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Abstract: After decades of development, LIDAR and visual SLAM technology has relatively matured
and been widely used in the military and civil fields. SLAM technology enables the mobile robot
to have the abilities of autonomous positioning and mapping, which allows the robot to move in
indoor and outdoor scenes where GPS signals are scarce. However, SLAM technology relying only
on a single sensor has its limitations. For example, LIDAR SLAM is not suitable for scenes with
highly dynamic or sparse features, and visual SLAM has poor robustness in low-texture or dark
scenes. However, through the fusion of the two technologies, they have great potential to learn
from each other. Therefore, this paper predicts that SLAM technology combining LIDAR and visual
sensors, as well as various other sensors, will be the mainstream direction in the future. This paper
reviews the development history of SLAM technology, deeply analyzes the hardware information of
LIDAR and cameras, and presents some classical open source algorithms and datasets. According to
the algorithm adopted by the fusion sensor, the traditional multi-sensor fusion methods based on
uncertainty, features, and novel deep learning are introduced in detail. The excellent performance of
the multi-sensor fusion method in complex scenes is summarized, and the future development of
multi-sensor fusion method is prospected.

Keywords: SLAM; LIDAR SLAM; visual SLAM; multi-sensor fusion; mobile robot

1. Introduction

With the gradual introduction of intelligent robot technologies into people’s lives,
their great convenience causes their demand to increase, and countries around the world
are also promoting the development of an intelligent robot field. Robots can be applied to
many practical scenarios: indoor sweeping robots, autonomous driving cars in the wild,
underwater environment detection robots, aerial drones, and even virtual scenarios such
as AR and VR, which have received extensive attention. However, this also leads to more
core problems. Without high-precision positioning and mapping technology, sweeping
robots cannot move autonomously and often bump into each other when placed in a room.
Self-driving cars, drones, and underwater robots can easily veer off the road, causing
irreparable accidents; in AR and VR, users cannot locate their position, let alone roam in the
virtual scene. Therefore, SLAM technology has come into being, which can provide spatial
positioning information and construct maps and virtual scenes according to its location [1].

SLAM stands for simultaneous localization and mapping [2]. Localization refers to
confirming the pose of the robot and surrounding objects in the world coordinate system,
and mapping refers to building a map of the surrounding environment perceived by the
robot. By carrying specific sensors, the robot determines its motion trajectory through the
observation of the environment without prior information of the environment, estimates
its motion, and builds a map of the environment.
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Early researchers divided SLAM into visual SLAM and LIDAR SLAM according to
the different types of sensors used in SLAM technology, such as cameras and LIDAR [3]. In
recent years, with the development of the computer field and the continuous exploration of
this field by researchers, composite SLAM has appeared, such as VINS (IMU + visual) and
RTAB-MAP (LIDAR + visual), in addition to relatively novel SLAM technologies, including
CNN-SLAM (based on the semantic pattern recognition method) and DeepVO (based
on the end-to-end deep learning method). In the following, this paper will outline the
development history of SLAM technology from early SLAM to current SLAM technology.
This paper summarizes the development of the SLAM field since 1986. From the perspective
of the algorithms, the development of the SLAM field is divided into three stages. As
shown in Figure 1, this paper describes the focus and contribution of SLAM in different
periods from three aspects: classical model stage, machine learning and optimization stage,
and deep learning stage. The following describes the basis for this article and the milestones
that have been reached during these three phases. There is no absolute end to this division,
and some work is still ongoing, but we made the decision to establish a crude division
according to the readers’ potential research focus. If there is a mistake, the readers are
welcome to correct it.

Classical model age

1986--2005

Machine learning and 

optimization age

2006--2015

Deep learning age

2016--present

Motion framework and observation 

model of early SLAM.

The improvement and optimization 

of SLAM algorithm.

SLAM combined with deep learning.

Figure 1. Different stages of SLAM development: classical stage, machine learning and optimization
stage, and deep learning stage.

Phase 1: Classical model phase.
The probabilistic perspective of SLAM was first presented at the 1986 ICRA conference,

which marked the beginning of classical SLAM. Since then, consistent probabilistic mapping
has been recognized as a fundamental problem in robotics, resulting in many important
papers. The original work was conducted by Smith, Cheesman, and Durrant-Whyte [2,4].
A statistical basis for describing the relationship between landmarks and dealing with the
relationship between geometric uncertainties was established. At the same time, N. Ayache
and O.D. Faugeras [5], J.L. Crowley [6], and R. Chatila and J.-P. Laumond [7] were the
first to use the Kalman filter algorithm for mobile robot visual navigation. In 1990, R.C.
Smith et al. [8] pointed out that when a mobile robot moves in an unknown environment
using the correlations observed between landmarks, due to the general error of the robot’s
positioning, the estimation of landmarks is necessary to correlate them with each other.
Afterwards, many aspects of the SLAM problem were continuously developed. However,
perhaps because of the hardware, there was a focus on the huge computational burden
when the researchers determined the convergence and steady-state behavior of a map,
and on the built figure relating to the consistency of solutions for a series of approximate
research methods; therefore, the study of the theory of global positioning and built figures
remained stagnant for a period of time [9]. SLAM achieved a conceptual breakthrough
with the realization of joint localization and mapping as a convergent estimation problem.
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In 1995, H.F. Durrant-Whyte et al. [10] presented the structure and convergence of the
SLAM problem and used the acronym “SLAM” for the first time. Their paper expounded
the core structure and application fields of the SLAM problem, but there was no standard
and efficient solution at the time. With the introduction of this problem, it attracted more
and more scholars and research teams to carry out simultaneous localization and mapping
work, especially J.J. Leonard [11] and J.A. Castellanos [12,13]. The authors of [14–17]
studied SLAM applications in different environments. During this period, M. Csorba
developed an important theory on convergence in [18,19], which explained the main reason
affecting computational efficiency: updating the observation model based on the EKF
is required to use all markers and joint covariance matrices. J.E. Guivant et al. [20] and
J.J. Leonard et al. [11] carried out extensive research on the problem of low computational
efficiency. In 2001, J. Neira and J.D. Tardos [21] pointed out that the standard EKF method
cannot screen out the wrong landmark observation points; the global pose optimization
must be carried out in the loop closure stage; and the EKF requires a definite motion
and observation model and a linear assumption of the model. S.J. Julier et al. [22] studied
the impact of nonlinear models on the performance of the EKF. In 2002, the FastSLAM
algorithm proposed by M. Montemerlo [23] was presented, which was different from the
traditional EKF-SLAM work at that time. It retained the core linear Gaussian assumption,
but the adopted method was based on recursive Monte Carlo sampling and particle filtering,
which demonstrated the nonlinear process model and non-Gaussian state distribution for
the first time. In 2005, V.A. Sujan et al. [24] proposed an algorithm based on iterative
sensor planning and sensor redundancy, which could construct a geometrically consistent
environment map in an unstructured environment.

Phase 2: Machine learning and optimization.
At the beginning of this stage, the LIDAR-based method was the mainstream of

SLAM research. Specifically, scholars focused on how to optimize the algorithms and
how to reduce the error. At this time, the development of SLAM entered the second
stage: machine learning and optimization. Based on the research results of F. Lu et al. [25]
and J. Gutmann et al. [26], researchers made improvements and focused on improving
the effectiveness and robustness of optimization under SLAM problems. The studies
of [27,28] summarized their improvement methods. SLAM was then formalized as a
problem of maximum a posteriori estimation, using factor graphs [29] to reasonably explain
the interconnections between variables. The maximum a posteriori estimation method
is proven to be more accurate and effective than the original SLAM filtering methods
(EKF-SLAM, FastSLAM). This optimization problem is solved by continuity linearization.
The current canonical forms of SLAM generally refer to maximum a posteriori estimation,
factor graph optimization, graph-SLAM, and SAM (smooth mapping). The main idea of
the framework focuses on pose graph optimization, where the variables to be estimated
are the poses sampled along the robot trajectory, and each factor imposes a constraint on
each pair of poses. In 2006, H. Durrant-Whyte and T. Bailey [30] focused on the recursive
Bayesian formulation of the SLAM problem, obtaining probability distributions or estimates
of absolute or relative positions of landmarks and vehicle poses. Both the source code
used to evaluate SLAM algorithms and the location of real data were cited, and some
key implementations in the form of state space and particle filtering were described. In
2008, J. Aulinas et al. [31] established a general classification of existing filtering strategies,
such as the Kalman filter (KF), information filter (IF), unscented Kalman filter (UKF), and
compressed Kalman filter (CKF), and compared their advantages and disadvantages in
maps with different scenes and different numbers of landmarks. The scope of application
was also presented. In 2011, G. Grisetti and R. Kummerle [32] offered a comprehensive
introduction to the graph-based SLAM problem, synthesizing an effective and state-of-
the-art graph-based SLAM method. A sophisticated solution based on least squares error
minimization was discussed, and the structure of the SLAM problem was exploited in the
optimization process.



Remote Sens. 2022, 14, 6033 4 of 53

With the rapid development of computer vision, researchers found that cameras
can obtain richer information than LIDAR: compared with the point cloud data in the
environment acquired by LIDAR SLAM, visual SLAM can form gray or color images.
Additionally, the price of vision sensors is low, their structure is simple, the method of
their installation is more diversified, and the sensors can work in both indoor and outdoor
environments. However, early visual SLAM was based on filtering theory and its nonlinear
error model and huge amount of calculation became obstacles to its practical landing.
At this time, feature-based methods slowly appeared in the field of vision of scholars.
G. Dissanayake and S. Huang [33] systematically analyzed the basic characteristics of
feature-based SLAM and investigated the observability and convergence-related problems
of different versions of SLAM problems. F. Fraundorfer and D. Scaramuzza [34] extensively
introduced the development history of visual odometry, from offline-only work to real-time
work. Feature matching, robustness, and applications were discussed. The main point
feature detectors and different outlier suppression methods commonly used in VO were
also reviewed. Special emphasis was placed on random sample consensus (RANSAC)
and the design strategy. In 2015, R. Mur-Artal and J.M.M. Montiel [35] proposed a new
feature-based ORB-SLAM system, which achieved unprecedented performance compared
with other state-of-the-art monocular SLAM methods. This system can run in real time in
large, small, indoor, and outdoor environments. It is robust to severe motion clutter, allows
wide-baseline loops to be closed and relocated, and includes fully automatic initialization.

Phase 3: Deep learning stage.
Since 2016, with the rise in the deep learning field, researchers have found that the

application of deep learning methods in computer vision can greatly alleviate the problems
that are difficult to solve using traditional methods. At this current time, SLAM is in the
third stage: the deep learning stage. The study of [36] summarized SLAM based on deep
learning in detail and pointed out the shortcomings of traditional methods. Subsequently,
SLAM research based on deep learning proliferated and achieved commendable results in
LIDAR SLAM and visual SLAM. B. Bescos et al. [37] developed a visualization system based
on ORB-SLAM—a dynamic object detection and background repair function. Detecting
moving objects via a multi-view geometry, deep learning, or a combination of both is
especially suitable in highly dynamic scenes. X. Han, H. Laga, and M. Bennamoun [38]
used convolutional neural networks (CNNs) to carry out the 3D reconstruction of images,
and deep learning technology to estimate the 3D shape of general objects from single or
multiple RGB images. In LIDAR SLAM, C. Li et al. [39] applied a recurrent convolutional
neural network (RCNN) to a mobile robot equipped with a 2D LIDAR and an inertial
measurement unit to solve the problem that the accuracy greatly decreases when the
rotation angle is large. D. Cattaneo et al. [40] proposed an end-to-end detection network for
the loop closure detection stage of LIDAR SLAM, which detects the six-degree-of-freedom
relative transformation between the current scan and the map by identifying the visited
landmarks, effectively reducing the drift accumulated over time.

At the same time, inspired by deep learning methods, traditional feature- and uncertainty-
based methods have also been further developed. S. Huang and G. Dissanayake [41]
provided a critical review of the current theoretical understanding of the fundamental
properties of SLAM problems, such as observability, convergence, achievable accuracy,
and consistency, and discussed the respective application scenarios, advantages, and
disadvantages of filter- and optimization-based SLAM algorithms. In 2017, the ORB-
SLAM2 [42] system appeared, which can be used with monocular, stereo, and RGB-D
cameras, in contrast to the previous version, with uses in loop closure, repositioning, and
map reuse. At the back-end, the BA method is used to optimize monocular and stereo
observations. The lightweight localization mode allows zero-drift localization during the
matching process with map points. Shortly after this, C. Campos et al. [43] developed
the ORB-SLAM3 system, the first system to be able to perform visual, visual inertial,
and multi-map SLAM using pinhole and fisheye lens models with monocular, stereo,
and RGB-D cameras, relying on MAP estimation, with significantly improved accuracy.
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Additionally, this system can be used during IMU initialization. Similarly, feature-based
methods also have their limitations: the extraction of key points and the calculation of
descriptors are very time-consuming. When features are missing, there will not be enough
matching points to estimate the camera motion. To overcome these shortcomings, the
direct method has been introduced, which uses the optical flow to track the motion of
feature points. Direct sparse odometry (DSO) [44] utilizes a fully direct probabilistic model
(which minimizes the photometric error) to perform the consistent joint optimization of all
model parameters (including geometric parameters), which further improves the tracking
accuracy and robustness compared to current direct and indirect methods. Besides that,
there are SVO [45] and LSD-SLAM [46].

As can be seen, at present, visual SLAM and the development of LIDAR SLAM are
mature, and the vast majority of the scenes presented in this article can be applied to
real life, but they still have disadvantages that cannot be ignored. With visual SLAM, the
disadvantage is that a lot of information is needed to obtain an accurate depth, which can
lead to inaccurate positioning and tracking failure, as well as inaccurate map reconstruction.
LIDAR SLAM can achieve good results both indoors and outdoors, but it is expensive, and
many LIDAR systems have difficulty detecting objects at very close distances.

To this end, researchers have considered the fusion of LIDAR with cameras or other
sensors, thus addressing the aforementioned shortcomings. However, there is no comprehen-
sive summary of the current methods for multi-sensor fusion. In 2020, C. Debeunne et al. [47]
summarized the related methods of LIDAR and visual fusion, but the introduction of the
LIDAR and visual fusion method algorithm in this paper was too brief, and the devel-
opment process of data fusion was not analyzed in detail. In 2022, X.B. Xu et al. [48]
summarized the loose coupling and tight coupling methods based on 3D LIDAR, visual
SLAM, and IMUs. However, their paper did not explore the development history of LIDAR
and visual hardware and only summarized the data coupling method based on the SLAM
system in recent years. Additionally, it did not analyze the current popular multi-sensor
data fusion method based on deep learning. Therefore, it is necessary to carry out a more
comprehensive analysis of the fusion of multiple sensors in the field of SLAM to help
researchers and students better carry out their work. The review in this paper addresses
these issues and makes the following contributions:

(1) This paper reviews the hardware development history of LIDAR and visual SLAM
more comprehensively, deeply analyzes the principle of related hardware information
in the field of SLAM, and summarizes the hardware brands and models of mainstream
manufacturers at home and abroad.

(2) This paper uses Citespace to analyze and summarize the whole SLAM field and
the fusion field and summarizes the commonly used datasets and evaluation tools in the
SLAM field.

(3) This paper summarizes the fusion methods of LIDAR and visual SLAM and other
sensor fusion SLAM methods from the perspectives of uncertainty, traditional features, and
deep learning. To the best of our knowledge, this is the first review of fusion methods from
this perspective.

This article reviews the development history of SLAM and research in this field in
recent decades, as well as the major achievements. Further, this paper expounds visual
SLAM, LIDAR SLAM, and their derivative methods and algorithms. In addition, this paper
summarizes the research achievements of SLAM’s predecessors, and on this basis, this
paper expounds visual SLAM, LIDAR SLAM, and SLAM for multi-sensor fusion. Section 2
introduces the hardware used in SLAM, and the datasets and development processes
applied in recent decades; Section 3 introduces the development of using only a single
sensor for localization and mapping; Section 4 introduces SLAM, which integrates vision,
LIDAR, and more sensors. Section 5 concludes this paper with a summary and outlook.
The overall framework of this paper is presented in Figure 2, for the readers’ convenience.
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Figure 2. Structure diagram of this paper.

2. Related Work
2.1. Commonly Used Sensors in SLAM

In this paper, SLAM is divided into LIDAR SLAM and visual SLAM according to the
different types of sensors used in the field of SLAM, as well as the use of inertial sensing
units fused with LIDAR and visual SLAM to assist in the localization process of SLAM.

IMUs have a high angular velocity measurement accuracy. Their angular velocity
measurement accuracy and local position measurement accuracy are higher than those of
odometry. An IMU sensor contains three single-axis accelerometers and three single-axis
gyroscopes, which provide self-motion information, allow the recovery of the metric scale
of monocular vision, and estimate the direction of gravity, rendering absolute pitch and
roll observable.

2.1.1. Hardware in Visual SLAM

Sensors used in visual SLAM typically include monocular cameras, binocular cameras,
and RGB-D cameras. Monocular cameras use only one camera for trajectory estimation and
mapping. These cameras’ structure is simple, low-cost, and easy to calibrate and identify.
However, the trajectory and map estimated by monocular SLAM will differ from the true
trajectory and map by a factor, i.e., the scale, and this true scale cannot be determined by
the image alone, which is also known as scale uncertainty. Currently, there are two main
ways to solve this problem:

(1) The distance between two images is normalized, and the scale of the two frames
before and after is used as the subsequent scale, which is also known as the initialization of
monocular SLAM.

(2) A global estimation can be adopted, and a uniform scale can be used.
A binocular camera is composed of two monocular cameras, but the distance between

the two cameras (called the baseline) is known, and the spatial position of each pixel can be
estimated by this baseline. The larger the baseline distance, the greater the measurement
distance. Both monocular and binocular cameras measure the relative depth of an object
using epipolar geometric constraints (parallax during camera motion). Unlike monocular
vision, binocular vision can estimate depth in motion as well as at rest, eliminating many
of the headaches of monocular vision (the inability to determine the true size of an object
in a single image; it could be a big but far away object, or it could be a very close and
small object).
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The disadvantages of monocular and binocular SLAM are that the configuration and
calibration are more complex, the depth range and accuracy are limited by the baseline
and the resolution of the binocular camera, and visual computing is very computationally
expensive, which needs to be accelerated using GPU and FPGA devices to output the
distance information of the whole image in real time. Therefore, under existing conditions,
computational complexity is one of their main problems.

RGB-D cameras are also known as depth cameras. These cameras can detect the depth
of the field distance of the shooting space, which is their biggest difference from ordinary
cameras. A common color camera can see and record all the objects in the camera’s view,
but the recorded data do not include the distance of these objects from the camera. Only the
semantic analysis of images can tell which objects are far away and which are close to the
text, but there are no exact data. Through the data obtained by the depth camera, the user
can accurately know the distance of each point in the image from the camera, and the real
scene can be restored without additional calculations to realize scene modeling. The pixel
distance is mainly measured by infrared structured light and ToF (time of flight). In the
infrared structured light principle, the camera calculates the distance between the object
and itself according to the returned structured light pattern. In ToF, the camera fires pulses
of light at the target and then determines the distance of the object from itself based on the
time of flight (the speed of the beam is usually known) between sending and returning.
The principle of the two is very similar: LIDAR obtains the distance by scanning point by
point, while a ToF camera obtains the pixel depth of the entire image. Therefore, RGB-D
cameras will have at least one transmitter and one receiver. RGB-D cameras construct a 3D
model of the environment while estimating the camera pose. These have high accuracy in
indoor scenes [49], but in outdoor environments, they are highly susceptible to illumination
changes and motion blur, and long-distance tracking will lead to a large cumulative error
and scale offset.

Figure 3 summarizes the respective advantages and disadvantages of the three vision
sensors and the main application scenarios.

Camera type Visual renderings Advantage Disadvantage Application

Monocular camera

Simple structure, 

low cost, easy to 

calibrate and 

identify.

Lack of scale 

information, depth 

cannot be determined 

from a single image.

Indoor and outdoor.

Depth can be 

estimated in 

motion or at rest.

The calibration is 

complicated and the 

calculation consumes 

very much resources.

Indoor and outdoor.

Depth information 

can be provided 

directly.

The measurement range 

is small, and it is easy to 

be affected by 

illumination variation 

and motion blur.

Indoor.

Binocular camera

RGB-D camera

Figure 3. The main sensors used in SLAM, and their advantages, disadvantages, and applications.

As a result of sufficient market research, this paper summarizes the current mainstream
manufacturers, brands, and models of monocular, binocular, and depth cameras. The
brands of monocular cameras and binocular cameras are roughly the same, because they
differ only in the number of cameras, and both measure distance based on the principle
of disparity. Among them, the representative companies are Leap Motion, ZED, DJI, and
RGD-D, whose cameras measure distance in completely different ways from each other,
which can be mainly divided into two methods: ToF and structured light. Among them, the
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representative companies using the ToF method are Microsoft Kinect2, PMD, SoftKinect,
and Lenovo Phab, and the representative companies using the structured light method are
ORBBEC, Apple iPhoneX (Prime Sense), Intel RealSense, Microsoft Kinect1, and Mantis
Vision. More detailed information about the various methods is presented in Table 1.

Table 1. Working principle of monocular, binocular, and RGB-D cameras, information of domestic
and foreign manufacturers, and related hardware.

Camera Category RGB-D Camera Binocular/Monocular Camera

Operating principle

ToF (the distance is measured
based on the flight time of the
pulsed light from the camera

to the target object)

Structured light (the camera
calculates the distance

between the object and itself
based on the returned pattern

of structured light)

Parallax (estimating the
spatial position of each pixel
from the distance between

two cameras)

Domestic manufacturers HIKVISION, SUNNY
OPTICAL, INMOTION ORBBEC, HJIMI, PERCIPIO PERCIPIO, zongmu, LUSTER

Foreign manufacturers Texas Instruments,
STMicroelectronics, Microsoft

Intel, Leap Motion,
STEREOLABS PrimeSense, Intel, Heptagon

Resolution Low, generally lower than
640*640 High, up to 2K resolution Medium, generally 1080*720

Frame rate Up to hundreds of frames Usually 30 frames Usually 30 frames

Measurement range It can measure long distances,
0.1 m–100 m

Limited by the baseline, the
farther the distance, the larger
the error, generally within 2 m

0.1 m–10 m

Price

Prices range from a few
thousand to a few million

depending on the
measurement range and

frame rate size

Very cheap, thousands
of dollars

The accuracy is different; the
prices are different: the

1 mm-level accuracy costs
USD 1000, the 0.1 mm-level
accuracy costs USD 10,000,

and the 0.01 mm-level
accuracy costs hundreds of

thousands of dollars

Take Tesla as an example. Tesla is a successful company in the field of pure visual
SLAM. In 2021, the company released FSD Beta V9.1, the first advanced driver assistance
suite using “Tesla Vision.” This vision-based autonomous driving system feeds data from
eight cameras (1280 × 960 12-bit HDR 36 Hz) into a single neural network to integrate the
perception of the 3D environment, as shown in Figure 4.

Figure 4. Live view of a Tesla self-driving car. The webpage referenced in this figure is [50].
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2.1.2. Hardware in LIDAR SLAM

In 1916, Einstein proposed the theory of the stimulated emission of light, and humans
began to understand LIDAR. LIDAR is not like infrared, ultraviolet, etc., as it is a general
term for a certain band of light, but it has a precise single color and single wavelength of
light compared with a variety of colors and wavelengths of mixed natural light. LIDAR has
high brightness, high energy, and good direction characteristics. The excellent performance
of LIDAR (a dense LIDAR beam can accurately model and restore every detail of the
measured object) has been gradually discovered by researchers, and it is widely used
in various fields such as the military, communication, and aviation fields. However,
LIDAR’s widespread adoption is attributed to a dramatic story: In 2004, the U.S. Defense
Advanced Research Projects Agency launched a competition called the DARPA Driverless
Car Challenge to find a solution for building driverless cars for the military. David Hall,
the founder of Velodyne, modified a pickup truck with a panoramic camera to participate
in the competition. Although he did not finish the race, he discovered a novel sensor
in this competition: LIDAR. He then built a LIDAR that could rotate 360° and took the
modified vehicle equipped with the LIDAR to participate in the DARPA Unmanned Vehicle
Challenge, but the results were not satisfactory. However, their technology made them
famous, and it received a lot of attention from researchers. David Hall also found business
opportunities and became a professional LIDAR manufacturer, but at that time, LIDAR
was mostly used in the military, meteorology, surveying, and mapping, among other
professional fields, with a narrow demand, low production, and a very high price, once
reaching USD 100,000.

As LIDAR has begun to be applied in civilian fields, such as unmanned driving
and unmanned aerial vehicles, the huge development prospect has attracted more and
more domestic and foreign enterprises. Velodyne LIDAR, Luminar, Ouster, Valeo, HESAI,
HUAWEI, LIVOX, and Innovation have emerged. They began the development of vehicle
LIDAR. HUAWEI has developed an infrared emitter and a ToF camera sensor by measuring
the time to calculate the infrared light reflecting the depth of field. The grain race car AT128
gauge was developed at the science and technology level of long-distance half-solid-state
LIDAR. At this time, various types of LIDAR are being developed, including the mechanical
type, mixed solid-state type, and pure solid-state type, and the hardware cost is falling,
Additionally, with the entrance of Bosch, DJI, and other giant enterprises, LIDAR is being
pushed to lower prices and car standards, and the current LIDAR price has reached the
lowest amount of USD 100. The process demonstration diagram of an unmanned vehicle
equipped with an early mechanical LIDAR imaging system and a 4D LIDAR imaging
system developed by Huawei is shown in Figure 5 for the readers’ reference.

Figure 5. Demonstration diagram of the unmanned driving process with mechanical LIDAR and
pure solid-state LIDAR. The webpage referenced in this figure is [51].

Today’s market is gradually being divided into two different routes: pure visual and
LIDAR. Among them, LIDAR SLAM is divided into 2D and 3D LIDAR. Briefly, 2D LIDAR
is generally used in indoor robots (such as sweeping robots), and 3D LIDAR is generally
used in the field of unmanned driving. The input and output data of 2D and 3D LIDAR
SLAM are the same, but there are still some points that need to be noted. This paper
summarizes the relevant information of LIDAR in Figure 6.
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Major domestic and 

foreign 

manufacturers 

Domestic manufacturers  HESAI

RoboSense LASER X SureStar

HUAWEI 

Foreign manufacturers Velodyne 

LIDAR,IBEO,Quanergy,Aeva,Cepton 

LIDAR type 2D LIDAR 3D LIDAR 

Example LIDAR 

image 

  

A point cloud map 

built by LIDAR 

 

2D point cloud map 

 

3D point cloud map 

input 

IMU data IMU data 

Odometer data Odometer data 

2D LIDAR data 3D LIDAR data 

output 
      Overlay raster map 

A trajectory or pose diagram of a robot. 

    3D point cloud map 

   A trajectory or pose diagram of a robot. 

Figure 6. The map and input and output data of different types of LIDAR built by domestic and
foreign manufacturers of LIDAR sensors.

2.2. Development of LIDAR and Visual SLAM Algorithm
2.2.1. Development of Visual SLAM Algorithms

This paper summarizes the widely known visual SLAM algorithms. Before 2007,
many scholars at the time believed that a binocular camera suite was needed to build
a SLAM system. The system pioneered by Professor A.J. Davison of Imperial College
London, MonoSLAM [52] broke the perception at the time, being the first case to show
how to build a SLAM system using a monocular camera, building a sparse and continuous
map of natural landmarks in a probabilistic framework. In the same year, a more shocking
development, namely the PTAM [53] algorithm, was published by the laboratory of Oxford
University, which was the first SLAM algorithm to separate tracking and mapping as
two threads and also distinguish the concept of the front- and back-end in VSLAM. The
algorithm uses nonlinear optimization in the back-end part, rather than the mainstream
EKF filter and other filtering methods. It was a milestone at the time. In 2015, the paper
on ORB-SLAM [35] was officially published, which can be regarded as an extension of the
PTAM algorithm. It was the most complete VSLAM based on the feature point method at
that time, and the system framework includes three threads: tracking, mapping, and loop
closure. Since then, subsequent versions of the algorithm, such as ORB-SLAM2 [42] and
ORB-SLAM3 [43], were published successively.

In addition to feature-based methods, direct methods also occupy an important po-
sition in SLAM. Related algorithms include LSD-SLAM [46], SVO [45], and DSO [44].
Similarly, there are related algorithms for RGB cameras. ElasticFusion makes full use of the
color and depth information of RGB-D cameras, estimates pose changes through ICP, and
improves the accuracy of camera pose estimation through continuous iterative optimization.
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Similar algorithms include DTAM, DVO, RTAB-MAP, and RGBD-SLAM-V2. This paper
presents the website addresses of these algorithms in Table 2 for the readers’ reference.

Table 2. Common algorithms in visual SLAM.

Scenario Author Form of Sensor Address

MonoSLAM A.J. Davison Monocular [52]

PTAM G. Klein and D.
Murray Monocular [53]

ORB-SLAM2 R. Mur-Artal and J.D.
Tardós Binocular/monocular/RGB-D [42]

LSD-SLAM J.J. Engel et al. Monocular [46]
SVO C. Forster et al. Monocular [54]

DTAM R.A. Newcombe et al. RGB-D [55]
DVO C. Kerl et al. RGB-D [56]
DSO J. Engel et al. Monocular [44]

RTAB-MAP M. Labbé Binocular /RGB-D [57]
RGBD-SLAM-V2 F. Endres et al. RGB-D [58]

ElasticFusion T. Whelan et al. RGB-D [59]

2.2.2. Development of LIDAR SLAM Algorithm

Similarly, with the continuous development of the LIDAR SLAM field, many excellent
algorithms have emerged. In 2002, M. Montemerlo et al. [23] proposed the FastSLAM
algorithm, which uses a particle filter to estimate the robot pose and was the first LIDAR
SLAM method to output a grid map in real time. However, in a large-scale environment, a
large number of particles are needed to represent the robot pose, which seriously consumes
memory. Additionally, with continuous resampling, the particle dissipation problem will
gradually aggravate a situation that cannot be ignored. The Gmapping [60] algorithm was
optimized based on FastSLAM, which keeps the number of particles at a relatively small
value, samples the prediction distribution, and then optimizes the pose based on optimized
scan matching, which solves the problem of serious memory consumption. To reduce
the number of resampling iterations, resampling is only performed when the predicted
distribution is very different from the true distribution, which solves the problem of particle
dissipation, but this method is very dependent on odometry. Since filtering-based methods
can be applied to 2D LIDAR SLAM, graph optimization-based methods can also be used.
Hector SLAM was proposed by S. Kohlbrecher et al. [61], which uses the Gauss–Newton
method to solve the front-end scan matching problem and does not rely on odometer data,
but the drift phenomenon will occur when the robot speed is too fast and there is strong
rotation. The Cartographer [62] algorithm adds the loop closure detection process and
combines CSM and gradient optimization in the front-end scan matching process, but this
algorithm requires a huge amount of calculation.

In the field of 3D LIDAR SLAM, J. Zhang and S. Singh [63] proposed the LOAM
method, which uses 3D LIDAR to collect data, carries out scan matching based on feature
points, and uses a nonlinear optimization method for motion estimation, which can be
operated in real-time and has high accuracy. The authors then introduced an improved
version, V-LOAM [64], which uses visual odometry to estimate pose transformation at a
high frequency and LIDAR odometry to optimize the motion estimation at a low frequency
and calibrate drift. This method still has high robustness when illumination changes are
obvious. With the need for multi-sensor fusion, matching algorithms are needed, such as
LVIO [65], LEGO-LOAM [66], and LiO-Mapping [67]. A brief overview of the relevant
algorithms is presented in Table 3 for the convenience of the readers.
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Table 3. Common algorithms in LIDAR SLAM.

Age Open Source
Solution Author Sensor Advantage Disadvantage

2002 FastSLAM M. Montemerlo
[23] 2D LIDAR Outputs a raster map in

real-time

In large scenarios, memory will
be seriously consumed, resulting
in particle dissipation problems

2007 Gmapping Giorgio
Grisetti et al. [60] 2D LIDAR

High running speed; low
LIDAR frequency

requirements; high robustness

Heavy reliance on odometry;
unable to adapt to drones and

uneven ground areas; in the case
of large scenes and a high
number of particles, the

consumption of resources
is large

2011 Hector-SLAM S. Kohlbrecher
et al. [61] 2D LIDAR Does not rely on an odometer

LIDAR frame rate requirements
are high; can adapt to air and

uneven ground areas; the
optimization algorithm can

easily fall into the
local minimum

2014 LOAM J. Zhang and
S. Singh [63] 3D LIDAR Does not rely on an odometer No loop closure detection

2015 V-LOAM J. Zhang and
S. Singh [64] 3D LIDAR

High precision; the algorithm
has good robustness; constant

drift assumption
No loop closure detection

2016 Cartographer W. Hess et al. [62] 2D LIDAR
The accumulated error is low;

the requirement for LIDAR
performance is not high

A large amount of computation

2018 LVIO J. Zhang and
S. Singh [65] 3D LIDAR

Small drift; it has good
robustness under illumination,

rotation, and structural
degradation

The effect is not good when the
feature matching is poor

2018 LeGO-LOAM T. Shan and
B. Englot [66] 3D LIDAR

When the ground points are
abundant, they are relatively

stable; the resulting map
is sparse

The lack of a ground point is
prone to collapse

2019 LIO-Mapping H. Ye et al. [67] 3D LIDAR
Features tightly coupled
multi-wire LIDAR and

IMU frames

A large amount of calculation;
no loop closure detection part;

cumulative errors cannot
be eliminated

2020 LIO-SAM T. Shan et al. [68] 3D LIDAR Strong stability in loop
closure detection

No scan match was
performed globally

2.3. Evaluation Tools and Datasets

In recent decades, there have been many excellent SLAM algorithms, which have been
extensively applied in the fields of autonomous navigation, mobile robots, and AR/VR.
Each algorithm has its unique improvement method, and different algorithms take different
amounts of time, can achieve different accuracies, and can be applied in different scenarios.
Therefore, a unified evaluation tool is needed to test the performance of these algorithms
on datasets. Accuracy is the most important indicator for researchers to evaluate SLAM
algorithms, which includes the absolute trajectory error (ATE) and relative pose error (RPE).
The relative pose error is used to calculate the difference in the pose change for the same
two timestamps, which is suitable for estimating the system drift. The absolute trajectory
error directly computes the difference between the true value of the camera pose and the
estimated value of the SLAM system.
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EVO [69] is a common tool for evaluating improved SLAM algorithms and is available
for a variety of datasets. In addition to the availability of TE and RPE data, it is also
possible to plot the test algorithm against the real trajectory. SLAMBench2 [70] is a publicly
available software framework that evaluates current and future SLAM systems through an
extensible list of datasets. This includes both open and closed source codes while using a
list of comparable and specified performance metrics. It supports multiple existing SLAM
algorithms and datasets, such as ElasticFusion [59], ORB-SLAM2 [42], and OKVIS [71].

Once we have the tools to evaluate the performance of an algorithm, we need to
visualize the algorithm on a dataset. Common datasets used to test visual SLAM versus
LIDAR SLAM are presented in the following table. The TUM dataset is collected by an RGB-
D sensor, which provides indoor image sequences under different textures, illuminations,
and structure conditions. According to different requirements, it is divided into TUM
RGB-D [72], TUM MonoVo [73], and TUM VI [74]. TUM RGB-D contains the color and
depth images of real trajectories and provides acceleration data from a Kinect sensor.
TUM MonoVO is a dataset used to evaluate the tracking accuracy of monocular vision
and SLAM methods, which contains 50 real-world sequences from indoor and outdoor
environments, and all sequences are photometrically calibrated. The TUM VI dataset
provides the criteria for evaluating visual inertial odometry, providing a highly dynamic
range and photometrically calibrated images that can be evaluated in different scenes using
different sets of sequences. KITTI [75] is currently the world’s largest computer vision
algorithm evaluation dataset in autonomous driving scenes, which contains real image
data collected in urban, rural, and highway scenes and has various degrees of occlusion.
The Oxford [76] dataset contains data on a continuous stretch of road in Oxford, which
contains scenes of pedestrians, vehicles, and road construction under various weather
conditions. The ASL Kinect [77] dataset provides a modular ICP library based on ROS.
The ASL RGB-D [78] dataset is mainly used to test the performance of robot path planning
algorithms. The ICL-NUIM [79] dataset is designed to benchmark RGB-D, visual ranging,
and SLAM algorithms. The VaFRIC [80] dataset can test the influence of different exposure
times on camera tracking. The EuRoC [81] dataset focuses on evaluating visual inertial
SLAM algorithms in real industrial scenarios.This article presents a common datasets in
the SLAM field in Table 4.

Table 4. Common datasets in SLAM field.

Dataset Sensor Environment Availability

KITTI RGB-D+LIDAR+GPS+IMU Outdoor [75]
Oxford RGB-D+LIDAR+GPS+IMU Outdoor [76]

ASL Kinect RGB-D Indoor [77]
ASL RGB-D RGB-D+LIDAR Indoor [78]
TUM RGB-D RGB-D Indoor [72]
ICL-NUIM RGB-D Indoor [79]

VaFRIC RGB-D Indoor [80]
EuRoC Binocular+IMU Indoor [81]

TUM VI Binocular+IMU Indoor/Outdoor [74]
TUM monoVO Monocular Indoor/Outdoor [73]

2.4. SLAM Development Analysis Based on Literature Data

Since the emergence of SLAM, it has been widely used in the field of robotics. As
shown in Figure 7, this paper selected approximately 6500 popular articles related to mobile
robots from the past 25 years to create a keyword heatmap. The larger the circle, the
more frequently the keyword appears. The circle layer represents the time from the past
to the present from the inside out, and the bluer the color, the more attractive it is. The
connection line indicates that there is a connection between the different keywords, where
the data come from the Science Network Core collection. In this figure, circle simultaneous
localization and mapping, mobile robot, motion and tracking are particularly prominent.
This indicates that SLAM and mobile robots are closely combined. The development of
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SLAM technology constantly promotes the application of mobile robots and autonomous
vehicles in complex scenes. In addition, emerging technologies such as deep learning and
data association have emerged. Through these hot words, readers can learn more about
hot directions in SLAM.

Figure 7. Hot words in the field of mobile robots.

In Figure 8, this paper counts the citations of SLAM methods with a single sensor and
multi-sensor fusion from 2003 to 2022, where the red and blue lines represent LIDAR and
visual SLAM methods, respectively, and the gray and yellow lines represent visual-LIDAR
fusion and multi-sensor fusion SLAM methods, respectively.

As can be seen in Figure 8, the number of citations of papers related to the SLAM
field has rapidly increased, and the decline in 2022 is due to the data collected in the first
eight months of 2022. From the published SLAM article names, SLAM is a hot topic in
robotics. At the same time, the number of citations of multi-sensor fusion methods in the
field of SLAM has also increased year by year, but it is still at a very low level. Therefore,
the prospect of SLAM with multi-sensor fusion methods can be reasonably calculated, but
the current technology is not mature enough, and there are many blank fields.

In Figure 9, the paper analyzes the publications of 25 major journal societies in the field
of SLAM on Web of Science until October 2022. Only the names of some journal societies
are shown in the figure. At present, the number of papers in the field of SLAM is 6959, to
which IEEE Robotoics and Automations Letters and Sensors make the largest contributions
with 321 and 313 SLAM publications, respectively. These statistics are enough to prove that
SLAM is a hot topic right now.

2.5. Outstanding Scholars in the SLAM field

With the continuous in-depth research of scholars in the field of SLAM, many outstand-
ing scholars and research teams have emerged successively, and their existence has set the
field of SLAM on a new journey. As shown in Figure 10, this paper analyzed approximately
2000 articles between 2002 and 2022 (the data in this paper are from the Web of Science
website), where the larger the font size, the higher the number of papers published by the
author and the greater the attention received. Among them, Y. Liu worked on SLAM and
semantic SLAM for multi-sensor fusion, and A.J. Davison is a pioneer in the field of SLAM.
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He first proposed the concept of SLAM and created the MonoSLAM [52] and DTAM [55]
algorithms, making outstanding contributions. S. Wang continuously improved the algo-
rithm and tried to apply RGB-D cameras to dynamic environments, achieving surprising
results. Here, this article will not be listed, but interested readers can find it elsewhere.

Figure 8. Citations of different methods in the field of SLAM in recent years in the Web of Science.

Figure 9. Titles of publications on SLAM in the Web of Science.

At the same time, this paper also collected the countries of scholars from different
regions and provides a simple summary to facilitate the readers’ understanding of which
scholars are committed to SLAM research. As shown in Figure 11, different colors are used
in this paper to represent different contributions to the field of SLAM. Here, white indicates
that these regions have not contributed to the field; red indicates that the number of papers
contributed by these regions is less than 100; yellow indicates that the number of papers
contributed by these regions is in the range of 100 to 300; green indicates that the number
of papers contributed by these regions is in the range of 300 to 900; and blue indicates that
the number of papers contributed by these regions is above 900. From the figure, it can be
concluded that scientists in China, the United States, and the United Kingdom have made
largest contributions to the field of SLAM.
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Figure 10. Main contributors of papers in the field of mobile robots.

Figure 11. Contributions of different countries to SLAM.

3. Single-Sensor SLAM
3.1. Visual SLAM

The eyes are the main source of human access to external information, and visual
SLAM has similar characteristics. It can obtain large amounts of redundant texture infor-
mation from the environment and has strong scene recognition ability [82]. For example,
two billboards with the same size but different contents cannot be distinguished by the
LIDAR SLAM algorithm based on the point cloud, but visual SLAM can easily distinguish
them. This brings incomparable advantages in relocation and scene classification. At the
same time, visual information can be easily used to track and predict dynamic objects in
the scene, such as pedestrians and vehicles, which is crucial for applications in complex
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dynamic scenes. In addition, the projection model of vision can theoretically make objects
at infinite distances enter the visual picture, and under a reasonable configuration (such as
binocular cameras with a long baseline), it can be used to locate and map large-scale scenes.

C. Cadena et al. [83] proposed a classical visual SLAM framework, as shown in
Figure 12, which is mainly composed of four modules: front-end (usually feature extraction
and data association in visual odometry), back-end (usually data optimization and map
update), loop closure detection, and mapping [84].

Visual odometer

Feature extraction

Data association

Optimization

Map estimation

Loop closure 

detection

Sensor data
Front-end Back-end

Mapping

Figure 12. Classical visual SLAM framework.

Early visual SLAM was based on filtering theory, and its nonlinear error model and
huge amount of computation have always been the bottlenecks of its development. Since
recent years, with the progress of nonlinear optimization theory with sparsity, camera
technology, and computing performance, the real-time running of visual SLAM is no longer
a dream. Generally, a visual SLAM system consists of four parts: front-end, back-end,
loop closure detection, and mapping. The most important of these are the front-end and
back-end, which this article will focus on, while the other two parts will be briefly outlined.

3.1.1. Front-End (Visual Odometer)

The front-end mainly estimates the platform position and attitude by analyzing the
changes between camera [85] frame sequences through visual odometry. At present, the
algorithms of the front-end part are mainly divided into two categories: feature point
methods and direct methods [86].

The front-end based on the feature point method has been considered the current
mainstream method because of its stability, insensitivity to illumination, and dynamic
objects. Researchers usually regard corners, edges, and pixel blocks in images as image
feature points. The method of feature extraction involves confirming the correspondence
between the corners in different images according to their positions, to obtain the motion
trajectory of the object. Before 2000, many corner extraction algorithms appeared succes-
sively, such as Harris [87], FAST [88], and GTFF [89]. However, the method of feature
matching using corner points often has many errors. For example, when the camera ro-
tates or the distance changes, the original corner points may be invalid. Therefore, the
researchers designed SIFT [90], SURF [91], ORB [92], and other more stable local image
features to solve this problem. In Table 5, this paper summarizes the main performances of
these feature extraction algorithms.

After extracting the feature points, the most critical step is to match the feature points, to
prepare for the subsequent pose estimation and optimization. The simplest feature matching
method is brute force matching, i.e., matching a moment of the image feature point with the
current moment of all of the image feature points, which measures the descriptors of similar
degrees between two characteristics of the distance, but when there is a high number of feature
points, the violent match will produce a significant amount of calculation, which is unable to
meet the demands of real-time performance. M. Muja and D.G. Lowe et al. [93] proposed
a new fast approximate nearest neighbor (FLANN) algorithm, which uses hierarchical
k-means trees and greatly reduces the application search time.
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Table 5. Commonly used feature extraction algorithms in SLAM.

Algorithm GTFF Harris FAST SIFT SURF ORB

Year 1994 1988 2006 2004 2008 2011

Speed Medium Slow Fast Slow Medium Fast

Advantage

The Harris
algorithm is

improved, and
the ability of

corner extraction
is stronger

The feature points
extracted by this
algorithm have

rotation invariance
and affine
invariance

The comparison of pixel
brightness greatly

accelerates the process of
image feature extraction

and includes the
description of the scale

and rotation

The changes in
illumination, scale,
and rotation in the
process of image
change are fully

considered

Feature extraction
and description are
more efficient and

have scale
invariance

ORB is 100 times
faster than SIFT and
10 times faster than

SURF

Disadvantage There is no scale
invariance

There is no scale
invariance

The repeatability of
feature points is not

strong, and the
distribution is not

uniform

It is
computationally

intensive and
requires the use of a

GPU

Compared with the
SIFT algorithm, the

accuracy and
robustness are

decreased

It has no rotation
invariance and scale

invariance and is
sensitive to noise

Finally, the matched feature point pairs are obtained; at this time, the camera motion
can be estimated according to the point pairs. According to the different sensors used in
visual SLAM, the following three cases can be observed: when the camera is a monocular
camera, 2D pixel coordinates can be obtained, and the motion can be estimated by the
method of epipolar geometry; when the camera is a binocular or RGB-D camera, the
distance information is obtained, and researchers usually use the iterative closest point
(ICP) [94] algorithm to solve the motion estimation of two sets of 3D points; when one group
is 3D and the other is 2D, this can be solved using the PnP [95] method. The schematic of a
camera performing pose estimation is presented in Figure 13.

Ck-1

Ck

Ck+1

Tk,k-1

Tk+1,k

Figure 13. The uncertainty of the camera pose at Ck is a combination of the uncertainty at Ck−1 (black
solid ellipse) and the uncertainty of the transformation Tk,k−1 (gray dashed ellipse). Reproduced with
permission of Ref. [34], Copyright of 2012 IEEE Robotics & Automation Magazine.

Although the feature point method occupies the mainstream position in the front-end
part, it still has many shortcomings: the extraction of feature points and the calculation of
descriptors are very time-consuming. Extracting only feature points does not represent
all the information in the image and may neglect the most important part of the image.
Camera motion may not be estimated when features such as texture are missing. To solve
the above problems, the researchers developed a direct method, which is similar to the
optical flow method based on the gray invariant assumption, which can estimate the camera
motion according to the brightness information of the pixels [96], completely avoiding the
calculation of feature points and descriptors. Compared with the sparse map constructed
by the feature point method, the direct method can construct sparse, semi-dense, and
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dense maps according to the needs of different scenes. Similarly, the direct method is
also updated iteratively. Since the first use of the direct method of DTAM [55] in 2011, it
has achieved excellent performance in the accurate reconstruction of maps. Since then,
LSD-SLAM [46], SVO [54], DSO [44], and other algorithms have appeared. The accuracy of
motion estimation and robustness in low-texture regions and blurred images are further
improved by these algorithms.

In Table 6, for the convenience of the readers, the differences between the direct
method and the feature point method are summarized.

Table 6. Commonly used feature extraction algorithms in SLAM.

Method Feature Point Method Direct Method

Conception

The camera motion is estimated according to the
extracted and matched feature points, and the
camera motion is optimized by minimizing the

projection error

The camera motion is estimated according to the
pixel brightness information, and the method of

minimizing photometric error is used in the
optimization step

Advantage
The feature points themselves are not sensitive to

illumination, motion, and rotation and are
relatively stable

Semi-dense and dense maps can be built and work
as long as there is light and shade variation in

the scene

Disadvantage
Computing feature points and descriptors consumes
a large amount of computing resources and cannot

be used when feature points are missing

It is easily affected by illumination changes, and the
discrimination is not strong when there are few

pixel blocks

Applicable scenes Richly textured scenes Feature-missing scenes, such as white walls and
empty corridors

3.1.2. Back-End Optimization

The early back-end optimization problem was a state estimation problem. In the
first series of papers, researchers called it “estimation of spatial state uncertainty”, which
also reflected the core of the SLAM problem: the estimation of the spatial uncertainty of
the moving subject itself and the surrounding environment. Additionally, in the process
of using the sensor, it will inevitably have a certain noise, and it will be affected by
factors such as temperature, humidity, and light. Therefore, one has to use a method to
reduce the error of the whole framework. State estimation theory is used to express the
uncertainty of localization and mapping, which is called maximum a posteriori probability
estimation (MAP).

At present, the back-end optimization methods of SLAM are mainly divided into
two types: filtering methods represented by extended Kalman filtering and nonlinear
optimization methods represented by graph optimization.

Filter-based methods have been widely used since 2008 when Csorba et al. developed
an important theory of convergence in [18,19]. Despite having convergence capability,
they are not computationally efficient because the update of the observation model of the
EKF needs to use all the markers and joint covariance matrices. J.E. Guivant et al. [20]
and J.J. Leonard et al. [11] started some work on improving the computational efficiency
during this period. In 2001, J. Neira et al. [21] pointed out that the EKF method in the
standard form is very fragile to the incorrect association between landmark observations,
leading to the “loop closure detection” problem. In addition, the EKF requires clear motion
and observation models and linear model assumptions. S.J. Julier and J.K. Uhlmann [22]
studied the impact of nonlinear models on the performance of EKF applications. Since then,
various filters and their improved algorithms have been developed, such as the IF [24],
IKF [97], UKF [98], particle filter [99–101], and SWF [102]. Some algorithms are improved
based on the EKF. For example, ref. [103] proved that all processes related to the motion
perception update cycle of EKF-SLAM can be carried out in a time linear relationship
with the number of map features, and an improved algorithm was proposed to reduce the
complexity of the calculation. The study of [104] proposed monocular SLAM based on the
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EKF, which combined RANSAC and a random list to process images and showed excellent
performance in dealing with complex indoor environments, occlusion, and sudden motion.

Later, researchers found that, although the BA optimization method included a large
number of feature points and camera poses, it constructed a sparse map and did not produce
a huge amount of computation. With the publication of [105], real-time visual SLAM based
on graph optimization was proposed. Subsequently, G. Grisetti and R. Kummerle [32]
offered a comprehensive introduction to the graph-based SLAM problem, synthesizing an
effective and state-of-the-art graph-based SLAM method. An advanced solution based on
least squares error minimization was discussed, and the structure of the SLAM problem
was exploited in the optimization process. Since then, researchers gradually discovered
the excellent real-time performance of nonlinear optimization algorithms. Compared with
the method based on filtering, with the increase in the number of landmarks on the map,
the state quantity of this method increases in a square series, and the huge amount of
calculation means that the whole SLAM system is unable to run in real time. With the
continuous improvement of graph optimization algorithms, the current mainstream hot
spot of SLAM research is almost based on graph optimization.

3.1.3. Loop Closure Detection

The robot returns to the origin after a period of movement, but its position estimate
does not return to the origin due to drift. At this time, it is necessary to match the position
estimate with the origin position to let the robot know that it has been to this place; such an
event is called loop closure detection [30]. Loop closure detection aims to reduce the drift
accumulated during exploration by matching past keyframes with the nearest keyframes,
which is verified by calculating a rigid transformation that aligns matching points between
keyframes [106], and finally optimizing the trajectory to reduce the error accumulated by
the trajectory. Researchers usually use visual similarity to evaluate the relationship between
current camera images and past camera images. Visual similarity can be computed using
global image descriptors, such as those presented in [107,108], or local image descriptors,
such as those presented in [109]. In recent years, visual similarity cycle detection using
local image descriptors has received extensive attention, and one of the most successful
methods is based on the bag-of-visual-words model [110–112].

The loop closure detection step can greatly improve the accuracy and robustness of the
whole SLAM system, and in some cases, researchers place systems with only a front-end
and local back-end under visual odometry, and systems with loop closure detection and a
global back-end under SLAM.

3.1.4. Mapping

Mapping refers to the process of building a map to understand the environmental
information, find the optimal path in the current map, or search for an object on the map.
According to the different scenarios of the object, the complexity of the selected map is
different, which can be mainly divided into a sparse map, semi-dense map, and dense map.

If a sparse map is established, the general SLAM algorithm can be realized. However,
building semi-dense and dense maps comes with a lot of computation. Both of them
calculate the depth of each pixel by matching points and triangulating them. Sparse maps
usually only need to calculate a few hundred points in 640*480 = 307,200 (the lowest pixel
case), while dense reconstructions need to calculate the depth of almost all points, a differ-
ence of hundreds of times. Generally, a depth camera using active depth measurements
such as ToF and structured light is better, but the active light source is not suitable for
outdoor and large scenes, since it is susceptible to illumination interference and has a
relatively small ranging range. When the pose of each frame is obtained, there are two
basic methods to build the image:

(1) The simplest method is to not track the movement of feature points between frames
so that there is no need for inter-frame matching, and all points are directly back-projected
to the 3D space to form a point cloud. The point cloud processing method is used to remove
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duplicate points and noise points. This method requires that the pose is relatively accurate
and the drift is small.

(2) The second method is to track the movement of points between frames, which
requires feature matching. For monocular and binocular cameras, after the relative poses of
the two frames are known, the matching process can be accelerated through epipolar line
searching and block matching. The depth of each pixel can be obtained by triangulating
the matching between the two frames. Multiple frames may see the same point, and the
depth filter can use a filtering method or a nonlinear optimization method. The filtering
method is less computationally intensive, as opposed to constantly calculating the depth
between two frames and then updating the depth. However, the BA method can be used
for the nonlinear method, but the calculation is large. Because the number of dense points
is large, the calculation of BA is large and the front-end uses the computing resources.
Considering the computing power, the filtering method may be more appropriate, since
the matching and depth calculation of each point block are relatively independent, which
can be accelerated using a parallel method.

3.2. LIDAR SLAM

LIDAR SLAM is derived from earlier range-based localization methods (such as
ultrasound and infrared single-point ranging). The emergence and popularization of
LIDAR have made the measurement faster, more accurate, and more informative. The
object information collected by LIDAR presents a series of scattered points with accurate
angle and distance information, which is called a point cloud. Usually, by matching
and comparing two point clouds at different times, the LIDAR SLAM system calculates
the distance of the relative movement of the LIDAR and the change in the attitude and
completes the localization of the robot itself [113].

The LIDAR range measurement is more accurate, the error model is simple, the
operation is stable in an environment other than direct bright light, and the processing
of the point cloud is relatively easy. At the same time, the point cloud information itself
contains direct geometric relationships, which makes the path planning and navigation of
the robot intuitive. The theoretical research of LIDAR SLAM is also relatively mature, and
the landing products are more abundant.

The LIDAR SLAM framework is the same as the visual SLAM framework, which is
usually divided into four modules: front-end scan matching, back-end optimization, loop
closure detection, and mapping. In the following, the basic concepts of these four modules
will be roughly introduced.

Front-end scan matching is the core step of LIDAR SLAM. The work content is to
know the pose of the previous frame and estimate the pose of the current frame using
the relationship between adjacent frames. The front-end scan matching can generate
the pose and map in a short time, but due to the inevitable error accumulation, back-
end optimization is required, which involves the optimization of odometry and map
information after long incremental scanning matches. Loop closure detection is responsible
for reducing the drift phenomenon of the global map by detecting loop closure, to generate
a consistent global map. The map-building module is responsible for generating and
maintaining the global map.

3.2.1. Front-End Scan Matching

Front-end scan matching is the core step of LIDAR SLAM. The work content is to
know the pose of the previous frame and estimate the pose of the current frame using the
relationship between adjacent frames. In simple terms, it is the mathematical calculation
process of transforming point cloud data in two or more coordinate systems into a unified
spatial coordinate system. The coordinate transformation of the space can be determined
by three types of parameters: scale, rotation, and translation. The ICP [114] algorithm
can merge point cloud data under different coordinates into the same coordinate system,
which is essential to find a rotation matrix R and a translation matrix T, and then realize
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the alignment matching conversion between two points. However, its disadvantage is also
obvious: it consumes a lot of computing resources when performing matching between
points. Additionally, it depends on the initial value. When the initial value is bad, the
number of iterations increases. For large initial errors, incorrect iteration results may occur.
Pl-ICP [115] is an improved ICP algorithm, and its schematic diagram is shown in Figure 14.
Compared with the point-to-point registration of the ICP algorithm, the PL-ICP algorithm
uses point-to-line registration.

Figure 14. In this figure, the green point is the LIDAR point at time t − 1, the yellow line is the real
object (such as a corridor or wall), and the red point is the point at time t. (a) The figure represents
the trajectory of the real object; (b) the dotted line between two red dots in the figure represents the
error distance between the real point and the predicted point of the ICP algorithm; (c) the dotted
line between two red dots in the figure represents the error distance between the real point and the
predicted point of the PL-ICP algorithm. It can be concluded that the error distance of the PL-ICP
algorithm is shorter than that of the ICP algorithm in the same position.

Because PL-ICP is a second-order convergence algorithm, it is faster and more accurate
than ICP’s first-order convergence algorithm, but the algorithm also requires accurate
initial values. There is also a matching method between points using polar coordinates
provided by LIDAR PSM [116]. In 2010, K. Konolige et al. [117] proposed a pose graph
optimization method for constructing and solving linear subproblems, which effectively
reduces local errors.

3.2.2. Back-End Optimization

The front-end scan matching can generate the pose and map in a short time, but
because of the inevitable cumulative error, back-end optimization is required, which in-
volves the optimization of odometry and map information after long incremental scanning
matches. Similarly, the back-end optimization step also requires the use of filter-based
SLAM methods and graph-based optimization SLAM methods. The process of robot SLAM
is as follows: the robot is controlled to reach a pose, and then the observation is recorded;
however, the observation data are usually used to deduce the pose, so the Bayesian formula
is introduced. The Bayesian filter estimates the probability distribution rather than the
specific value, and it is mainly divided into two processes: prediction and correction. The
particle filter method can realize recursive Bayesian filtering through a non-parametric
Monte Carlo simulation method, and its representative algorithm is Gmapping [60]. This
provides an effective method for analyzing nonlinear dynamic systems, which can be
applied in many fields such as target tracking, signal processing, and automatic control.
The method based on graph optimization finds an optimal pose between each node and
minimizes the error value between the prediction and observation by constructing a pose
graph, and its representative algorithms are Cartographer [62] and Karto-SLAM [117].
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3.2.3. Loop Closure Detection and Mapping

The loop closure detection steps of LIDAR SLAM and visual SLAM are roughly the
same, so this paper will not repeat them here. However, this step of LIDAR SLAM is more
complex than that of visual SLAM due to the repetition of 3D structures in the environment
and the fact that LIDAR scanning uses geometric descriptors such as lines, planes, and
spheres to perform matching between scans. Although the feature-based method [118]
has greatly improved the processing speed and accuracy, it is still difficult to run the scan
matcher in real time during each scan. Therefore, W. Hess et al. [62] applied the sliding win-
dow method to scan matching, cyclically detecting the current pose and its nearby region
over a window of fixed frames. At present, the main methods of loop closure detection
are scan-to-map, map-to-map [63], branch-and-bound, lazy decision, and CSM+ gradient
optimization [62]. Through loop closure detection, the drift phenomenon of the global map
is reduced to generate a consistent global map. The mapping module is responsible for
generating and maintaining the global map. However, in the actual environment, many
tricky problems are often encountered, such as degraded environments (empty corridor),
dynamic updating of the map (positioning error when the map is updated), and dynamic
environment localization (the influence of people, cars, and other moving objects).

3.3. Summary

In Section 4, the front-end, back-end, loop closure detection, and mapping steps of
LIDAR SLAM and visual SLAM were generally explained. The two used different types
of sensors. Although there are many similarities between the approximate positioning
and mapping processes, the algorithms used by them are completely different. Since the
development of LIDAR SLAM and visual SLAM in recent decades, both of them have
relatively matured and have their advantages and disadvantages in different fields: LIDAR
SLAM builds a map of high accuracy, has no accumulated error, and can be directly used for
navigation and positioning, but it is expensive, and cannot fully utilize the environmental
texture information. Visual SLAM can work both indoors and outdoors and has high
accuracy under rich texture information, but the accuracy of the constructed map is low
and there is a certain cumulative error. However, by combining the two, they have great
potential to learn from each other. For example, visual SLAM works stably in dynamic
environments with rich textures and can provide very accurate point cloud matching for
LIDAR SLAM, while the precise orientation and range information provided by LIDAR
will exert more power on correctly matched point clouds. In an environment with severely
insufficient illumination or a lack of texture, the localization work of LIDAR SLAM makes
it possible for visual SLAM to record scenes with little information. In this paper, it was
found that the fusion method of visual and LIDAR SLAM or various other sensors is better
able to adapt to complex situations and has great development prospects; therefore, this
paper will describe the current existing fusion methods of different sensors in detail in the
next section.

4. SLAM for Multi-Sensor Fusion
4.1. Visual Inertial SLAM

Visual SLAM algorithms have made significant breakthroughs in recent decades and
can operate stably and robustly in many scenarios. However, when low-quality images
are generated by fast camera movements and different light levels, current visual sensors
cannot achieve good results [119]. IMU-assisted sensors, compared to odometers, have
higher angular velocity measurement accuracy and higher local position measurement
accuracy. When the camera moves fast, the IMU can obtain clear images of dynamic objects,
and at the same time, when the speed is slow, the camera can correct the cumulative
error generated by the IMU [120]. The complementarity of the two greatly improves the
performance of SLAM. Moreover, due to the low price and convenient use of vision sensors
and IMU sensors, more and more scholars are beginning to pay attention to them [121]. At
present, according to whether the image feature information is added to the state vector,
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visual inertial fusion methods can be divided into tight coupling and loose coupling [122].
Loose coupling means that the IMU and the camera estimate their motion separately and
then fuse their pose estimates. Tight coupling involves firstly fusing IMU and camera states,
then jointly constructing motion and observation equations, and finally performing state
estimation [123]. Figure 15 is a schematic of loose and tight coupling.
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Figure 15. Frames of loose coupling and tight coupling of visual inertial SLAM.

4.1.1. Loosely Coupled Visual Inertial SLAM

Loose coupling means that the motion estimations of the IMU and the camera are
performed and then the pose estimation results of the two modules are fused. The update
frequency of the two modules is inconsistent, and there is a certain amount of information
exchange between the modules. J.M. Falquez et al. [124] proposed an effective loose
coupling method to fuse the RGB-D camera and IMU sensor information and obtained
good experimental results. Although the implementation process of loose coupling is
simple, errors are often generated during the fusion process, so there has not been much
in-depth research.

4.1.2. Tightly Coupled Visual Inertial SLAM

Tight coupling means that the state of the IMU and the state of the camera are merged
to construct the motion equation and observation equation and then the state estimation is
performed. The scale measurement information of the IMU can be used to assist the scale
estimation in the vision sensor. The tight coupling method makes full use of the visual and
inertial measurement information, which can obtain higher attitude estimation accuracy, but
it also brings a greater amount of computation and a more complex implementation process.
Over decades of development, researchers have divided tight coupling into filtering-based
and graph-based optimization methods, and the algorithms and core processes used by
them are detailed in the following.

In 2007, A.I. Mourikis and S.I. Roumeliotis [125] derived a real-time visual inertial
model MSCKF based on the EKF, which is able to represent the geometric constraints
that arise when viewing static features from multiple camera poses. The addition of 3D
feature positions to the filtered state vector is avoided so that the computational complexity
only grows linearly when the number of features grows. Compared with using only
vision sensors, the proposed algorithm has higher estimation accuracy while obtaining rich
environmental information. It can operate stably and reliably in indoor, outdoor, and other
environments where GPS signals are unreliable, and the two sensors have the advantages
of having a low cost, a low weight, and low power consumption, which have allowed the
visual inertial navigation method to become the first choice of fusion method. Another
commonly used filtering method is ROVIO [126], which only uses a monocular camera and
achieves accurate and robust tracking performance by directly judging image blocks with
different pixel intensities. Three-dimensional landmark positions are estimated based on
the current camera pose, and the framework does not require any initialization process and
can be directly applied to UAVs (multi-rotor UAVs).

A method based on the graph optimization of IMUs with binocular camera integration,
OKVIS [71], has been proposed in order to reduce the complexity of the algorithm and
improve efficiency. This algorithm applies the linearization and marginalized keyframes
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of the nonlinear optimization problem. Even though the method is more computationally
demanding, compared with the filter method, it has higher precision and better perfor-
mance. However, none of the above three methods have a loop closure detection module.
When running for a long time, the continuous accumulation of errors will lead to the
obtained global information being unable to be used for back-end optimization. In 2018,
the VINS-Mono [127] algorithm successfully solved this problem. This algorithm used
a tightly coupled nonlinear optimization method to fuse feature observations with IMU
measurements to achieve relocation with minimal computation and performed global pose
map optimization to reduce the cumulative error. In 2021, the latest ORB-SLAM algorithm,
ORB-SLAM3 [43], was published, which can be applied to all current visual sensors and
is the most complete open source library for visual, visual inertial, and multi-segment
SLAM. It depends on the maximum a posteriori probability (MAP) estimation, even during
the initialization of the IMU, and can also run in real-time indoor and outdoor scenes.
It was the first algorithm to use the height of the parallax algorithm stage according to
the keyframes to reuse the global information system, in contrast to the most advanced
algorithm, which greatly improved the accuracy.

This paper compares several representative VI-SLAM frameworks, and it can be seen
that the current mainstream VI-SLAM implementation methods are dominated by tightly
coupled optimization methods. Compared with the loose coupling method, the tight
coupling method that combines the IMU state and the camera state for state estimation has
higher accuracy. Since the filtering-based method is a Markov method, it cannot consider
the relationship between the state at a certain time and the state at all previous times.
At present, it is generally believed that the optimization-based method will obtain more
accurate results when the computing resources are sufficient. However, the filter-based
method is still an effective method in situations where computing resources are limited
or the mobile robot pose trajectory is relatively simple. The commonly used VI-SLAM
algorithms are summarized in Table 7 for the readers’ reference.

Table 7. Commonly used feature extraction algorithms in SLAM.

Visual Inertial
SLAM Algorithm

Applicable Sensor
Types Coupling Method Front-End Back-End Loop Closure Mapping Reference

MSCKF Monocular/binocular Tightly coupled FAST+Optical Flow EKF No Sparse [125]
ROVIO Monocular Tightly coupled FAST+ Optical Flow EKF No Sparse [126]

OKVINS Binocular Tightly coupled Harris+BRISK Optimization No Sparse [71]

VINS-Mono Monocular Tightly coupled Harris+ Optical
Flow Optimization Yes Sparse [127]

ORB-SLAM3
Monocular/binocular

/RGB-D/
pinhole/fisheye

Tightly coupled ORB Optimization Yes Sparse [43]

4.2. Comparison between LIDAR SLAM and Visual SLAM

This paper will elaborate on the application scenarios, localization and mapping
accuracy, cumulative error problem, sensor cost, algorithm difficulty, computational re-
quirements, and multi-computer collaboration of both LIDAR SLAM and visual SLAM.

(a) Application scenarios
In terms of application scenarios, the application scenarios of visual SLAM are much

richer. Visual SLAM can work in both indoor and outdoor environments. However, the high
dependence on light makes it impossible to work in the dark or in some untextured areas.
At present, LIDAR SLAM is also used in indoor and outdoor mapping and navigation.
However, in extreme weather such as rain, snow and fog, the performance is poor, the
amount of data collected is too large, and the price is very expensive.

(b) Localization and mapping accuracy
In static and simple environments, LIDAR SLAM localization is generally better than

that of visual SLAM, but in large-scale and dynamic environments, visual SLAM shows
better results because of its texture information. In map construction, the accuracy of
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LIDAR SLAM is high, and the accuracy of the RPLIDAR series constructed by SLAMTEC
can reach approximately 2 cm. Visual SLAM, such as the common version, also uses a lot
of Kinect depth cameras (ranging from 3 to 12 m), and the accuracy of map construction
is approximately 3 cm; therefore, the accuracy of the map constructed by LIDAR SLAM
is generally higher than that of visual SLAM and can be directly used for positioning
and navigation.

(c) Cumulative error problem
In general, LIDAR SLAM lacks the ability of loop closure detection, and it is difficult

to eliminate the cumulative error. However, visual SLAM uses a lot of redundant texture
information, and loop closure detection is easier. Even if the front-end accumulates a certain
amount of error, the error can still be eliminated by loop closure correction.

(d) Sensor cost
LIDAR comes in many classes and costs more than vision sensors. The most expensive

outdoor long-range multi-line LIDAR, such as Velodyne, is often hundreds of thousands
of dollars, while the high-end long-range planar LIDAR for outdoor use, such as SICK
and Hokuyo, is about tens of thousands of dollars. Indoor applications are widely used
at the middle and low ends of the close-range planar LIDAR, which also costs thousands
of dollars; the price is equivalent to the more high-end industrial-grade cameras and
sensor chips. The cost of LIDAR is likely to drop significantly after mass production, but
there is still a big question mark over whether it can be brought down to the level of
comparable cameras.

(e) Algorithm difficulty
Due to its extensively developed research and relatively simple error model, LIDAR

SLAM has a lower threshold in the algorithm. Some open source algorithms have even
been incorporated into the ROS system and become standard configurations. In contrast,
with visual SLAM, first of all, image processing itself requires deep knowledge, and map
construction based on nonlinear optimization is also a very complex and time-consuming
computational problem. After optimizing and improving the existing visual SLAM frame-
work in the actual environment, such as adding an illumination model, using feature points
extracted by deep learning, and using monocular and binocular fusion views, the algorithm
threshold of these technologies is also much higher than that of LIDAR SLAM.

(f) Computational requirements
There is no doubt that the computational performance requirements of LIDAR SLAM

are substantially lower than those of visual SLAM. Mainstream LIDAR SLAM can run in
real-time on an ordinary ARM CPU, while visual SLAM requires more powerful quasi-
desktop CPU or GPU support. However, the industry also sees a huge opportunity in this,
and the market for ASICS customized for visual processing is already emerging. A good
example is Movidius, which is owned by Intel. Intel has designed a special architecture for
image, video, and deep neural network processing, and achieved the throughput of desktop-
level GPUs at watt-level ultra-low power consumption. DJI’s Genie 4 series products use
this type of dedicated chip to realize high-speed and low-power visual computing, which
provides the basis for UAV obstacle avoidance and near-ground scene navigation.

(g) Multi-machine collaboration
Visual SLAM is mainly passive detection, and there is no multi-robot interference

problem. However, LIDAR is actively launched, which may cause interference when there
are many robots. In particular, the wide use of solid-state LIDAR may make the scene full
of signal pollution, which affects the effect of LIDAR SLAM.

4.3. LIDAR and Visual SLAM Fusion Method

For decades, many methods in the field of LIDAR and visual SLAM technology have
flourished, but they all have their limitations, as they are easily affected by external factors;
therefore, more and more researchers are focusing on the integration of the two methods.
By combining the depth of the accurate LIDAR estimation and the powerful features of
the camera tracking ability, this type of fusion will have many advantages. The fusion
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of LIDAR and visual SLAM will produce a large cumulative error in high-speed motion.
Therefore, inertial sensing units with a low price and excellent performance have become
the first choice to make up for this defect; thus, three types of sensor fusion methods
have slowly emerged. Although the fusion between multiple sensors complements the
advantages of different sensors on the surface, it involves the fusion between different
algorithms in essence and further shows the advantages of the algorithms through the
sensors. Based on the current papers on existing fusion methods, this paper will analyze
the fusion of multiple sensors from the methods based on uncertainty, traditional features,
and deep learning.

4.3.1. Fusion Methods Based on Uncertainty

Uncertainty-based methods are usually used in 2D visual–LIDAR fusion SLAM. At
present, there are three mainstream methods: Kalman filter (KF), particle filter, and graph-
based algorithms and their derivatives. The Kalman filter and particle filter are two different
implementations of the Bayesian filter. The Kalman filter is mainly responsible for the
forecasting and updating of two parts, but it cannot satisfy the demand of the nonlinear
problem; therefore, researchers have developed an extended Kalman filtering (EKF) method.
This method has achieved good effects in mid- and small-scale scenes, but when it comes
to large maps, it leads to a huge amount of computation. The unscented Kalman filter
(UKF) is a good solution to nonlinear problems. However, the above KF and its variants
can only deal with the case of a Gaussian distribution, and when facing the case of an
arbitrary distribution, the use of the KF will bring larger errors. The method based on a
particle filter solves the problem of the arbitrary distribution of multiple samples. A region
with a larger number of particles in this method has a higher probability. Graph-based
SLAM, on the other hand, finds the relationship between poses by minimizing the sum of
squared variances.

(a) A fusion method based on the KF and particle filter
In 2006, P. Newman et al. [110] mounted a LIDAR and camera simultaneously on a mo-

bile robot for the first time, and the LIDAR acquired the local geometry of the environment,
which was used to incrementally construct a 3D point cloud map of the workspace. Data
fusion was performed using standard EKF equations, and this observation was applied
to the state vector. In the process of loop closure detection, the camera sequence is used
for detection, and then the local LIDAR scanning is used again to process the image of
the loop closure detection, which effectively eliminates the error generated by the loop
closure detection process, but the huge amount of calculation is still difficult to solve. In
2009, F. Malartre et al. [128] developed a perception strategy system combining visual and
LIDAR SLAM. By adding LIDAR data to the EKF, the drift of visual SLAM was reduced,
and the density-controlled digital elevation map (DEM) was quickly recovered. In 2010,
F. Sun et al. [129] assumed that the sensor noise obeyed a Gaussian distribution and used
the EKF to estimate the minimum mean square error of the system state. Visual data and
LIDAR data with the same corner features were fused, and the active detection strategy
was adopted to improve the accuracy of SLAM and obtain more 3D map information.

The fusion method of the two has slowly matured, and some scholars have gradually
deployed it in mobile robots, autonomous vehicles, and drones. In the process of the
continuous improvement of the algorithm, excellent performance that cannot be achieved
by a single sensor has been obtained.

In 2007, L. Iocchi et al. [130] used a particle filter to estimate the displacement between
local maps for the mapping problem of large indoor environments. They mainly used a
binocular camera to measure plane displacement, supplemented with 2D LIDAR data,
which cooperated with high-precision IMU sensors to successfully construct a low-cost
3D map. The study of [131] used LIDAR data as the input of a binocular vision system
and applied this system to a complex intersection scene, vehicles, and other dynamic risk
levels as the output of the object, using a particle filter to solve the location problem (each
particle corresponds to a vehicle location, using LIDAR data to compute the probability



Remote Sens. 2022, 14, 6033 28 of 53

of each particle). This method obtained good detection effects and further shows the
broad prospect of different types of sensor fusion, which has attracted the widespread
attention of researchers. The multi-sensor fusion of UAVs has made breakthrough progress.
In 2013, J. Collier et al. [132] used SIFT and variable dimension local shape descriptor
(VD-LSD) to train the bag-of-words model of LIDAR and visual sensors based on the
FAB-MAP algorithm and performed position recognition on a UAV. Regardless of poor
lighting conditions or low-texture scenes, it has good recall and accuracy, but when the UAV
flies too fast, it can easily lead to feature tracking failure. Figure 16 shows the multi-sensor
fusion framework based on the FAB-MAP algorithm, for the readers’ convenience.
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Figure 16. Frame diagram of multi-sensor fusion based on the FAB-MAP algorithm. The camera and
LIDAR information is extracted by the GPU, and SIFT and VD-LSD are used to train the bag-of-words
model of the LIDAR and visual sensors. Then, the information is converted into the respective
appearance vectors for the loop closure detection process. After the calculation and verification
of the 6-DOF, multi-sensor data fusion is carried out, and the pose optimization of the UAV is
finally completed.

To address this problem, D. Magree and Johnson [133] used visual- and LIDAR-
assisted navigation. The navigation architecture was based on EKF filters to provide sensor
updates for the UAV, coupled at the scan and point correspondence levels, which reduced
the impact of the fuzzy geometry generated by the rapid UAV flight. Additionally, this led
to the Monte Carlo LIDAR-based SLAM system and its vision application in scan matching.
S. Wang et al. [134] improved the Monte Carlo localization (MCL) method and applied
it to a robot’s pose estimation procedure. This paper proposed a localization algorithm
based on 2D LIDAR and 3D point clouds from a 2D structure to generate the 2D LIDAR
alignment. With this algorithm, the data and map can be located in the robot’s positioning
at the same time as the local map scale.

The traditional fusion method coarsely fuses LIDAR and visual SLAM and achieves
good results. By more finely selecting different types of sensors for fusion, the feasi-
bility of producing better results has been confirmed by more and more researchers.
S. Huh et al. [135] deployed a monocular camera, LIDAR, and an inertial sensor on an
unmanned aerial vehicle (UAV) using visual markers to calibrate the camera and LIDAR
information and, based on the EKF, developed a real-time navigation algorithm, even
without any a priori knowledge about the environment. E. Lopez et al. [136] improved the
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then-advanced monocular visual SLAM methods (LSD-SLAM and ORB-SLAM) to develop
a SLAM system that integrates different visual, LIDAR, and inertial measurements using
the EKF, which optimizes 6D pose estimation using the EKF, where local 2.5D maps and
footprint estimates of robot positions can be obtained, improving the ability of low-cost
commercial aviation platforms to build pose and environment maps in real-time on board.
Y. Bi et al. [137] fused a depth camera and LIDAR and deployed them on a UAV. Hector
SLAM was used to determine the relative position and orientation of the UAV, and the
Gauss–Newton method was used to find the best transformation between the current scan-
ning and mapping. This system can carry out positioning, mapping, planning, and flight in
unknown indoor environments. The accurate landing of visual targets can be achieved, and
all real-time calculations can be performed on the aircraft. V. De Silva et al. [138] solved the
problem of fusing the output of light detection, LIDAR, and wide-angle monocular camera
sensors in free-space detection by first spatially aligning the output of the sensors and then
using the Gaussian process (GP) regression resolution matching algorithm to interpolate the
missing data with quantified uncertainty. This data fusion method significantly improves
the perception of unmanned and mobile robots. B.P.E. Vasquez et al. [139] installed a LI-
DAR, camera, and radio frequency identification (RFID) system on the mobile robot Doris
and improved the positioning accuracy of the robot in a real environment through the EKF.
It can be located only using sensor fusion and a semantic map, without mapping the whole
environment by creating a point cloud map. SLAM does not need to be used. One study
even put forward a bolder idea to apply SLAM technology to the simulation experiment
of spacecraft landing on the moon [140]. This study combined LIDAR and monocular
camera images to eliminate the error caused by scale uncertainty for the landing problem
of spacecraft. The unscented Kalman filter (UKF) was used to provide state estimates based
on inertial and star-tracking camera data at various stages of the spacecraft reaching the
moon. A visual localization algorithm based on 2D–3D point correspondence and LIDAR
distance was proposed, which can be initialized without systematic errors compared with
only using optical navigation.

At present, fusion algorithms have been able to run stably on UAV and mobile robots,
but there are still many problems that cannot be ignored, such as the large amount of
calculation, complex process of mapping, and low accuracy of positioning. To solve
these problems, researchers carried out a large number of experiments and made a lot of
improvements to the front-end odometry, back-end optimization, loop closure detection,
and mapping steps.

The fusion methods of front-end odometry mainly include those presented in [64,141–143].
The study of [64] combined visual and LIDAR odometry and proposed an online self-
motion estimation method, V-LOAM. At high frequencies, self-motion is estimated by
visual odometry, and at low frequencies, motion estimation and drift correction are im-
proved by LIDAR odometry. Accurate and robust motion estimation can be achieved even
when moving at high speed and the illumination changes dramatically. Additionally, this
method can use different types of ranging sensors: for example, it can improve the position-
ing accuracy of fisheye cameras with serious distortion caused by large viewing angles.

The study of [143] developed a low-cost inertial positioning system of binocular
vision combined with the multi-state constraint Kalman filter (MSCKF), a visual inertial
odometer (VIO), and LIDAR information provided by a 3D map, which greatly improved
the performance of the standard visual inertial odometer and reduced the positioning error
system’s acceptable range. The study of [143] proposed a new method of fusing visual
and LIDAR data in odometry. Visual maps of LIDAR voxel maps and map points were
constructed, and the maps were integrated into the odometer measurement residuals to
eliminate any errors caused by assigning the LIDAR depth to non-corresponding visual
features. A large number of geometric residuals obtained by LIDAR were used instead of a
single linearized residual. This greatly accelerated the iterative optimization of a similar
Levenberg–Marquardt algorithm and obtained a more accurate pose estimation.
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The study of [142] proposed a fully automatic end-to-end method based on the 3D–2D
joint correspondence mask (CoMask), which can directly estimate the extrinsic parameters
with high accuracy. The genetic algorithm was combined with the Levenberg–Marquardt
method, which can solve the global optimization problem without any initial estimation.
The general framework of the study is presented in Figure 17, wherein different colors are
used to represent different steps to facilitate a better understanding by the readers.
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Figure 17. End-to-end frame diagram based on the 3D–2D joint correspondence mask (CoMask).
Firstly, the checkerboard corner points in the image are extracted to estimate the checkerboard mask,
and the Euclidean distance transformation of the mask is generated. Secondly, the static background
point cloud and dynamic point cloud are removed from the ground points, the nearest neighbor
search is performed, the depth-based continuous segmentation is performed on the distance image,
and the clusters with an internal spatial correlation are separated. This information is sent to the
back-projection process and is further processed in the optimization stage.

High-precision mapping requires very rich information, and the rich texture informa-
tion brought by the visual algorithm has great advantages in relocation. The information
carried by the LIDAR point cloud is not deeply mined in this paper. In the high-end
long-range multi-line LIDAR, the returned point cloud contains not only the direction
and range information, but also the reflectance information of the target point. When the
number of lines is large and dense, the data composed of reflectance information can be
regarded as a type of texture information. Once this information is integrated into the
high-precision map, the high-precision map can seamlessly switch between the two forms
of point cloud and texture, which is also the research direction of some foreign teams [144].

In 2017, M. Shin et al. [145] proposed a registration method of point cloud images fused
with LIDAR, an inertial sensing unit, and a camera. The SLAM method used was LOAM.
By combining the odometry information obtained by the LIDAR and the 3D position of
the selected image feature points, the information of the co-located positions in these two
maps was extracted, and the accurate estimation of the rigid transformation between the
origin of each mapping was realized. In the same year, M. Chen et al. [146] used 2D
LIDAR to realize real-time 3D mapping through visual inertial fusion attitude estimation,
real-time conversion from the point cloud to the world frame in pose estimation, and the
accurate motion estimation of the robot through IMU-assisted visual SLAM based on the
EKF. Subsequently, Z. Zhu et al. [147] proposed a visualization method based on 3D LIDAR
SLAM, which uses LIDAR to provide pose and undeformed point cloud information
for visual keyframes and simultaneously detects and corrects the loop closure detection.
Compared with the original LOAM system, the accuracy is improved, and the motion



Remote Sens. 2022, 14, 6033 31 of 53

drift generated by pose estimation is effectively reduced. The great potential of LIDAR
point cloud information has attracted the attention of more and more researchers who have
begun to try to use point cloud information in combination with other information. By
using photometric image registration with a geometric point cloud, K. Huang et al. [148]
proposed a direct LIDAR–visual measuring method process, using different sensors’ output
information combined with a graphic image block with a single-plane pixel alignment
formula to calculate the accurate motion estimation between frames, providing accurate
projections of obstructions. Experiments on the KITTI dataset produced consistently
registered colored point clouds. G. Zhou et al. [149] proposed a visual localization algorithm
combining points and lines. Using the most advanced simultaneous localization and
mapping algorithms at that time (such as LIO-SAM, LVI-SLAM, and Fast-LIO), 2D lines
in the image could be extracted online, and 3D lines in the 3D LIDAR map could be
extracted offline. Sparse 3D points are obtained by visual odometry, and their poses are
constantly corrected by minimizing the reprojection errors of 2D–3D lines and 3D–3D points.
Finally, zero-drift positioning can be achieved. Various researchers have tried to add point
cloud information to the direct method and achieved amazing results. J. Qian et al. [150]
proposed a new direct odometry method: the image data obtained by the vision sensor are
combined with the sparse point cloud obtained by the LIDAR with the relative attitude as
the prior. With this method, the positioning and mapping of a UAV with high accuracy
and robustness are realized. W. Wang et al. [151] proposed a direct visual–LIDAR fusion
SLAM framework, which includes a frame-by-frame tracking module, an improved sliding
window-based refinement module, and a parallel global and local search loop closure
detection (PGLS-LCD) module, and combines the bag-of-visual-words (BoW) and LIDAR
iris features for location recognition. Finally, a high-precision real-world trajectory and point
cloud maps can be generated. The framework diagram for generating high-precision point
cloud maps using direct methods is presented in Figure 18 for the readers’ convenience.

However, correspondingly, point cloud information is easily affected by illumination,
and different sensors have different viewpoints, which are difficult to make consistent in
the process of extraction. To address this issue, A. Gawel et al. [152] proposed a framework
that uses structural descriptors to match LIDAR point clouds to the sparse visualization of
key points, which is not affected by the viewpoint and illumination changes of the sensor.
The framework contains two independent pipeline inputs: LIDAR–inertial sensing unit
data and visual inertial sensing unit data. When constructing the structural descriptor, the
two types of data are fused to carry out feature matching, which can adapt to different
environments. J. Mo and J. Sattar [153] proposed a SLAM method for location recognition
using 3D LIDAR descriptors: a LIDAR sensor is used for the location recognition of 3D
points obtained from stereo visual odometry. This system has higher robustness when the
environment changes dramatically, and in the process of position recognition, the accuracy
and computational efficiency are better than those of the traditional 2D method.

In the stages of loop closure detection and back-end optimization, the connection
between them is usually considered simultaneously. In 2016, Q. Wu et al. [154] presented
recursive Bayesian filters, which can handle arbitrary distributions using multiple samples.
Through this method, they completed the calibration of 2D LIDAR and a panoramic camera,
used the visual loop closure detection method to assist 2D-SLAM, registered the panoramic
camera image with the point cloud, and obtained a 3D map with RGB-D information.
This method solves the positioning problem in indoor scenes without GPS signals, and in
relatively flat outdoor scenes. In the same year, R.O. Chavez-Garcia et al. [155] proposed a
complete perception fusion architecture based on an evidence framework (the architecture
includes three main sensors: radar, LIDAR, and camera), which uses a Bayesian filter
for state prediction. The authors addressed the problem of moving object detection and
tracking by integrating composite representations and uncertainty management and carried
out tests in real driving scenarios, drastically reducing the number of false detections and
misclassifications. S.H. Chan et al. [156] developed a method for the robust positioning of
lightweight indoor SLAM. Compared with the traditional feature matching method, the
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algorithm uses a path-matching method, curvature filter, and pyramid filter to find the
basic matrix between the different trajectories and can be applied to any type of general
SLAM fusion architecture. Even with cheap sensors, the fusion method has reasonably
high localization accuracy and sufficiently robust navigation. Z. Jin et al. [157] used the
particle filter method to introduce a FastSLAM method that fuses a visual stereo image
and 2D LIDAR data. By providing a priori mapping, the submaps obtained by the particle
filter were compared with each other, which effectively eliminated the particles with large
differences and made the algorithm converge quickly, providing easier access to high-
definition maps. When tested on the KITTI dataset, compared with the popular ORB
SLAM, the estimated trajectory was closer to the ground truth. Y. Tao et al. [158] proposed
a SLAM algorithm for a multi-sensor information fusion model based on the EKF, which
uses Bayesian inference and joint probability density estimation on each frame of fixed time
to fuse LIDAR RBPF-SLAM and monocular vision information and has high positioning
accuracy in actual scenes.
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Figure 18. Framework diagram of VL-SLAM based on the direct method.

Similarly, direct methods are also widely used in loop closure detection and back-
end optimization, and in 2018, great breakthroughs were achieved in this direction. R.
Giubilato et al. [159] solved the scale ambiguity problem of monocular vision by fusing the
range data of the LIDAR altimeter in the monocular vision odometry framework. Using
the keyframe-based tracking and optical flow mapping algorithm, the distance data were
used as the scale constraint between keyframes, and the optimization algorithm based on
iSAM2 was applied to the back-end trajectory optimization and map estimation, which
can eliminate the scale drift before the loop closure detection process. Y. Kim et al. [160]
proposed a lightweight monocular vision localization algorithm to match the depth of
the stereo disparity map to the 3D LIDAR map. Similar to the method of compensating
for drift in the LSD-SLAM method, this paper applied the depth residual minimization
algorithm to camera pose estimation, which can be applied to urban environments with
weak GPS signals. Y. Shin et al. [161] proposed a camera–LIDAR sensor system using
a direct method, which uses a sliding window method in pose estimation to avoid local
horizontal drift. Global horizontal consistency is maintained using an appearance-based
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place recognition module and a pose graph optimizer. This system verifies the advantages
of the direct method: it has obvious advantages in the process of fusing low-resolution
cameras and sparse LIDAR data. However, more consideration is needed in the case of
large changes in lighting conditions and fast-moving objects. In 2020, ref. [162] proposed a
direct visual-to-LIDAR SLAM framework combining light detection, LIDAR ranging, and
a monocular camera for sparse depth measurement, jointly optimizing each measurement
under multiple keyframes to realize the direct utilization of sparse depth. This study
addressed the unavailability of traditional keyframe-based methods in sparse-depth scenes.
This method achieves robust SLAM results even with extremely sparse depth measurements
(eight rays), but it is not applicable to the case of poor illumination changes. The proposed
DVL-SLAM framework is presented in Figure 19.
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Figure 19. Frame diagram of DVL-SLAM. The input data are pictures with a relevant sparse depth,
which are used for the tracking process. The front-end uses window optimization and data associ-
ation for accurate motion estimation, and the back-end accepts the front-end data for global pose
map optimization.

(b) Graph optimization-based fusion method
In addition to using direct methods, graph optimization methods can also be used

to determine the robot’s position. A.L. Majdik et al. [163] regarded speeded-up robust
features (SURF) features as environmental landmarks and tracked the displacement of
these landmarks between different positions of the robot. The cross-use of visual mapping
and LIDAR mapping systems can achieve efficient localization and autonomously filter out
detected landmarks. S. Houben et al. [164] abstracted LIDAR SLAM at different stages into
a thin interface only connected to the map construction process, proposed a fast and simple
labeling method that can effectively detect and decode, and provided a graph optimization
method that can seamlessly and continuously integrate its location information in the
map. G. Jiang et al. [165] proposed a new SLAM framework based on graph optimization
considering the fusion of cheap LIDAR and vision sensor data. In this framework, a cost
function was designed to process both scanning data and image data, and the bag-of-words
model with visual features was imported into the loop closure stage. A 2.5D map containing
visual features and obstacles was generated, which is faster than a traditional grid map.
L. Mu et al. [166] proposed a graph-optimized SLAM method. Based on the unscented
Kalman filter (UKF), four sensors including LIDAR, an RGB-D camera, an encoder, and
an IMU were combined for joint positioning, which effectively improved the accuracy of
loop closure detection and made the map more refined. S. Chen et al. [167] studied the
back-end of LIDAR and visual SLAM and constructed a method based on loop closure
detection and global graph optimization (GGO). In the main stage, the geometric features
and visual features of LIDAR were used, and the bag-of-words (BoW) model describing
visual similarity was constructed in the auxiliary stage. The loop closure detection and
graph optimization performance were significantly improved.
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At this time, for the front- and back-end optimization, loop closure testing, built figure,
etc., various versions of the fusion algorithm, compared with only using a single-sensor
algorithm, have obtained good effects and shown more advantages and the great potential
of sensor fusion; therefore, there is an indication that the multi-sensor fusion method is
also applicable to the complete process of SLAM. Inspired by the loose coupling and tight
coupling methods of visual sensors and IMUs, researchers are also attempting to use loose
coupling and tight coupling methods throughout the whole SLAM process to make full
use of the respective advantages of different sensors.

(c) Fusion method based on loose coupling
At first, researchers focused on multi-sensor loose coupling methods. In 2017, M.

Yan et al. [168] proposed a loosely coupled visual–LIDAR odometry method combining
VISO2 (second version of visual odometry) and LOAM (LIDAR odometry and map-
ping), which utilizes the complementary advantages of different sensors to reduce the
number of limited scenes. They demonstrated reasonably high accuracy even in situa-
tions where environmental texture was repeated and shape features were not prominent,
but scenes with high-speed motion and lack of color and shape features still presented
challenges. In 2020, multi-sensor loose coupling approaches achieved significant break-
throughs, with researchers applying them to mobile robots and various harsh environ-
ments. A multi-sensor fusion state estimation framework for legged robots was proposed
by M. Camurri et al. [169] whose core is the extended Kalman filter (EKF), which fuses
IMU and leg odometry sensing for attitude and velocity estimation and simultaneously
uses visual sensors and LIDAR to correct motion drift in a loosely coupled manner. The
performance is reliable when the robot moves for a long distance, but it is not suitable
for situations where the movement speed is too fast. P. Alliez et al. [170] developed a
SLAM system equipped with dual LIDAR, an IMU, a GPS receiver, and camera sensors
for emergencies in the military and civilian fields. The information of each sensor is fused
using the loose coupling method. The visual part is based on the ORB-SLAM algorithm,
and the LIDAR part is based on the error-state Kalman filter (ESKF); the two cooperate
through pose sharing and relocation and can even operate stably in harsh environments.
Subsequently, in another paper [171], the same authors fused more types of sensors and
proposed a real-time indoor/outdoor positioning and offline 3D reconstruction system
by fusing visual–LIDAR–inertial GPS, which is based on the KF and performs a loosely
coupled fusion method between the LVI-SLAM method and GPS positioning. In the case of
GPS failure, dark environments, and smoky scenes, the signal can be transmitted by radio,
and the localization is more accurate than that of the existing technology. To allow the
readers to better understand the loose coupling method of four-sensor fusion, the general
framework is presented in Figure 20 for reference.
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(d) Fusion method based on tight coupling
In contrast with the previous loosely coupled fusion methods based on the Kalman

filter, now, the hot spot in the academic community is tightly coupled fusion based on
nonlinear optimization. For example, fusion with IMUs and real-time mutual calibration
allows the LIDAR or visual module to maintain a certain positioning accuracy when
maneuvering (violent acceleration and deceleration and rotation), which prevents tracking
loss and greatly improves the stability of positioning and map construction.

In 2019, Z. Wang et al. [172] proposed a robust and high-precision visual inertial
LIDAR SLAM system, which combines the advantages of VINS-Mono and LOAM and can
effectively deal with scenes of sensor degradation. The visual inertial tight coupling method
is used to estimate the motion attitude, and the estimated value of the previous step is
refined through LIDAR scan matching. When one of the links fails, the tracking motion can
still be continued. T. Wang et al. [173] fused sensors such as LIDAR, camera, IMU, encoder,
and GNSS sensors and proposed a tightly coupled method to improve the positioning
accuracy and eliminate dynamic targets and unstable features in order to robustly and
accurately estimate the attitude of the robot. With the continuous attempts of researchers,
they found that the method of multi-sensor tight coupling based on graph optimization can
significantly improve the accuracy of mapping and robustness in complex environments.

In 2021, J. Lin et al. [174] proposed a tightly coupled framework that fuses LIDAR,
camera, and IMU sensors, which is mainly composed of two parts: factor graph optimiza-
tion and filter-based odometry. State estimation is performed within the framework of
iterative Kalman filtering, and the overall accuracy is further improved through factor
graph optimization. This method overcomes the problems of sensor failure and violent
motion, and at the time of its release, it had the highest accuracy. Broad development
prospects have prompted more and more scholars to study this field. Based on factor graphs,
T. Shan et al. [175] designed a tightly coupled method involving a visual inertial system
(VIS) and a LIDAR–inertial system (LIS), where the VIS uses the LIS estimation to promote
initialization, and LIDAR extracts depth information in visual features, which significantly
improves the performance in texture-free and non-functional environments. It can be used
for real-time state estimation and mapping in complex scenes. D. Wisth et al. [176] devel-
oped a joint optimization based on a tightly coupled factor graph-based visual, LIDAR,
and IMU system. The authors proposed a 3D extraction procedure from LIDAR point
cloud line motifs and a new method of graphic primitives which overcomes the suboptimal
performance of the frame-by-frame tracking method and is especially suitable for vigor-
ous exercise or rapidly changing light intensity situations. L. Meng et al. [177] proposed
a tight coupling of the monocular vision method and LIDAR ranging to extract the 3D
characteristics of both the LIDAR and visual information. In this system, the monocular
camera and 3D LIDAR measurements are close together for joint optimization, which can
provide accurate data for 6-DOF pose estimation pretreatment, and the ICP method is used
to construct loop closure constraints. Global pose optimization is performed to obtain
a high-frequency and high-precision pose estimation. The approximate tightly coupled
framework is presented in Figure 21 for the convenience of the readers.

(e) Assessment tools
Thus far, this paper has summarized multi-sensor fusion methods based on uncertainty,

which optimize the local or global SLAM process. This paper now turns to evaluation
tools that can be used to evaluate the quality of these improved solutions. A. Kassir and T.
Peynot [178] proposed a reliable and accurate camera–LIDAR calibration method which
can accurately find the rigid transformation between the two sensors according to the
internal parameters of the camera and LIDAR. This method is mainly divided into two
stages: in the first stage, the chessboard extraction algorithm is used to automatically
calibrate the dataset image through the camera; in the second stage, LIDAR is used to
process the data of the previous step to achieve automatic extraction. M. Labbe and
F. Michaud [57] introduced an extended version of RTAB-Map (distributed library for
appearance-based real-time mapping) which provides a set of tools for comparing the
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performance of different sensor fusion methods and various other 3D and 2D methods,
which can be used to compare performance on datasets and perform online evaluation.
This tool can assist in better analyzing which robot sensor configuration is most suitable
for the current navigation situation. Y. Xie et al. [179] designed A4LidarTag, a marker
pattern composed of circular holes. Because sensors are susceptible to environmental
factors in external attitude calibration, the depth information obtained by LIDAR is used
to encode the position information, which has strong generalization in both indoor and
outdoor scenes.
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Figure 21. Frame diagram of tightly coupled multi-sensor fusion. The system receives a visual
image of the same frequency as the LIDAR point cloud. Then, in the data preprocessing phase, 2D
image features are tracked and extracted for the point cloud segmentation and feature extraction,
respectively. After the 3D LIDAR characteristics and data correlations of the 3D visual characteristics
are fed into the tightly coupled LIDAR speedometer, scanning is carried out to further refine the map
matching. After fusion and transformation, the pose and map obtained are imported into the loop
closure detection module. The ICP method is used to perform global pose map optimization, and a
high-precision map and high-frequency pose estimation are finally obtained.

4.3.2. Fusion Method Based on Traditional Features

Traditional feature-based methods also play a vital role in the field of multi-sensor
fusion, and current fusion methods are mainly based on the ORB-SLAM framework. ORB-
SLAM and its subsequent versions have become some of the most widely used visual SLAM
solutions due to their excellent real-time performance and robustness. However, the ORB-
SLAM series heavily depends on environmental features, and it is difficult to obtain enough
feature points in environments without texture features [180]. Nonetheless, traditional
features can provide sufficient information for the ORB-SLAM systems. Additionally, with
the continuous attempts of researchers, the integration of the two methods is becoming
more and more mature [181].

(a) Fusion method based on ORB-SLAM framework
In 2016, Liang et al. [182] used ORB features and bag-of-words features for loop closure

detection, applied the well-identified LRGC SLAM framework and SPA optimization
algorithm to SLAM, introduced visual information into the environment, and successfully
solved the problem of large-scale LIDAR-SLAM loop closure detection. However, this
method can easily fail in the case of missing ORB features. In the same year, Q. Lv et al. [183]
used LIDAR to accurately obtain distance information, improved the map initialization
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process of the ORB-SLAM algorithm, estimated the absolute scale by calculating the average
depth, and realized accurate positioning in unknown environments. Z. Zhang et al. [184]
fused 1D range information and image information to estimate the absolute scale, used
LIDAR range information to correct the scale drift of monocular SLAM, and adopted a
similar method to ORB-SLAM to extract keyframes in the correction stage of scale drift.
However, errors are prone to occur in pure rotational motion and cases of a lack of texture or
extreme discontinuities due to the reliance on SFM methods and local dense reconstruction.
Aiming at this problem, S. Yun et al. [185] proposed a new method that uses 2D image
data to determine the 3D position of feature points. The feature point localization process
involves a combination of visual sensors and LIDAR and uses iterative automatic scaling
parameter adjustment technology. In indoor and outdoor environments, this method has a
strong performance. H.H. Jeon and Y. Ko [186] used bilinear interpolation to interpolate
sparse LIDAR data, which accelerated the process of extracting feature points in the 3D–2D
motion estimation of visual SLAM. Y. Zhang et al. [187] used LIDAR information to assist
in visual pose optimization, and the overall framework was based on ORB-SLAM2. First,
the visual part obtains the precise environmental information from the LIDAR sensor, and
then this information is transformed into a visual tracking thread posture to optimize
the initial value. The system can be adapted to the change in weight of two types of
sensor fusion, where the system has high accuracy for the reference keyframes and motion
model; however, in the process of generating a trajectory, the accuracy may fluctuate. Since
then, some researchers have tried to use point and line features [188] and LIDAR point
clouds [189] instead of ORB features. The study of [188] introduced point and line features
to pose estimation and used ORB features as the point and line features (point and line
features are not susceptible to noise, a wide viewing angle, or motion blur). Compared with
the traditional visual–LIDAR odometry method based only on points, the utilization of
environmental structure information was improved, and the accuracy of attitude estimation
was greatly improved. A new scale correction method was proposed to optimize the
tracking results, which was tested on the KITTI dataset. Compared with pure geometric
methods such as DEMO and DVL-SLAM, this method has higher pose estimation accuracy.
The study by [189] proposed a feature-based SLAM algorithm. Firstly, the 3D point cloud
raster was converted into an image using the camera parameter matrix, and then the image
was imported into the ORB feature detector. This method can estimate the 6-DOF pose
of the robot and has an excellent performance in various environments, but the dynamic
objects in the environment will affect the system performance. However, the use of point
clouds and point line features also has its limitations, since these features are vulnerable
to interference in similar scenes and large-scale outdoor environments. To this end, J.
Kang et al. [190] proposed a range-enhanced panoramic vision simultaneous localization
and mapping system (RPV-SLAM). The panoramic camera was used as the main sensor of
the system, and the range information obtained by the tilted LIDAR was used to enhance the
visual features and output the measurement scale. The initial range of depth information is
obtained from the LIDAR sensor, and the ORB features are extracted in this range to recover
the dense depth map from the sparse depth measurements, which is still robust under
complex outdoor conditions. Y.C. Chang et al. [191] combined RTK-GPS, camera, and
LIDAR sensors for the first time to accurately locate vehicles and build high-precision maps
in scenes with huge weather changes. Through normal distribution transformation (NDT),
ICP, and ORB-SLAM, image feature points are extracted and mapped to anchor points, and
the map can be updated quickly when the position of the object in the map changes.

Similarly, traditional feature-based multi-sensor fusion methods also have tight cou-
pling methods. C.-C. Chou and C.-F. Chou [192], inspired by the ORB-SLAM2 framework,
proposed a tightly coupled visual–LIDAR SLAM system, in which the front-end and back-
end run independently. At the back-end, all the LIDAR and visual information is fused, a
novel LIDAR residual compression method is proposed, and large-scale BA optimization is
performed, achieving superior performance to that of the existing visual–LIDAR SLAM
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method. However, when the scene is dense and contains a large number of objects, the loss
of corner information can easily occur. The framework of this article is shown in Figure 22.

Image

LIDAR

Input

Feature 

extraction

ORB feature

Feature 

tracking

Visual loop 

closure 

detection

Visual 

residual

Visual Front-end

3D pose descriptor

Visual point cloud map

motion 

compensation

Point cloud 

compensation

LIDAR 

Registration

LIDAR loop 

closure 

detection

LIDAR 

residual

LIDAR Front-end

Voxel map
Pose 

initialization

LIDAR sub-maps

Camera pose
Camera-LIDAR 

Extrinsics

General LIDAR 

Constraint

Observe map 

points

Keyframe 

Single pose 

estimation

BA 

optimiza-

tion

Vision-LIDAR 

fusion
The camera pose

Keyframe 

Visual map point

LIDAR Sub-maps

Optimized poses and 

maps

Output 

Figure 22. Frame diagram of tightly coupled feature-based visual–LIDAR fusion, in which different
colors are used to represent different modules. Reproduced with permission of Ref. [192], Copyright
of 2021 IEEE Transactions on Intelligent Transportation Systems.

(b) Other fusion options
In addition to the current dominant multi-sensor fusion method based on the ORB-

SLAM framework, there are also many excellent fusion methods worthy of reference and
research. R. Radmanesh et al. [193] proposed a monocular SLAM method based on light
detection and LIDAR ranging to provide depth information, which uses camera data to
process unknown objects in an unsupervised way, as well as visually detected features as
landmark features, and fuses them with LIDAR sensor data [194]. The proposed method is
superior to the current maps generated only by LIDAR in terms of computational efficiency
and accuracy. In 2021, D. Cheng et al. [195] solved the problem of the limited space inside
the object using a method based on the feature fusion of LIDAR, camera, and inertial
measurements for the accurate positioning of the sensors. To solve the problem of the
poor positioning of the sensors and the surrounding objects, multiple sensors were used
to capture the finer details and clearer geometric shapes in order to better reconstruct the
high-texture 3D point cloud map in real-time. K. Wang et al. [196] proposed a two-layer
optimization strategy. In the local estimation layer, the relative pose is obtained through
LIDAR odometry and visual inertial odometry, and GPS information is introduced in
the global optimization layer to correct the cumulative drift, so that accurate absolute
positioning can be achieved without global drift. S. Yi et al. [197] adapted ORB-SLAM3
and proposed a behavioral tree framework that can intelligently select the best global
positioning method from visual features, LIDAR landmarks, and GPS, forming a long-
term available feature map that can autonomically correct proportions and minimize
global drift and geographical registration. This method meets the needs of complex large-
scale scenarios.

4.3.3. Fusion Method Based on Deep Learning

In the first two sections, this paper summarized the current multi-sensor fusion meth-
ods based on uncertainty and traditional features, which greatly improve the effectiveness
and robustness of SLAM. At the same time, with the continuous development of traditional
machine learning, the field of deep learning has gradually developed [198]. Deep learning
involves training the model on a large number of sample data and allowing the computer
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to find the potential rules between each sample [199]. This technology promotes the de-
velopment of artificial intelligence, such as a robot with independent analysis, judgment,
and decision-making ability [200]. Deep learning shows extraordinary potential in image
recognition and sound processing [201], and more and more researchers have attempted to
combine it with SLAM. At present, the neural networks used in deep learning technology
can be mainly divided into three categories: convolutional neural networks (CNNs), re-
current neural networks (RNNs), and deep neural networks (DNNs) [202]. The concept
of neural networks originated in the 1950s and 1960s when they were called perceptrons.
Perceptrons could deal with simple function problems, but they were unable to deal with
slightly more complex function problems [203]. This drawback was not overcome until
1980 with the advent of multilayer perceptrons, which this paper will now refer to as
“neural networks”.

This paper presents the classical neural network framework used by the fusion method
in Figure 23. Since there are inherent local patterns in images (such as the human mouth,
eyes, and nose) [204], the recognition of local feature images often has a faster speed
and higher accuracy [205], so researchers combine image processing and neural networks
to create CNNs. DNNs have a similar structure to multilayer perceptrons, and these
networks can overcome the disadvantages of gradient disappearance and avoid falling
into local optimal solutions [206]. However, DNNs are unable to model changes in time
series. To adapt to this demand, RNNs have been proposed which can deal with context-
dependent data types [207], but these networks have not been sufficiently tested in the field
of multi-sensor fusion. Therefore, this paper argues that CNNs have abilities in terms of
classification, recognition, forecasting, and decision making, while DNNs have abilities in
fitting and can more quickly reach the local optimal solution, both of which can be used
with different multi-sensor fusion modules [208] of SLAM. In the following, this paper
presents the structure diagrams of a CNN and DNN for the readers’ convenience.

Neural network
RNN

CNN

DNN

Input layer Convolution layer Pooling layer

 connection layer

Output layer

Input layer Output layer

Hidden layer 1 Hidden layer 2 Hidden layer 3

Figure 23. Structural block diagrams of a CNN and DNN.

(a) CNN-based fusion method
In recent years, the advantages of CNNs in image processing have been widely used in

single-sensor SLAM methods such as [209], since they allow monocular cameras to obtain
reliable depth information. Similarly, CNNs have also achieved surprising results in the
field of multi-sensor fusion. In 2018, J. Ku et al. [210] proposed AVOD, an aggregated view
object detection network for autonomous driving scenes, which generates network sharing
features using LIDAR point clouds and RGB images. The network uses a high-resolution
feature extractor and a multi-modal fusion region proposal network (RPN) architecture
(which is built on Faster R-CNN and is a commonly used detector for 2D objects) to
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reliably generate 3D candidate regions for multiple object classes in road scenes in real-
time. In the same year, F. Ma and S. Karaman [211] considered predicting dense depth
data from low-resolution sparse depth data to obtain maps with higher robustness and
accuracy. They proposed a new depth prediction method that uses a CNN to learn a deep
regression model for depth image prediction and used this model as a plug-in for sparse
SLAM, visual inertial odometry algorithms, and super-resolution LIDAR measurement.
Experiments on the KITTI dataset showed that the accuracy is improved by 33% compared
with previous algorithms. Subsequently, X. Kang et al. [212] further explored depth data.
They aligned LIDAR data with an RGB-D point cloud to generate continuous video frames
of the corresponding scene and used a CNN for training. Deep learning methods (mainly
the PoseNet neural network) were used to achieve motion recovery and the automatic
initialization of the system. Experiments were carried out in large-scale indoor and complex
scenes. Compared with the traditional SLAM algorithm, the cumulative error in the loop
closure detection stage is reduced by two times, and the overall robustness is higher
than that of ORB-SLAM2. In Figure 24, a detailed flowchart of the CNN-based fusion
method is presented. The flowchart is mainly composed of five parts: the first part is the
environmental information and LIDAR data collection; the second part is the process of
tracking for precise automatic initialization of the RGB-D SLAM algorithm, to extract all
the keyframes; the third part is the elimination of redundant keyframes; the fourth part
uses the ICP algorithm to determine the camera pose and select the correct keyframe; and
the fifth part performs loop closure detection.

RGB-D data
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prior LIDAR data

Input data

automated system 

initialization

Dynamic object 

clipping and ORB 

feature detection

Pose estimation and motion 
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Local map 
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2D/3D Data 

Registration

Figure 24. Flowchart of the CNN-based LIDAR–depth camera fusion method.

In recent years, CNN-based multi-sensor fusion methods have been further devel-
oped. Z. Gong et al. [213] proposed a real-time 3D object detector based on LIDAR, which
combines vision and range information into a frustum-based probabilistic framework,
effectively solving the problem of sparse point clouds and noise caused by LIDAR sen-
sors. Additionally, it can detect 3D objects in large built environments in a CNN without
pre-training. When tested on the KITTI dataset, the results were better than those of
the state-of-the-art object localization and bounding box estimation methods at the time.
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Z. Shi et al. [214] proposed an effective method to extract the projection line of LIDAR from
the image and improved the LIDAR scanning system based on visual SLAM. Firstly, the
adaptive threshold was introduced to the identified object, and then the image feature was
used for the pose estimation of visual SLAM. Finally, the semantic segmentation method in
the CNN was used to establish an accurate and realistic 3D model which can generate 3D
point cloud maps with real colors and real scales. K. Park et al. [215] developed a CNN
model for the first time to fuse uncalibrated LIDAR and binocular camera depth informa-
tion and proposed a fusion framework for high-precision depth estimation, including a
deep fusion network for enhanced encoding using the complementary characteristics of
sparse LIDAR and dense stereo depth, and a calibration network for correcting initial ex-
trinsic parameters and generating pseudo-ground truth labels from the KITTI dataset. The
proposed network outperforms current state-of-the-art algorithms and can meet various
real-time requirements. H. Qiu et al. [216] proposed a semantic map construction method
that combines a camera, odometry, and LIDAR and uses the YOLOv3 algorithm to process
the pictures taken by the camera to obtain the semantic information and location informa-
tion of the target object. Subsequently, semantic information and location information are
integrated into the grid map constructed by the Gmapping algorithm, which promotes
research in semantic navigation and other aspects.

(b) DNN-based fusion method
CNNs have been favored by a large number of researchers because of their excellent

image processing performance. In contrast, DNN-based multi-sensor fusion methods are
relatively few, and at present, DNNs and CNNs are partially fused. Y. An et al. [217]
proposed a new unsupervised multi-channel visual–LIDAR SLAM method (MVL-SLAM),
which fully combines the advantages of both LIDAR and visual sensors, applies a recurrent
convolutional neural network (RCNN) to the fusion method component, and uses the
features of a DNN as the loop closure detection component. This method does not need to
produce pre-training data and can directly construct the 3D map of the environment from
the 3D mapping component. D. Cattaneo et al. [218] used LIDAR maps to perform global
visual localization, leveraging a deep neural network (DNN) to create a shared embedding
space, which contains both image and LIDAR map information, allowing image-to-3D
LIDAR location recognition. The proposed method uses a DNN and CNN to extract LIDAR
point clouds and image information and has achieved the best performance index thus
far on the Oxford Robotcar dataset (which contains pictures of all weather and lighting
conditions). After the weights are inserted, fusion is performed in the shared embedding
space to achieve accurate position recognition. The framework of this article is shown
in Figure 25.

LIDAR-point 

cloud Image 
Shared embedding space

3D DNN 2D CNN

0.3587963428

0.2698741365

0.4685139781

0.5364789214

0.0314789654

Insert the weights

0.1478965234

0.3578964215

0.4562178942

0.1789455344

0.0314789654

Insert the weights

0.4578963217

0.2698748635

0.1789653214

0.2789634517

0.0879631456

Insert the weights

Figure 25. Flowchart of the DNN-based LIDAR–camera fusion method. Reproduced with permission
of Ref. [218], Copyright of 2020 ICRA.
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(c) Other fusion options
Of course, in addition to the multi-sensor fusion method based on CNNs and DNNs,

researchers have also tested other deep learning methods and achieved excellent results.
For example, J. Graeter et al. [219] proposed a local plane from the LIDAR detected by
fitting the camera features in the image depth estimation method. This deep learning
method can detect landmarks in the environment of dynamic objects. When combined
with the measured values of the LIDAR sensor and high-precision depth vision sensor, this
method has a strong tracking ability. These authors also proposed a method combining
keyframe selection and landmark selection and embedded this method into the visual
odometry framework based on bundle adjustment (BA) for online use. H. Deng et al. [220]
proposed a neural-network-based method for combining vision sensor, odometry, and
LIDAR observations, using a three-layer BP neural network (including an input layer,
hidden layer, and output layer) to fuse the observation information of a Kinect camera and
2D LIDAR sensor. Compared to only using a single sensor, the ability to detect multi-scale
obstacles and the accuracy of localization and mapping are improved. S. Arshad et al. [221]
proposed a deep-learning-based loop closure detection algorithm to solve the problem
of loop closure detection based on visual–LIDAR fusion, which effectively reduces the
cumulative error of robot pose estimation and generates a consistent global map, but this
method depends on the dataset used to train the network.

5. Conclusions and Prospect

After years of development, many excellent visual- and LIDAR-based SLAM algo-
rithms have emerged, which have also been widely used in actual scenarios, such as indoor
and outdoor mobile robots, AR, VR, and other virtual scenarios. Additionally, these algo-
rithms show broad prospects for the development of SLAM technology. The traditional
visual SLAM and LIDAR SLAM have their respective advantages and limitations: for ex-
ample, their advantages include the range of scenarios they can be applied to, the precision
of the localization and map building, the types of sensors, and the cost, but the algorithms
encounter difficulty in complex scenes and are unable to meet the demands of robot au-
tonomous navigation and human–computer interaction. As the performance of hardware
and software in machine learning is constantly improving, computer LIDAR–visual–IMU
fusion algorithms as well as various other sensor fusion algorithms, are being implemented.
The fusion algorithms proposed thus far have made full use of the advantages of different
sensors. Based on the characteristics of uncertainty and the traditional framework, re-
searchers have conducted a large number of studies and fruitful results have been obtained,
achieving superior performance in terms of building high-precision maps and eliminating
cumulative errors that cannot be achieved only using a single sensor. In recent years,
with the rise of the deep learning field, deep learning has shown its great potential in
terms of image recognition and voice processing and received extensive attention from
SLAM researchers. Therefore, multi-sensor fusion algorithms based on deep learning have
been proposed, which, through training, can gather a large number of datasets. The deep
learning method can obtain more abundant map information, and the whole system also
has a stronger generalization ability.

The fusion system of SLAM and multiple sensors has achieved superior results in terms
of robustness, accuracy, and advanced perception and has also attracted the attention of an
increasing number of researchers. Multi-sensor fusion SLAM will fundamentally eliminate
the limitations of different sensors themselves to improve the autonomous interaction
ability of robots [222]. Combined with these studies, this paper puts forward the following
prospects for the future of multi-sensor fusion SLAM:

(1) Development history and engineering applications. In recent years, although the
fusion of multiple sensors in SLAM has resulted in some outstanding achievements, com-
pared with the traditional pure visual and LIDAR SLAM, it is still in a stage of development.
Furthermore, the participation of more sensors means that a vaster computing power and
a more superior system are needed to eliminate useless information, which can seriously
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interfere with the real-time performance of SLAM. This situation will improve in the future
with the continuous development of algorithms and the continuous updating of software
and hardware. However, at the same time, we also want to improve its convenience, e.g.,
by making it easy to adjust and facilitate its maintenance.

(2) Theoretical support. Fusion methods based on uncertainty and traditional features
are not used throughout the whole SLAM process, and most of the fusion methods are
aimed at one of the four modules: front-end, back-end, loop closure detection, and mapping.
Therefore, understanding how to apply the fusion method to the whole SLAM process is
still a great challenge. At the same time, the features extracted by deep learning technology
lack intuitive significance and a theoretical basis, and we cannot know what standard the
computer uses to extract features. At present, the field of multi-sensor fusion based on
RNNs is still a blank slate, and the traditional method still has great advantages.

(3) Human–computer interaction ability. Multiple sensors offer richer environmental
information. In an actual scene, where the redundant information screened by the system
is different from the information that needs to be obtained, it is still a difficult task to apply
rich information to the autonomous interaction process of robots.
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Abbreviations
The following abbreviations are used in this article:

AR Augmented Reality
ATE Absolute Trajectory Error
BA Bundle Adjustment
BoW Bags of Binary Words
CKF Compress Kalman Filter
CNN Convolutional Neural Network
CSM Correlation Scan Matching
DNN Deep Neural Networks
DSO Direct Sparse Odometer
DTAM Dense Tracking and Mapping
DVO Direct Visual Odometer
DVL-SLAM Direct Visual-LIDAR Stimulation Location and Mapping
EKF Extended Kalman Filter
ESKF Error State Kalman Filter
CKF Compress Kalman Filter
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FPGA Field Programmable Gate Array
FLANN Fast Library for Approximate Nearest Neighbors
GPU Graphics Processing Unit
ICP Iterative Closest Point
IF Information Filter
IMU Inertial Measurement Unit
KF Kalman Filtering
LOAM LIDAR Odometry and Mapping in Real-Time
LVIO LIDAR Visual-Inertial Odometry
LIO LIDAR Inertial Odometry
LeGO-LOAM Lightweight and Ground-Optimized LIDAR Odometry and Mapping
LSD-SLAM Large-Scale Direct Monocular SLAM
LSTM Long Short-Term Memory Networks
MSCKF Multi-State Constraint Kalman Filter
MCL Monte Carlo Localization
MAP Maximum Posterior Estimation
NDT Normal Distribution Transformation
ORB Orinted FAST Furthermore, BRIEF
OKVINS Keyframe-Based Visual Inertial Odometry
PnP Perspective-n-Point
PTAM Parallel Tracking and Mapping
PGLS-LCD Parallel Global and Local Search-Loop Closure Detecting
RPE Relative Pose Error
RTAB-Map Real-Time Appearance-Based Mapping
RNN Recurrent Neural Network
RANSAC Random Sample Consensus
RFID Radio Frequency Identification
RBPF Rao-Blackwellized Particle Filters
R-CNN Recursion Convolutional Neural Network
ROVIO Robust Visual Inertial Odometry
ROS Robot Operating System
SIFT Scale-Invariant Feature Transform
SURF Speeded-Up Robust Features
SPA Successive Projections Algorithm
SFM Structure-from-Motion
SAM Smooth and Mapping
SLAM Stimulation Location and Mapping
SWF Sliding Window Filter
SVO Fast Semi-Direct Monocular Visual Odometry
TUM Technical University of Munich
TOF Time-Of-Flight
UKF Unscented Kalman Filter
UAV Unmanned Aerial Vehicle
VR Virtual Reality
VSLAM Visual Stimulation Location and Mapping
VINS Visual-Inertial Navigation System
VO Visual Odometry
VIO Visual-Inertial Odometry
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