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Abstract: Land cover semantic segmentation is an important technique in land. It is very practical
in land resource protection planning, geographical classification, surveying and mapping analysis.
Deep learning shows excellent performance in picture segmentation in recent years, but there are few
semantic segmentation algorithms for land cover. When dealing with land cover segmentation tasks,
traditional semantic segmentation networks often have disadvantages such as low segmentation
precision and weak generalization due to the loss of image detail information and the limitation
of weight distribution. In order to achieve high-precision land cover segmentation, this article
develops a multi-scale feature aggregation network. Traditional convolutional neural network
downsampling procedure has problems of detail information loss and resolution degradation; to
fix these problems, a multi-scale feature extraction spatial pyramid module is made to assemble
regional context data from different areas. In order to address the issue of incomplete information of
traditional convolutional neural networks at multiple sizes, a multi-scale feature fusion module is
developed to fuse attributes from various layers and several sizes to boost segmentation accuracy.
Finally, a multi-scale convolutional attention module is presented to enhance the segmentation’s
attention to the target in order to address the issue that the classic convolutional neural network
has low attention capacity to the building waters in land cover segmentation. Through the contrast
experiment and generalization experiment, it can be clearly demonstrated that the segmentation
algorithm proposed in this paper realizes the high precision segmentation of land cover.

Keywords: land cover; remote sensing image; deep learning; semantic segmentation

1. Introduction

Semantic segmentation is a hot field in computer vision and remote sensing image
processing. In the processing and application of semantic segmentation images, land cover
is an important indicator. lt has important practical significance in land planning, mapping
analysis [1], surveying, and land classification [2]. The analysis of land resources is receiving
more and more attention. Consequently, real-time semantic land cover segmentation is a
crucial step in land resource planning and management [3,4].

Currently, the primary classical semantic segmentation techniques include the thresh-
old approach, clustering method, support vector machine technique, and others. Sup-
port vector machines were introduced by Zhang, Jiang, and Xu (2013) [5] as a way to extract
shorelines by increasing geometric edge properties and reducing mistakes, although this
approach is challenging for large-scale data training. Normalized difference water index
was proposed by McFeeters in 1996 (NDWI) [6]. The technique creates a segmentation
band from the image by combining the green and near-infrared bands; however, it is quite
environment-dependent. On the basis of a digital elevation model, Du et al. (2018) [7]
developed a novel method for the detection of the water body and accomplished high accu-
racy. The issue is that the outcomes are significantly influenced by various infrared images.
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The picture segmentation problem is solved by the dynamic contour model (ACM) [8] by
turning it into a minimal energy functional problem. The model can produce a smooth,
continuous contour curve, but it is highly dependent on the original contour. Segmenta-
tion on small samples can be completed using the traditional methods mentioned above.
However, there are drawbacks for large sample segmentation, including poor precision,
laborious parameter tweaking, and inadequate generalization performance. Therefore, it is
impossible to accurately extract the shapes of any lakes, rivers, or constructions.

Most recently, deep learning neural networks are extensively utilized in image process-
ing and other industries [9–11], and they significantly increase image processing accuracy
as a result of the deep learning industry’s quick development. Hinton [12] created a deep
learning technique that trained deep belief networks using the back propagation algorithm,
considerably enhancing the model’s capacity for image processing. The major function of
the initial stages of the network model of deep learning is to classify images. Convolution,
pooling, and sigmoid are the processes that the deep learning network uses to extract the
feature information of the entire picture. The output layer then calculates the probability
that each picture is a particular category, taking the highest probability as the classification
outcome. However, its disadvantage is that it can only effectively classify specific objects
and cannot extract image position information and edge information. Therefore, for land
cover segmentation objects with complex environmental backgrounds, traditional convolu-
tional neural networks are enabled to complete effective and high-precision segmentation.
To solve the above problems, computer vision scholars have recommended a series of
efficient models for semantic segmentation. Convolutional neural network (CNN) [13]
significantly boosts the efficiency and precision of semantic land cover segmentation com-
pared to conventional deep learning algorithms. For the pixel-level classification of pictures,
Long, Shelhamer, and Darrel [14] suggested a Fully Convolution Network (FCN) in 2014.
A feature map for the final convolutional layer is upsampled using a deconvolution layer
to equalize its size with that of the source image, allowing FCN to take input images of any
size. This allows predictions to be made for each pixel. Spatial data from the initial input
image is also retained. The parity in the up-sampled feature map pixel classification, which
considerably enhances the classification accuracy of remote sensing images, is the last step.
In 2015, Badrinarayanan et al. (2017) [15] recommended SegNet to address image semantic
segmentation for autonomous driving and intelligent robots. SegNet and FCN ideas are
very similar, but its encoder and decoder (upsampling) use inconsistent methods. The first
13 layers of the VGG16 convolutional network are also used by SegNet’s encoder, and a
decoder layer is matched to each encoder layer. The soft-max classifier receives the result
of the final decoder and independently creates likelihoods of a class for each pixel, but
its training is time-consuming and ineffective. In 2015, Ronneberger, Fischer and Brox [16]
proposed a widely used semantic segmentation model UNet. UNet is a segmentation
network applied to the medical field based on FCN, and has quickly become the baseline
for most medical image semantic segmentation tasks. Finally, although the medical image
signal is complex but the category is simple, and the distribution of human tissue has
certain regularity, so the data set is relatively simple, and the segmentation task is relatively
easy. In 2017, Liang-Chieh Chen, George Papandreou [17] and others proposed to revisit
the DeepLabv3 network of dilated convolutions for semantic segmentation. This is a po-
tent tool for managing the feature response resolution produced by deep convolutional
neural networks in semantic picture segmentation applications, as well as for visualizing
and altering the filter field of view. It suggests atrous spatial pyramid pooling (ASPP),
which is equal to capturing the image’s multi-scale context semantic information in various
proportions, to sample the input in parallel with atrous convolution at various sampling
rates. However, with the deepening of Block, the expansion coefficient (rate) of the dilated
convolution continues to increase, and finally the ability of capturing global information
becomes weaker and weaker.

Although the existing segmentation algorithms perform well in real-time semantic
segmentation of land cover, due to the continuous down-sampling operation of the convolu-
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tional neural network, many semantic features are lost, resulting in inaccurate segmentation
and blurred edges [18,19]. Additionally, the contextual semantic information of the image
cannot be properly captured because it is difficult to merge the global message of low-level
semantic features with the detailed message of high-level semantic features [20,21]. Be-
cause of the complex background and terrain of land cover, the traditional convolutional
neural network system often has problems such as misjudgment and undetectable objects,
resulting in low segmentation accuracy. In order to solve the problems and shortcomings
of traditional convolutional neural network in semantic segmentation task, a network is
designed in this paper by considering various elements of convolutional neural network.
The network extracts the feature information of land cover images by downsampling the
adapted RestNet50. The multi-scale feature extraction pyramid module aggregates the
context information of different regions, thereby improving its ability to obtain global
information of land cover. Then, the multi-scale feature fusion module is used to com-
bine the low-level global information and high-level detail information to improve the
segmentation ability of land cover edges and details. Land cover has complex background,
unpredictable terrain and intricate edges. Finally, a multi-scale convolutional attention
module is proposed to focus on the key target area of land cover image, which helps the
network to locate the target of interest more accurately. It can pay more attention to the
important information of land cover, dilute the interference and unimportant information,
so that the segmentation effect has been significantly improved, and the high-precision
segmentation could be achieved.

2. Methodology

Convolutional neural network (CNN) architecture-based models are intensively used
in computer vision due to its explosive growth. However, in remote sensing images, the
land background is complex and diverse, the terrain trend is unpredictable, and the detailed
information and spatial information are rich. Traditional convolutional neural networks
fail to accomplish high-precision semantic land cover segmentation. In order to segment
land cover images more accurately, multi-scale and context semantic information must
be used efficiently. It is not only satisfied with the segmentation of buildings and waters
in land cover images, but more importantly, the segmentation of their edges and small
details. This study recommends ResNet [22] as the foundation network for a multi-scale
feature aggregation network. The network is made up of three modules: a multi-scale
feature fusion module, a multi-scale feature extraction space pyramid module, and a multi-
scale convolutional attention module. In this study, the input land cover remote sensing
image is used to train the model, and the current model’s output image is acquired by
performing a forward propagation computation. The discrepancy between the produced
image and the label is calculated using the cross entropy loss function, and the chain
rule is used to return the resulting error to the network. When doing a back propagation
computation, the adaptive moment estimation (Adam) optimizer is used to update the
learning rate and other parameters of the model. The Adam optimizer [23] utilizes an
exponential decay rate with a coefficient of 0.9 to regulate the redistribution of control and
an exponential decay rate with a coefficient of 0.999 to control the impact of the preceding
gradient square. The variety of learning tactics are used, such as “fixed”, “step”, and
“ploy” strategies. Current experiments show that the “ploy” strategy is better in semantic
segmentation experiments [24].

2.1. Network Structure

This research introduces a unique semantic segmentation deep learning network.
It performs incredibly well in real time land cover segmentation. Its frame structure is
shown in Figure 1. In its composition, as the foundation network for extracting features, we
employ the modified ResNet50. Then, this paper presents a multi-scale feature extraction
space pyramid module. Its goal is to combine the context data from several places, en-
hancing the ability to obtain global information, so as to accurately and effectively identify
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regions of any scale. Next, a multi-scale feature fusion module is constructed to combine
various scale features, which is crucial for enhancing performance. Compared with high-
level features, low-level features have more location, detail, and better resolution data, less
convolution, lower semantics, and more noise. Although high-level characteristics have
weaker resolution and poorer detail perception, they have stronger semantic information.
The multi-scale feature fusion module is utilized to fully integrate low-level features and
high-level features. Finally, a multi-scale convolutional attention module is suggested.
It can efficiently lmitigate the interference of invalid targets, enhance the detection effect
of concerned targets, and improve the attention to buildings and waters in land cover
images and change the allocation of resources according to the importance of the target.
It allocates more resources to the object of attention [25], and thereby increases the model’s
total segmentation accuracy, which makes the real-time semantic segmentation of land
cover more precise.
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Figure 1. Multi-Scale Feature Aggregation Network framework structure.

2.2. Backbone

The extraction of semantic information and detail information is a key step in image
segmentation. The selection and optimization of the backbone network directly affect the
semantic segmentation. Typical backbone networks include VGGNet [26], MobileNet [27],
Transformer [28], ResNet, Xception [29], and DenseNet [30]. In the semantic segmentation
of land cover, the typical backbone network in the past is often undersampled too deeply,
which leads to heavy loss of global information in the land cover image; as a result, effective
information of small targets in the image decrease sharply. At the same time, the deep
undersampling leads to the multiple increase in each parameter, which makes the model
too heavy in the calculation of high volume, or there is too much pursuit of the lightweight,
as it is unable to focus on the essential problems faced in the downsampling process. In the
task of the real-time semantic segmentation of land cover, in order to extract high-precision
semantic information and detailed information, it prevents the explosion of the gradient
caused by increasing depth. Therefore, this paper uses modified ResNet50 as the backbone
network of semantic segmentation of land cover. Because ResNet50 is down-sampled
32 times, too deep down-sampling can easily lead to the loss of more location and detail
information. With both at once, the last layer of the ResNet50 channel is expanded to 2048
layers, which makes the calculation heavy and model complexity high. Thus, this article
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uses the modified ResNet50, using only the first four layers of ResNet50, the channel to
the 1024th layer, and the fourth layer stride equals one downsampling only eight times.
In this way, sufficient location information and detailed information are retained, and the
lightweight of the network is guaranteed. It solves the problems that the traditional typical
backbone network has too deep sampling and too much pursuit of lightweight, resulting
in the loss of the key information of land coverage. The expression of the residual unit in
the ResNet residual block is as follows:

xm+1 = Wm+1σ(W1x1) + x1, (1)

where x1 is the first residual unit’s input vector, xm + 1 is the m + 1 residual unit’s output
vector, σ is a nonlinear function ReLU, the weight matrix is represented by W1 and Wm + 1.

2.3. Multi-Scale Feature Extraction Space Pyramid Module

Capturing multi-scale context data is crucial for semantic segmentation in order to
gather comprehensive data. The land cover image has a complex background and criss-
crossed rivers and houses. Therefore, it is necessary to design a module to aggregate multi-
scale context information to solve the problem of context information loss, which could
cause blurred edge and undetectable small targets, thereby improving the accuracy of
the real-time semantic segmentation of land cover. Therefore, to combine the context
information from several locations and enhance the capacity to access global information,
this research refers to pyramid pooling module in PSPNet [31]. The ASPP module of
DeepLabv3Plus network of classical convolutional neural networks is also referenced. In
order to ensure the image resolution, the dilated convolution is employed to expand the
receptive field of land cover image information. Figure 2 illustrates its particular structure.

In land cover segmentation, ordinary convolution operations can only be used to
process the local area, and its receptive field is limited; thus, it is difficult to capture multi-
scale context information. Firstly, three 3 × 3 dilated convolutions are used, and their
expansion coefficients are 6, 12 and 18. The dilated convolution shows the extent of the
convolutional expansion by the expansion factor. It improves the network’s ability to
acquire multi-scale context while expanding the network’s receptive field without altering
the convolution kernel’s form, or without downsampling. The two-dimensional dilated
convolution receptive field growth formula can be expressed as [32]

Rx = (4× x− 1)2. (2)

Then, 1× 1, 2× 2, 3× 3, 6× 6 adaptive AvgPool is used. Global information is gained
by pooling instead of convolution. This method reduces the quantity of convolution layers
on the premise that the backbone is deep enough. The pooling of different sizes divides the
feature mapping into different sub-regions and forms a set of different positions for the
land cover image. Pyramid pooling module integrates the features of land cover images in
four different scales, fully aggregating the context information and global information for
different regions. Then, the CBAM attention module is also added [33]. It can change the
way of resource allocation according to the importance of the target, so that the resources
are more inclined to the construction and water objects in the land cover image, which
solves the problem of edge blurring and small object omission because the traditional neural
network does not pay enough attention to important objects. The traditional attention
mechanism in the deep learning network is more concerned with the analysis of the channel
domain, which is limiting the relationship between feature map channels. CBAM begins
with the two scopes of channel and space. The sequential attention structure from channel
to space is realized by introducing two analytical dimensions of spatial attention and
channel attention. Spatial attention might direct the neural network to focus more on the
pixel regions that are important for segmentation and ignores the unimportant parts. The
feature map channel’s distribution connection is processed using channel attention, and the
attention across the two dimensions strengthens the influence of the attention mechanism.
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It can improve the representation of the model’s, effectively reduce the interference of
invalid targets such as trees, cars and seats in the land cover image, raise the effectiveness
of segmentation of the concerned target, and overall improve the accuracy of real-time
semantic segmentation. Finally, maxpool, 1 × 1 Conv, three 3 × 3 Atrous Convolution and
four AdaptiveAvgPool are combined. Then, they focus on important features through the
CBAM module to suppress unnecessary features. Finally, the multi-scale feature extraction
space pyramid module is combined.
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Figure 2. Multi-Scale Feature Extraction Space Pyramid Module

2.4. Multi-Scale Feature Fusion Module

In real-time land cover semantic segmentation, the complex background and inter-
laced housing construction make small buildings and rivers very difficult to identify [34].
Higher resolution, additional location and detail information can be found in low-level
features. Stronger semantic information is present in high-level features; however, these
features have limited resolution and poor detail perception. In order to address the issue of
incomplete data at various scales of land cover photographs, we fused multi-scale informa-
tion. Therefore, the blending of characteristics on various scales improves the segmentation
performance by combining the segmentation outcomes of various layers. In addition,
the existing network generally uses maximum pooling or average pooling to process
channels, which will lose the spatial position information of the object. In lightweight
networks, model capacity is strictly limited. The application of attention is very lagging,
mainly because the computational overhead of most attention mechanisms is unaffordable
for lightweight.

As a result, this study develops a multi-scale feature fusion module. Figure 3 illustrates
its particular structure. It uses X Avgpool and Y Avgpool [35] for average pooling in two
dimensions. The module incorporates channel attention with location data. In contrast to
channel attention only, 2D global pooling transforms the input into an individual feature
vector. So as to analyze channel attention, the module employs encoding of two 1D features
techniques that aggregate features in several directions. This allows for the acquisition of
dependencies over a long distance in a single spatial direction and the retention of precise
position data along another. This is very important because the target position detection
is often inaccurate or the target position cannot be directly detected in the land cover
segmentation. The produced land cover feature maps are then independently programmed
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to create a pair of position-sensitive and direction-aware feature maps. They can be applied
in conjunction with the input feature map to make the target of interest more accurately
represented. This is to encode exact location information and draw attention to the breadth
and height of the land cover image. Prior to obtaining the feature maps in the width and
height directions, the input feature map is first separated into two directions for global
average pooling. Each channel has its own unique horizontal and vertical encoding for a
particular input X using the pooling kernel’s spatial ranges (H, 1) or (1, W). As a result,
the channel c output at height a can be written as:

za
c(a) =

1
W ∑

0≤n≤W
xc(a, n), (3)

where channel c output at width b can be expressed as follows:

zb
c(b) =

1
H ∑

0≤m≤H
xc(m, b), (4)

where a is the height, b is the width, c is the cth channel, n is the cth channel’s nth posi-
tion pixel with height a, and m is the pixel at the mth position of the cth channel, with
width b. Shifting in two directions also enables the attention module to save the exact
position information in one spatial direction and long-range dependency along another.
Afterward, two feature maps are produced via cascading. Using a shared 1× 1 convolution
transformation, the spatial data in the horizontal and vertical axes are combined to create a
feature map in the middle of f ∈ RC/r×(H+W). The following is the expression for f :

f = δ
(

F
([

za, zb
]))

, (5)

where δ is a nonlinear activation function [36], a represents height, and b represents width.
f is then split into two distinct tensors f a ∈ RC/r×H and f b ∈ RC/r×W along the spatial
dimension. Two 1 × 1 Conv Fa and Fb are used to transform the feature maps f a and f b to
the same number of channels as the input X. The outcome is as shown below.

ga = δ(Fa( f a)), (6)

gb = δ
(

Fb

(
f b
))

. (7)

Then, it extends ga and gb. As the attention weight, its final output expression is
as follows:

gc(n, m) = xc(n, m)× ga
c(n)× gb

c (m). (8)

Finally, the low-level features are changed by 3 × 3 Conv, batch normalization and
ReLU, and multiplied by the above high-level feature extraction module. The advanced
feature is then changed in the number of channels by 1 × 1 Conv, and the output results
after changing the channel are added to the above multiplied output results. These elements
come together to form a multi-scale feature fusion module. From the point of view of
effectiveness, the multi-scale feature fusion module enhances the pixel information and
spatial information at the background edge of the land cover image, and the dependence
between the capture channels can also well model the location information and long-range
dependence. It weakens or eliminates interference information such as debris, forest shade,
road and so on, and combines the high-level features and low-level features. It can better
aggregate different scale features and solve the problem that the contour and size of objects
are different. It solves the problem of pain points such as serious interference of objects or
loss of multi-scale information in land cover segmentation tasks, thereby improving the
accuracy of real-time semantic segmentation of land cover.
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Figure 3. Multi-scale feature fusion module structure diagram.

2.5. Multi-Scale Convolutional Attention Module

In semantic segmentation of land cover, complex background and staggered house
rivers make the segmentation difficult. Therefore, in the semantic segmentation, it is
particularly crucial to concentrate on key targets, effectively decrease the interference of
invalid targets, and enhance the module’s representation capability [37]. In order to address
the issue of low attention ability of traditional convolutional neural network to waters
and buildings, a multi-scale convolution attention module is proposed; it could reduce
the interference of invalid targets such as tree shadows. Furthermore, it makes the edge
segmentation of buildings and waters is more accurate, and the information of small rivers
is more detailed. Simultaneously, the 3D attention module is used to effectively alleviate or
solve the shortcomings of channel attention and spatial attention in the segmentation. Its
specific structure is shown in Figure 4. Finally, this method improves the accuracy of land
cover semantic segmentation. Its specific structure is shown in Figure 5.

A crucial component of the multi-scale convolution attention module is the SimAM
module [38]. The spatial attention or channel modules are distinct from the SimAM module.
Without using any other parameters, the module produces 3D attention weights for the
feature map. The 1D channel attention module treats different channels differently and
treats all locations equally [39]. The 2D spatial attention module treats different locations
differently and equally for all channels [40]. Compared with the existing channel and spatial
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attention modules, it provides three-dimensional attention weights for feature mapping in
the feature layer. In the face of the complex and diverse background of land cover, it is often
difficult for ordinary attention modules to combine such complex variables, but the SimAM
module maps the three-dimensional attention weight, which solves the pain point that
the attention module does not perform well in the complex backgrounds. Its particular
structure is displayed in Figure 4.

X Fusion
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3-D weights

Expansion

C

H

W
C

H

W
X Fusion
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3-D weights
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C

H

W
C

H

W

Figure 4. SimAM module structure diagram.

In the multi-scale convolution attention module design, the input value is first com-
bined with the feature map of the multi-scale feature extraction space pyramid module and
the 1 × 1 conv reduction channel to increase the input feature map, with more detailed
information and semantic information. Then, through 1 × 1 Conv to reduce the quantity
of channels, to avoid too many channels and information is too redundant, computing
waste. The output feature maps are then averaged and maximum pooled to produce two
1 × 1 × C feature maps. After that, a neural network with two layers is supplied with
the data (MLP) [41]. ReLU serves as the activation function, and C/r is the amount of
neurons in the first layer, where r is the reduction rate. The second layer of neural networks
has C neurons, and the two levels are shared. The ultimate channel attention feature map
is then produced from the MLP output’s features using a sigmoid activation technique.
Following that, an element-wise multiplication operation is carried out on the output and
input feature maps. Finally, the feature maps before the Maxpool and the Avgpool are
subjected to the SimAM module, and the two outputs are added to obtain the output of the
first layer. The second layer of this module’s module uses the feature map output from the
first layer as its feature map input. First, two H ×W × 1 feature maps are produced using
AdaptiveMaxPool and AdaptiveAvgPool. Then, one concats the two feature maps based
on the channel. The dimension is then decreased to 1 channel with a 7 × 7 convolution
operation, and the feature map’s size is H ×W × 1. Then, through the sigmoid, the output
and the module input feature map are multiplied. In order to create the final generated
map, the output feature map of the first layer is handled by the SimAM module, the two
outputs are combined, and channel splicing is conducted with the input feature map. The
multi-scale convolution attention module can change the allocation of resources according
to the importance of the target, so that the neural network focuses more on the pixel area
that has a significant impact on the segmentation and ignores the irrelevant area. Specifi-
cally, the resources are more inclined to houses and rivers. Taking into account both 2D
attention and 3D attention, the problem that the ordinary attention module cannot take
into account both the land cover image channel and space is solved, and effectiveness of
the entire land cover’s semantic segmentation is enhanced.
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Figure 5. Multi-scale convolution attention module.

2.6. Visual Contract of Different Modules

The model’s focus on various areas of the image is depicted by the heat map. Fol-
lowing the red zone in importance in the image are the orange and green regions, and the
blue region is typically the area that does not require attention. However, the heat map
is not equivalent to the final segmentation result. Specifically, on the land cover dataset,
housing construction and water area are the most concerned areas, which are shown in
red. Areas of secondary interest include the building handover and water edge detail,
which are depicted in yellow and green, respectively. Additionally, the model must take
into account the fact that complex background details such as trees and traffic would affect
the segmentation [42]. The particular image is displayed in Figure 6.

(d)(a) (c)(b)

Figure 6. Visual contracts for different modules. (a) Test image; (b) method without MFFM and
MCAM; (c) method without MCAM; (d) method with both MFFM and MCAM.

Figure 6b,c show the visual effects of buildings or waters without or with MFFM.
By comparison, we find that models with MFFM can identify targets more clearly and focus
more on the building and the waters. The segmentation results without MFFM are more
blurred, and the attention to housing construction and the water area is not enough, as in
the other modules. Heat maps better demonstrate this effect.
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3. Experiment
3.1. Dataset Introductions
3.1.1. Land Cover Dataset

We developed a land cover dataset to train the model and assess the precision of
its segmentation so as to validate the model’s performance. The datasets in this study
was created using high quality Landsat8 satellite and Google Earth (GE) remote sensing
photographs [43]. Landsat8 satellite was successfully launched by Atlas-V rocket on
11 February 2013. Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) are
carried by Landsat8. A 15-m panchromatic band with an imaging width of 185 × 185 km
is a band among nine with a 30 m spatial resolution that make up the OLI land imager.
The land cover dataset used in this paper selects a wide range of space and different angles
for shooting. Therefore, the background environment of the dataset is complex and the
model performance requirements are high. We selected 10,000 Google Earth images of
land cover, which are 1600 × 900 high-resolution images intercepted on Google Earth (GE),
including European rural parks and American private homes and coastal lake residential
areas in Asia. Next, the captured high-resolution image is sliced into 224 × 224 images
and processed using data enhancement in image processing [44]. The sliced image is then
horizontally flipped (50%), vertically flipped (50%), and randomly rotated (−10◦ to 10◦).
This method not only increases the size of the land cover data set but also improves the
way the data set interferes with the model-training process and the model’s capacity for
generalization. These land cover images are manually marked as three different object
types, namely buildings, waters and backgrounds. The final partial land cover dataset
is shown in Figure 7. Then, the segmented and labeled images are randomly split into a
training set and a verification set in a 6:4 ratio.C

:Building

(a) (b) (c) (d)

:Water :Background

(e)

:Building

(a) (b) (c) (d)

:Water :Background

(e)

Figure 7. Homemade land cover dataset part of the picture display. (a) Villa area; (b) Urban residential
area; (c) Rural area; (d) Urban residential area; (e) Factory area.

The land cover dataset used in this study possesses the following features: (1) In the
image, containers, big vehicles, and comparable buildings and some roofs of houses are
similar to water and background, which further highlights the representation ability of the
model. This is as depicted in Figure 7c–e. (2) As a result of the various intercepted angles,
the data set image shows a particular positional deviation, not only a single pitch angle,
as shown in Figure 7a,b,d. (3) Land cover background is complex and diverse, including
farmland, factories, roads and houses, which highlights the model’s capability to segment.
(4) Buildings in residential neighborhoods have a fairly wide range in height. The semantic
segmentation of low-rise buildings will be hampered by the shadow cast by high-rise
structures; this could further test the model’s capacity to prevent interference. (5) In order
to gather precise segmentation data, it is necessary to segment all the ground observations
manually, but due to various factors, land cover data sets are difficult to achieve perfectly.
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3.1.2. Waters’ Segmentation Dataset

The water segmentation dataset serves as the test dataset in this study to verify the
model’s capacity for generalization. This dataset was manually segmented from high-
resolution remote sensing photos taken by the Landsat8 satellite and from Google Earth
(GE). In order to make the data more real and diverse, we selected a broad spectrum of
distribution, and as to the choice of water, we selected rivers of different colors, shapes and
widths. In addition, we selected a complex and diverse background, including urban, hilly,
woodland, farmland and other areas, which can fully verify the model’s ability to deal with
different scenarios. The average size of Landsat8 satellite images is 10,000 × 10,000 pixels.
We intercepted multiple images with a resolution of 4800 × 2742 from Google Earth (GE),
and then cut them into 256 × 256 images. Finally, through data enhancement operations
such as translation, rotation, and folding, 9580 images were finally obtained. To overcome
the problem of overfitting, we used HoldOut cross-validation to randomly split and label
the water dataset into training and validation sets at a ratio of nearly 7:3, 7185 were used as
training datasets and 2395 as validation datasets. Some of the water segmentation data sets
were exhibited in Figure 8.

(b) (c) (d) (f)(a) (e)

:Water:Water :Void:Void:Water :Void

(b) (c) (d) (f)(a) (e)

:Water :Void

Figure 8. Waters’ segmentation dataset part of the picture display. (a) Sea; (b) Urban residential area;
(c) Coastal area; (d) Rivers; (e) Highland area; (f) Terraced area.

3.2. Implementation Details

All the experimental tasks in this paper are carried out on the Intel Core i5-11400 CPU
and NVIDIA RTX3070 GPU, Windows10 and pytorch deep learning framework. In this
experiment, the initial learning rate of the model network is set to 0.001, the batch size is 12,
and the iteration period is 300. In this paper, precision rate (P), recall rate (R), harmonic
mean (F1), pixel accuracy (PA), average pixel accuracy (MPA) and average intersection ratio
(MIOU) are used as evaluation indexes. The calculation formulas are as follows:

P =
(TP)

(TP) + (FP)
, (9)

R =
(TP)

(TP) + (FN)
, (10)

F1 = 2× P× R
P + R

, (11)

PA =

t
∑

n=0
pn,n

t
∑

n=0

t
∑

m=0
pn,m

, (12)
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MPA =
1

t + 1

t

∑
n=0

pn,n
t

∑
m=0

pn,m

, (13)

MIOU =
1

t + 1

t

∑
n=0

pn,n
t

∑
m=0

pn,m +
t

∑
m=0

pm,n − pn,n

, (14)

where TP is the sample that was really positive and was anticipated to be positive, FN
was expected to be a negative sample but is really positive, t denotes the class of object
segmentation (excluding background), pn,n denotes the true quantity, pm,n denotes the
number of pixels in category n that are actually expected to be in category m.

3.3. Ablation Experiment

To test the efficacy of various modules, several modules are introduced to the back-
bone network in the ablation experiment. In the ablation experiment, this paper uses the
modified ResNet50 as the backbone network for feature extraction. In this experiment,
mean intersection-over-union (MIOU) is used to evaluate the performance of different
modules. The optimum land cover semantic segmentation is achieved by combining all
modules, as indicated in Table 1.

Table 1. Performance comparison of different modules in the model.

Method Mean IOU (%)

Baseline 85.22
Baseline+MFESP 86.92
Baseline+MFESP+MFFM 87.46
Baseline+MFESP+MFFM+MCAM 88.05

The ablation of spatial pyramid modules for multi-scale feature extraction proved
effective. The pyramid module captures multi-scale context information by using maxpool,
1 × 1 Conv, three 3 × 3 Atrous Convolution and 4 AdaptiveAvgPool. At last, the CBAM is
used to enhance the attention to important targets and reduce the interference of invalid
targets, so as to increase the module’s capacity for representation. As displayed in Table 1,
the multi-scale feature extraction pyramid module increases the model MIOU from 85.22%
to 86.92%.

Ablation for multi-scale feature fusion modules proved effective. Low-level features
have more noise and less convolution, but they have greater resolution and more location
and detail information. Stronger semantic information is present in high-level features;
however, these features have limited resolution and poor detail perception. As a result,
by combining features from several scales, the multi-scale feature fusion module enhances
the module’s performance. As displayed in Table 1, The model MIOU is further enhanced
by 0.54% thanks to the multi-scale feature fusion module proposed in this research.

The ablation for multi-scale convolutional attention modules is proven effective.
Change the allocation of resources according to the importance of the goal of attention,
so that resources are more inclined to the goal of attention. As displayed in Table 1, the
multi-scale convolution attention module improves the model MIOU to 88.05%.

3.4. Generalization Experiment

To further confirm the generalizability of the proposed model, it is evaluated on the
water segmentation dataset to verify. We selected PA, MPA and MIOU as the indicators
to evaluate the generalization ability of the model. The comparison results are displayed
in Table 2. The model proposed in this study also outperforms other models on the
water segmentation dataset, which verifies that our model not only performs well in
the semantic segmentation task of land cover, but has strong performance in multi-class
task segmentation.
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Figure 9 demonstrates the segmentation performance of different models on water
data sets. From the figure, we can observe that traditional semantic segmentation networks
such as FCN8sAtOnce perform poorly in water segmentation. They can only segment
approximate contour and shape; they miss a lot of detail information such as edges and
boundaries. SegNet has improved the segmentation effect of river waters, as shown in
the fourth group of Figure 9, but the improvement could only be observed occasionally.
Finally, ShuffleNetV2 and UNet have improved the segmentation of water segmentation
data set obviously, but their edge detection is not clear enough, and their detection of small
tributaries is poor. In order to enhance the capacity to gather global information, the model
put forward in this research suggests a multi-scale feature extraction pyramid module
that can aggregate information from various scale contexts. This module combines the
characteristics of various scales, which is the key to improve its performance. A multi-scale
convolution attention module is also proposed, it improves the representation ability of the
model and effectively reduces the interference of invalid targets, thus performing well in
water segmentation tasks.

(a) (b) (c) (d) (e) (f) (g) (h) (i)(a) (b) (c) (d) (e) (f) (g) (h) (i)

Figure 9. Comparison of different models on on the water segmentation datasets. (a) Real image;
(b) label; (c) FCN8s; (d) SegNet; (e) DFNet; (f) DeepLabV3+; (g) ShuffleNetV2; (h) UNet; (i) our
segmention results.

Table 2. Comparison of evaluation indexes of different models on the water segmentation dataset.

Method PA (%) MPA (%) MIOU (%)

GhostNet 96.80 96.32 91.61
FCN8sAtOnce 97.45 97.01 93.28
SegNet 97.48 97.04 93.35
DANet(ResNet50) 98.03 97.72 94.76
DFNet 98.11 97.82 94.96
DeepLabv3+(ResNet101) 98.08 97.72 94.89
CCNet(ResNet50) 98.10 97.83 94.93
ShuffleNetV2 98.17 98.02 95.10
UNet 98.23 98.13 95.26
Ours 98.81 98.86 96.06
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4. Discussion
4.1. Research Results

The experiment in this paper only performs three-category segmentation at most,
and its complexity and segmentation difficulty are far lower than multi-category segmenta-
tion. It distinguishes fewer categories and is not suitable for using too many convolution
kernels and very deep convolution layers, otherwise it will lead to information redundancy
or loss of important semantic information. Therefore, this article only uses the first four
layers of the modified ResNet50 to avoid this problem. Compared with other classical
networks, first of all, the classical convolutional neural network will inevitably lose the
context information of different regions during the downsampling process, resulting in
the loss of global information. Our network uses the multi-scale feature extraction spa-
tial pyramid module (MFESP) to aggregate the context information of multiple regions,
thereby improving the control ability of global information. Secondly, the segmentation
of large buildings and rivers requires shallow features with a global receptive field; small
houses and tributaries at the bottom of the high-resolution prediction is better, because
some details such as the edge of the enlarged prediction results are better. Traditional neural
networks often take care of one thing and lose another, so our proposed multi-scale feature
fusion module (MFFM) better balances different degrees of features. Finally, focusing on
the segmentation object is the key to high-precision segmentation. Traditional neural net-
works are often overwhelmed in the face of complex and changeable land cover scenarios.
The proposed multi-scale convolutional attention module (MCAM) pays more attention to
buildings and waters in land cover. In summary, this work has four contributions:

1. A pyramid module for multi-scale feature extraction is proposed. The context semantic
information of different regions is aggregated by multiple dilated convolutions and
global pooling to get global information acquisition capabilities. Global information
can effectively produce high-quality results in land cover analysis.

2. Module for multi-scale feature fusion is proposed. Performance can be increased
by combining data from multiple scales. It completely makes use of both the extra
location and detail information provided by low-level features and the extra semantic
data provided by high-level features.

3. A multi-scale convolution attention module is proposed. It can improve the repre-
sentation ability of the model, effectively reduce the interference of invalid targets,
improve the segmentation of concerned targets, and enhance the model’s overall
segmentation precision.

4. Three models are proposed and combined to build a high-precision semantic segmen-
tation network to attain highly accurate land cover segmentation.

4.2. Comparative Experiments with Other Classical Networks

We compare our proposed semantic segmentation model of land cover with other
classical semantic segmentation networks in the comparison experiment with other classical
networks to completely test the performance of our model. We select R, F1, PA, MPA and
MIOU as evaluation indexes to fully demonstrate the superiority of our model. The details
exhibited in Table 3.

As shown in Table 3, in the experimental environment with the same learning rate,
batch size, iteration period and other factors, the comparison results of different models
clearly demonstrate that our proposed land cover semantic segmentation model is superior
to current segmentation algorithms in all indicators. In all networks, the performance
of DDRNet model [45] is the worst. With the continuous improvement of the classical
model, its performance evaluation indicators are also growing, but our proposed model
still performs best in the semantic segmentation task of land cover.

According to Table 3, the proposed model can achieve high-precision real-time seman-
tic segmentation of land cover datasets. To demonstrate the effectiveness of our approach,
Figure 10 shows some comparison experimental results of the semantic segmentation of
land cover. The segmentation results of our network are contrasted with the segmentation
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results of the classical models, where white represents the building, blue represents the
water, and black represents the default background.

Table 3. Comparison of evaluation indexes of different models.

Method R (%) F1 (%) PA (%) MPA (%) MIOU (%)

DDRNet 95.67 94.66 91.11 90.93 82.26
BiseNetv2 [46] 96.21 95.62 91.07 91.69 82.45
FCN8s 93.39 94.87 91.04 90.68 82.61
SegNet 94.65 95.76 91.02 91.17 82.85
HRNet(HRNetv2-W48) 96.41 95.40 92.28 92.06 84.40
DFN(ResNet101) 96.72 96.31 92.18 92.24 84.74
OCRNet(ResNet101) 96.94 95.82 92.60 92.74 85.03
ENet 97.22 97.43 92.55 92.86 86.04
DANet(ResNet50) 96.40 96.55 92.89 92.76 86.16
DeepLabv3+(ResNet101) 95.85 96.83 92.68 92.44 86.19
UNet 96.98 96.27 93.13 92.86 86.32
PSPNet(ResNet101) 97.12 97.22 92.93 92.93 86.61
CCNet(ResNet50) [47] 96.39 96.66 93.18 93.19 86.66
ACFNet(ResNet50) [48] 96.86 97.19 93.30 93.69 86.69
Ours 97.25 97.50 93.82 94.17 88.05

In order to more intuitively show the representation ability of the model in the semantic
segmentation task of land cover, As shown in Figure 10, it can be observed that our network
can effectively mitigate background interference on the segmentation of buildings and
waters, as well as the interference of different perspectives on segmentation. Specifically, as
shown in the third line of Figure 10, when container area is used as the segmentation object,
because the multi-scale feature extraction space pyramid module (MFESP) is used in our
network, it can aggregate multi-scale context information and eliminate the issue of lost
detail information and resolution reduction in the sampling process of land cover semantic
segmentation, so it can still clearly segment the details and corners of the container area
edge. As shown in the first line of Figure 10, because of the use of multi-scale feature
fusion module (MFFM), the semantic information and detail information of different scales
are fused, so the edge detail segmentation is excellent and the object distinction is clear.
As display in the second, fourth and seventh lines of Figure 10, even the trees block the
house and the interception angle is different, more attention was paid to the building and
the water area, and better segment the water area and the building is achieved because of
the multi-scale convolutional attention module (MCAM).

In addition, we add the prediction maps generated by the test results in multiple
complex environments such as desertification areas, urban residential areas, reservoirs,
and container areas to Figure 10. As shown in column d of Figure 10, the FCN8s network
often has partial segmentation targets that cannot be detected, and our network uses the
multi-scale convolutional attention module (MCAM) module to increase the focus on
land cover segmentation targets. All the target objects to be segmented in the land cover
image are detected. As shown in the e column of Figure 10, the SegNet network has
problems such as blurred edge and misjudgment, whereas our network aggregates the
context features of different regions and pays more attention to land cover segmentation
targets. Therefore, these problems are perfectly solved, as shown in the i column. As shown
in column g of Figure 10, the UNet network clearly solves the problem of FCN8s, but it does
not perform well on building edges and small tributaries. Our network uses multi-scale
feature extraction space pyramid module (MFESP) and multi-scale feature fusion module
(MFFM) modules to aggregate global information and performs well on segmentation of
edge details and small tributaries. We can clearly find that our model can achieve efficient
and reliable segmentation of land cover images in multiple complex environments.
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Figure 10. Comparison of different models on land cover dataset. (a) Real image; (b) label; (c) BiseNetv2;
(d) FCN8s; (e) SegNet; (f) OCRNet; (g) UNet; (h) PSPNet; (i) our segmentation results.

4.3. Limitations and Future Research Directions

However, the land cover segmentation method in this paper still has some shortcom-
ings, and it needs to be further optimized and perfected in later work. (1) The multi-scale
feature extraction spatial pyramid module integrates too many scale features, resulting in
redundant feature information. The number of channels in the feature map reaches 3328,
and the model is too heavy. (2) Too dependent on the attention module, which is very easy
to lead to overfitting, the model’s ability to remember the data set is relatively enhanced, so
only large-scale data set pre-training achieves better results, increasing the computational
cost. (3) Aggregating multi-scale features and fusing different scale features make the
Flops and Parameters of the model relatively high, which is compute resource consuming.
We will conduct further research based on the limitations in the model to achieve further
efficient and high-precision segmentation of land cover segmentation tasks.

5. Summary

A key component of processing of remote sensing images with a high level of res-
olution is the land cover semantic segmentation, which is a crucial landmark in remote
sensing images. It is very practical in land resource protection planning, geographical
classification, surveying and mapping analysis. This research proposes a multi-scale feature
aggregation network for real-time semantic land cover segmentation in the area of deep
learning picture segmentation. In order to address the issues with classic convolutional
neural networks’ poor generalization capacity and low accuracy in the context of semantic
land cover segmentation, the network draws for convolutional neural networks’ benefits in
deep learning, and uses the modified ResNet50 as the backbone network to extract image
feature information. To combine the context data from many regions, a multi-scale feature
extraction space pyramid module is proposed. This module can efficiently and reliably
categorize regions of any scale, enhancing the potential to gather global information. It
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is suggested to use a multi-scale feature fusion module. The low-level feature is more
detailed and has a better resolution, but its semantics are weaker and its noise is greater
because there are fewer convolutions. Although high-level characteristics have weaker
resolution and poorer detail perception, they have stronger semantic information. The fu-
sion of high-level and low-level features helps to extract more information from the image.
Finally, a multi-scale convolution attention module is proposed, which can pay more atten-
tion to the building and the river, and reduce the interference of complex backgrounds such
as trees and roads. Compared with the traditional convolutional neural network model, the
model in this paper greatly improves the accuracy of real-time semantic segmentation of
land cover, and captures details such as small tributaries and house edge contours quickly.
The experimental results demonstrate that the average intersection over union (MIOU) of
this method on the land cover dataset reaches 88.05%. The generalization ability of the
network is also very strong; it could reach 96.06% on the water segmentation dataset.
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