship of lost mangrove pixels and the distances between mangroves
and driving factors in GZCNWP.

GZCNWP
Pixel

m

D ≤ 50 50 < D ≤ 100 100 < D ≤ 200 200 < D ≤ 500 500 < D

2000–2005 167 20 17 5 0
2005–2010 47 8 2 0 0
2010–2015 11 1 1 0 0
2015–2020 55 1 0 0 0
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Table A3. The quantity relationship of lost mangrove pixels and the distances between mangroves
and driving factors in QIMNR.

QIMNR
Pixel

m

D ≤ 50 50 < D ≤ 100 100 < D ≤ 200 200 < D ≤ 500 500 < D ≤ 1000 1000 < D

2000–2005 7 3 1 2 1 7
2005–2010 8 1 4 6 6 6
2010–2015 5 2 1 2 2 0
2015–2020 8 9 7 18 1 0

Table A4. The quantity relationship of lost mangrove pixels and the distances between mangroves
and driving factors in MPMNR.

MPMNR
Pixel

m

D ≤ 50 50 < D ≤ 100 100 < D ≤ 200 200 < D ≤ 500 500 < D

2000–2005 4 1 0 0 0
2005–2010 0 0 1 0 0
2010–2015 0 0 0 0 0
2015–2020 5 1 1 0 1
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