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Abstract: Conservation of wildlife depends on precise and unbiased knowledge on the abundance
and distribution of species. It is challenging to choose appropriate methods to obtain a sufficiently
high detectability and spatial coverage matching the species characteristics and spatiotemporal use of
the landscape. In remote regions, such as in the Arctic, monitoring efforts are often resource-intensive
and there is a need for cheap and precise alternative methods. Here, we compare an uncrewed
aerial vehicle (UAV; quadcopter) pilot survey of the non-gregarious Svalbard reindeer to traditional
population abundance surveys from ground and helicopter to investigate whether UAVs can be an
efficient alternative technology. We found that the UAV survey underestimated reindeer abundance
compared to the traditional abundance surveys when used at management relevant spatial scales.
Observer variation in reindeer detection on UAV imagery was influenced by the RGB greenness
index and mean blue channel. In future studies, we suggest testing long-range fixed-wing UAVs to
increase the sample size of reindeer and area coverage and incorporate detection probability in animal
density models from UAV imagery. In addition, we encourage focus on more efficient post-processing
techniques, including automatic animal object identification with machine learning and analytical
methods that account for uncertainties.

Keywords: aaerial survey; animal detection; distance sampling; helicopter; monitoring; strip transect;
Svalbard; total count; ungulate

1. Introduction

The distribution and abundance of species are key parameters for conservation and
management of wildlife [1]. Yet, it remains challenging to estimate population size with
high precision and low bias (i.e., accuracy [2]) at relevant spatial scales [3]. There are
numerous methods to estimate wildlife abundance and density—ranging from direct
population counts to population indices proportional to the true population size [4,5].
Abundant and easily detectable species are commonly monitored with direct density
estimation methods, which includes complete or partial census, strip transect, distance
sampling or capture-recapture programs [5,6]. Recent developments in uncrewed aerial
vehicles (UAVs) technology open new opportunities to survey animal populations as
a replacement or supplement to traditional survey techniques [7]. UAVs offer several
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advantages compared to traditional aerial or ground surveys (e.g., cost effectiveness,
reduced environmental impact and disturbance, and operational range [8,9]), however,
whether UAV methods have improved accuracy and are more efficient than traditional
survey methods is largely unknown (but see [10,11]).

Remote wildlife populations are traditionally counted on foot or using aerial surveys
from helicopters or planes depending on the species characteristics and management
area of interest [5,12–15]. Aerial surveys are costly, with a high carbon footprint, and
they are challenging when it comes to detectability and uncertainty estimates [16–19]. In
comparison, counting on foot along a survey line is more time-consuming and can be
logistically difficult in remote areas, with terrain features (e.g., river, cliffs) or, e.g., when
the species is sparsely distributed. Distance sampling is a common method that can assess
uncertainty in abundance surveys along such line transects [4,20]. A key assumption is
that the probability of detecting an animal decreases with increasing distance from the
observer. Thereafter, abundance estimates account for detection probability. Total count is
a method assuming that all animals are counted without error. When conducted in a well-
delimited area with information on presence/absence in sub-units, uncertainty can still be
evaluated [21]. Both methodologies can be used to predict densities across larger areas [22].
For an aerial survey recording, e.g., images along a fixed transect width (i.e., strip transect
from crewed aircraft or UAV flying at constant height), detection is independent of distance
from the transect line. Yet, there are other factors that can influence detection of an object,
such as the image quality and resolution [15]. Integrating measures of detection error within
a surveyed area and identifying habitat covariates strongly correlated with the population
density can greatly improve the accuracy of estimates when extrapolating density to larger
spatial scales [3]. Only in the last decade, UAVs have been tested and successfully applied
as a cost-effective alternative to traditional surveys to estimate abundance of wildlife,
especially in gregarious species [23,24], but also for solitary animals [9,25].

In the High Arctic remote Svalbard archipelago, the wild Svalbard reindeer Rangifer
tarandus platyrhynchus, is the largest resident mammalian herbivore in the terrestrial tundra
ecosystem [26]. Svalbard reindeer are non-gregarious, inhabiting open landscapes and
can appear in high density (>10 individuals/km2). The reindeer is subject to long-term
monitoring because it is a key-species impacting tundra vegetation [27], is harvested locally
by recreational hunting [28] and is sensitive to climate change [29,30]. The long-term
monitoring is relying on total population counts along fixed routes on foot [21,31] or by
helicopter [32,33], and capture-mark-recapture techniques (see [34]). Lately, there has been
focus on quality assurance and standardisation of monitoring methods of the long-term
ground total counts with distance sampling [21]. Total counts were found unbiased when
compared to resighting of marked reindeer and highly precise when repeating counts. In
comparison, distance sampling was also unbiased, while precision was lower than total
counts, according to the number of transects and groups detected. This has enabled range-
wide monitoring of Svalbard reindeer using the most appropriate methodology according
to terrain characteristics [22]. Both total counts and distance sampling estimated similar
abundances across Svalbard (22,615 ± 401 [±SE] and 21,079 ± 2983, respectively) and
found that abundance was strongly correlated with vegetation productivity [22]. Thus,
both ground total counts and distance sampling can serve as reference abundance estimates
to evaluate other methodologies. Local wildlife managers (the Governor of Svalbard) have,
however, annually monitored reindeer since 1998 in hunting units by total counts from
helicopter, and the accuracy of these counts remain to be evaluated [32,35]. In addition,
there is a desire for development of monitoring methods that reduce disturbance and lower
human footprints [36], which suggests the use of UAVs [37].

In this paper, we assess the precision and detection rate of reindeer abundance from
a UAV pilot survey compared to traditional ground and helicopter surveys. We compare
the survey methods in the same spatial extent by developing models of estimated reindeer
abundance and predicting the models over the same sampling scales using correlated
habitat covariates. We test the feasibility of collecting data on reindeer abundance and
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variables affecting detection probability using UAVs, and investigate potential problems
and pitfalls associated with aerial monitoring compared to ground-based surveys.

2. Materials and Methods
2.1. Study Area and Species

The Arctic Svalbard archipelago (74–81◦N, 15–30◦E), Norway, measures around
62,700 km2, with approximately 60% covered by glaciers, 25% by barren rocks and only
15% by vegetation [38]. We conducted the study in Sassendalen, one of the largest valleys
in Central Spitsbergen (Figure 1). The valley is surrounded by peaks up to 1200 m.a.s.l.
and dominated by a large river and continuous vegetation cover with wetland, ridges, and
heath present only in the valley bottoms and on the lower parts of the mountain slopes
(<250 m.a.s.l.) [38–40].
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Figure 1. Upper panel: Svalbard archipelago (left). Overview of spatial data coverage for the three
survey methods; ground DS (green), UAV (black) and helicopter (yellow) in Sassendalen, Svalbard
(right). Lower panel: Raw images of Svalbard reindeer from the three types of survey methods. Left
to right: Ground distance sampling, UAV imagery at 120 m and helicopter (photograph from side
window where one observer was placed).

The Svalbard reindeer is distributed across all non-glaciated land areas of the archipelago.
They appear mostly solitary and virtually free from predation, although rare attacks by
polar bears (Ursus maritimus) have been observed [41,42]. Direct density dependence
and large annual variations in weather conditions—notably the amount of rain in win-
ter, but also the length of the snow-free season in the autumn—shape vital rates of the
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reindeer [29,34,43,44]. This, in turn, causes large annual fluctuations in population
abundances [33,34]. Reindeer densities min the main valleys in Nordenskiöld Land are
strongly synchronised due to these weather conditions, leading to spatially autocorrelated
survival and mortality rates, and thus abundances [29]. This led us to assume similar
population dynamics and thereby densities between the adjacent valleys.

2.2. Field Data Collection

Reindeer data were collected by four survey methodologies: (1) Ground-based distance
sampling (hereafter ‘ground DS’), which served as reference to assess accuracy of the other
methods, (2) UAV strip transects, (3) helicopter total counts and, (4) ground total counts
from the neighbouring valley (hereafter ‘independent ground TC’) to test if extrapolations
can replace the need for aerial surveys (i.e., helicopter and UAV). See Figure 2 for an
illustration of the workflow.
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Figure 2. Visualisation of the workflow, including field survey design, postprocessing and data
analysis of the four survey methods ground distance sampling (ground DS), UAV, helicopter, and
independent ground total counts (independent ground TC).

The UAV and DS surveys were conducted on the same transects (see below) during
14–17 July 2021, but 1 day apart to reduce potential disturbance of reindeer by observers.
The helicopter survey was conducted one week prior to the UAV and DS surveys (6 July)
and was part of an annual census of reindeer in the valleys on Nordenskiöld Land by
the Governor of Svalbard (Figure 1). Because the helicopter survey lacked positional
information of individual reindeer, but densities and spatial distribution of reindeer in
neighboring valleys are expected to be similar, we used the independent ground TC from
the adjacent valley (Appendix A), conducted during 30 June–7 July 2021.

2.2.1. Ground Distance Sampling Survey

We followed the DS survey protocols described by [21,22] for estimating abundance
of Svalbard reindeer. We allocated 10 transect lines in north–south direction, from the
mountain foothills to the riverbanks, on each side of the main river in Sassendalen (Figure 1).
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We chose one random latitude for the first line and placed additional parallel transect
lines systematically apart 2.5 km east or west from this latitude to avoid overlapping
reindeer observations and to avoid violation of the assumption of independence [20]. We
chose this systematic orientation across the valley (i.e., river bed to mountain side or vice
versa) to reduce any bias from potential gradients in animal density related to, e.g., plant
phenology and/or habitat configuration [45]. The length of each transect varied depending
on the length from the mountain side to the riverbank (1.2 km to 2.9 km). All transects
were walked by one observer (the same main observer as in [21,22]) at a constant speed
(2–3 km h−1) without stopping, except during measurements. A handheld GPS and a
compass were used to keep the line direction, and single reindeer or clusters were detected
on both sides of the transect line with the naked eye. To follow the assumption of constant
detection along the transect line, no scanning for reindeer was done when stopping to
take measurements. Each observation was measured by laser binoculars (10 × 42 Leica
Geovid, Wetzlar, Germania) to the nearest metre and a compass was used to measure
the angle from the observer to the reindeer (Figure 1). For practical reasons when using
the laser, measurements were taken to the largest reindeer (e.g., a mother rather than
her calf) or the middle individual of a group of adults. The geographic position of the
observer in the transect was also recorded. The positions of reindeer individuals/groups
and perpendicular distances to the line were calculated and used in the final dataset.

2.2.2. UAV Survey

Six out of the ten line transects were mapped by an off-the-shelf DJI Mavic 2 Enterprise
drone, equipped with a zoomable (24–48 mm) RGB camera. Flight plans for each line
transect were prepared pre-flight with a commercial mapping software (DJIFlightPlanner,
ver. 2.13). The flight plans were flown automatically with flight altitude 110–120 m above
ground with a nadir (downward-looking) orientation of the camera. Test flights with
different altitudes (e.g., 20–120 m) were performed before the survey to verify that reindeer
could be detected on images at that height and to ensure that reindeer were minimally
disturbed. At this altitude, the widest field of view (i.e., 24 mm) was used, giving a
theoretical ground sample distance (GSD) of 4.4 cm and a swath width of 174 m. Side
overlap was chosen with 65% and the nominal forward overlap with 85%. All lines had
a run separation of 61 m and ran in an east–west direction. Ground speed was set to
maximum 30 km/h and pictures taken with a frame rate of 2 s. The camera settings were
on auto, but it was ensured that the shutter speed would not exceed 1/200 to prevent
motion blur (max. shutter speed = GSD/ground speed), otherwise flight velocity was
reduced. The total mapped area width covered 500 m on each side of the transect line. The
total length of the mapping flight lines was between 20–40 km and typically took between
2–4 batteries to cover.

2.2.3. Helicopter Survey

Reindeer were counted by four observers (two pilots and two observers) in a Super
Puma helicopter flying 60–100 m above the ground according to protocols by the Governor
of Svalbard [32]. The flight paths (Figure 1) were assumed to cover the most important rein-
deer summer habitats in the Sassendalen hunting unit (see for a map of hunting units). The
spatial extent of the helicopter surveyed area was defined as the entire flat valley bottom of
Sassendalen and a buffer of 1 km (500 m on either side of the helicopter) around the flight
routes (216 km). The census provides a single total count of all the individuals encoun-
tered, classified as calf, female/young and male, without any information on location of
each animal.

2.2.4. Independent Total Counts Survey

Total counts followed the protocols described by [21,22] and were conducted in Ad-
ventdalen, the neighboring valley. Five observers walked separate predefined routes
(~1 km apart from each other), scanning the entire area with 10 × 42 mm binoculars for
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reindeer. During the count, reindeer were categorised by age as calves, yearlings, or adults
(≥2 years old) based on body size and antler characteristics. The geographic position of
individual reindeer or groups were noted. At this time of the year, reindeer still have parts
of their winter fur, making them conspicuous against the open tundra landscape.

2.3. Data Analyses

We estimated reindeer abundance based on field data from the survey methods of
ground DS, UAV, and independent ground TC, as detailed below. Note that the helicopter
total count was a single value with no data analysis. To compare estimates, we developed
density spatial models (DSM) for each method as a function of vegetation productivity
(Figure 2). Reindeer densities in summer correlate with vegetation productivity, as ex-
pressed by the vegetation productivity index ‘maximum normalised difference vegetation
index’ (maxNDVI) [22,46]. Due to this relationship, maxNDVI was used as the common
denominator to project the DSMs onto the same spatial extents in this study. The vegetation
productivity layer was calculated by averaging the maxNDVI values from MODIS-satellites
(Jacksonville, FL, USA) for the last five years (2017–2021) and then resampled to resolution
240 × 240 m. We used average maxNDVI because cloud coverage and random variation
can affect the timing of NDVI contributing to high between-year variation [47,48]. The
statistical models were adapted from Le Moullec et al. [21,22]. We fitted all models in
R version 1.4.1717 [49].

2.3.1. Ground Distance Sampling DSM

The ground DS consisted of a two-stage approach with a detection probability estima-
tion and a DSM accounting for the imperfect detection [20]. To prepare the data, we divided
the transect lines into smaller segments and summarised count data and maxNDVI per seg-
ment, as recommended by Miller et al. [50]. We divided the transects into equal lengths of
500 m (for effect of segment lengths on model output, see Table S1 in Le Moullec et al. [22])
and truncated the transect width to 95 % of all distances rounding up to the nearest reindeer
group. We modelled detection probability using half-normal and hazard-rate functions
and determined the top ranked model using AIC. We used the standard distance sampling
functions ‘ds’, ‘dsm’ in the packages Distance and dsm, respectively. We included weather
(sunny or cloudy) as a covariate because this variable was the main covariate influencing
detection in Le Moullec et al. [22]. The hazard rate function with weather as a covariate
had the lowest AIC and was therefore selected for the density function (Appendix B). We
used the most parsimonious density model from Le Moullec et al. [22], which modelled
individuals per segment as a function of maxNDVI, using a log-link quasi-Poisson model.
The final model was fitted using the restricted maximum likelihood (REML) framework
and residuals were checked for normality, auto-correlation, and goodness of fit (Table A3,
Figure A3).

2.3.2. UAV DSM

The UAV survey generated many single images (n = 10,479) with considerable im-
age overlap. To reduce the number of images for reindeer counting, single images were
processed into orthomosaic images for each transect line using a structure from motion
method in Agisoft Metashape, ver. 1.7.2. The orthomosaic images were typically large
(ca. 30,000 × 40,000 pixels covering areas between 1.5–3.4 km2, GSD between 3.7–4.1 cm/pixel)
and were segmented into smaller tiles of 4000 × 3000 pixels with a 10% overlap to ensure
that animals on the border of the tiles could be identified. Observers (n = 6) manually
counted the number of reindeer inside each tile (see protocol in Appendix C). Positions and
image snapshots of detected reindeer were stored for each observer. In addition, raw single
images were counted by three observers to check if reindeer were lost from the image or
appeared twice in the processing steps because of reindeer movement. This resulted in
detection of four reindeer that appeared more than once, and these copies were excluded.
Further, all detected reindeer were scanned a third time by two observers and assigned
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a certainty category (‘low’, ‘medium’, and ‘high’) according to how clear they appeared
on the image snapshot. Only reindeer that were assigned as ‘medium’ or ‘high’ were
used in the final dataset to reduce the potential for confusing reindeer with, e.g., a rock
or another grey structure. We termed this dataset ‘confirmed’ reindeer. Furthermore, we
divided the area of the six UAV transects into grids with the same resolution as the resam-
pled maxNDVI layer (240 × 240 m) and summarised the number of confirmed reindeer
per pixel.

Based on the confirmed reindeer dataset, we fitted a hurdle model to avoid overdisper-
sion from the high number of pixels with no reindeer observations. The hurdle model deals
with the response variable in two stages: (1) The presence/absence of reindeer in a certain
unit (i.e., pixel) and (2) a count model estimating how many reindeer were present in that
unit (when reindeer were present). The final hurdle model contained a zero-truncated
negative binomial distribution, assuming a logit-link function in both the presence/absence
and the count model (Appendix D). We included maxNDVI as a covariate in the presence-
absence and count models. The analysis was done with the function ‘hurdle’ in the package
pscl, and residuals were checked for normality, autocorrelation, and goodness of fit.

Since reindeer detection was imperfect among the seven observers, we explored what
could cause this variation. We tested if RGB image values (i.e., grey colored reindeer on
green vegetation would stand out more than on grey, barren, or non-vegetated terrain, or if
luminance (lower detection of reindeer on darker images) influenced observer detection in
the image. We extracted median luminance and mean red-green-blue (RGB) values from
each tiled image, and from the mean G and B values we calculated a color-based vegetation
index, here termed ‘Greenness Index’ (G-B [51,52]). We tested whether the presence of
reindeer in an image (from the ‘confirmed’ dataset) was detected or not by the six observers
and how the different covariates influenced this probability of detection. For this, we
used generalised linear mixed effect models (presence/absence model, binomial family,
‘glmer’ function in the lme4 package) with the observer ID as random effects and the image
covariate of interest as fixed effect. In Appendix E, we also investigated factors influencing
the number of reindeer detected in an image, when at least one reindeer was detected
(counts model). These detection models influencing the reindeer presence/absence and
counts reflect the two steps from the hurdle model.

2.3.3. Independent Total Counts DSM

Given that reindeer densities are spatially synchronous and positively correlated
with maxNDVI, we projected a DSM built with data from the adjacent Adventdalen
valley ground TC into areas of Sassendalen. This allowed us, for instance, to evalu-
ate correspondence by checking if the actual abundance from the helicopter census in
Sassendalen fell within the standard error of these independent ground TC. Similarly, as in
Le Moullec et al. [33] and in the UAV density models described above, we modelled rein-
deer density per pixel (240 × 240 m) with a hurdle model. We investigated this in two steps
with a presence/absence and count model as a function of the maxNDVI. Details on the
procedure are outlined in Appendix A.

2.4. Comparison of Survey Methods

To assess each survey method, we chose to predict each density model across:
(1) The ground DS covered area, (2) the UAV covered area, and (3) at an ecologically
relevant valley scale for management. Since the habitat characteristics and elevation ranges
were different for the helicopter surveyed area (0.6–601 m) than for the ground and UAV
transect area (0.7–317 m), we did not predict the ground DS and UAV density models to the
helicopter surveyed area. Estimates were compared to the the ground DS and precisions
were compared with the coefficient of variation (CV, the ratio of the standard deviation to
the mean). Lower CV indicates higher precision.
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3. Results
3.1. Field Survey Characteristics

The ground DS survey detected 50 groups of reindeer (n = 104 individuals, mean
group size = 2), walking 23.6 km on foot with a transect truncation width of 907 m
(i.e., covering an area of 42.7 km2). The UAV survey, which covered about 40% of the
same transects (16.2 km2), detected 32 confirmed reindeer. The helicopter survey covered
the largest area (286.2 km2) and resulted in 1559 observed reindeer (Figure 1). The range in
vegetation productivity within the three sampling areas were similar (range for ground
DS [0.04–0.82], UAV [0.09–0.82] and helicopter [0.04–0.82]), with a mean maxNDVI of
approximately 0.50.

3.2. Detection of Reindeer

The average detection probability for the ground DS survey was 0.40 ± 0.10 with 30%
of the reindeer clusters detected within approximately 500 m. Sunny weather conditions
resulted in higher reindeer detectability than cloudy (Figure A2). For the UAV survey, the
average detection rate of confirmed reindeer varied between observers by 46–70% (n = 6).
Variation of reindeer detection in the UAV imagery for the presence/absence model showed
an association with the greenness index and blue color channels when accounting for
observer variability (Figure 3). High values in the greenness index (i.e., greener vegetation
ground cover) resulted in increased detectability, while high values of the blue channel
decreased detectability. In addition, all variables associated with darker ground, except for
the greenness index, decreased the probability to count the correct number of reindeer in
an image when at least one reindeer was present (Figure A7, Table A5).
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Figure 3. Probability of an observer to detect the presence of a Svalbard reindeer known to be
present on a UAV image. Predicted estimates from linear mixed effect of presence/absence mod-
els (see Table A5 for the model selection). (left) Variation in detection probability based on the
greenness index (G-B), (right) Variation in detection probability based on mean blue channel val-
ues. The figure shows mean detection probability with 95% confidence intervals (solid line and
shaded area), individual observer differences (stippled coloured lines), and observed covariate values
(black points).

3.3. Reindeer Densities and Spatial Projections

All three DSMs predicted a positive correlation between vegetation productivity
(maxNDVI) and reindeer densities (Figure 4). Reindeer density remained low until around
maxNDVI of 0.6–0.7 and thereafter increased steeply. However, the strength of the rela-
tionship was markedly lower for UAV, while the ground DS and independent total counts
were similar (Figure 4).
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Figure 4. Predicted density of Svalbard reindeer (number of animals per km2) based on data from
the three different survey methods (ground DS, drone, and independent total counts) as a function of
maximum normalised difference vegetation index (maxNDVI, i.e., proxy of biomass production).

The independent total counts model from the neighboring valley estimated similar
abundances in the helicopter surveyed area (1515 ± 101, Table 1) as the helicopter survey
(n = 1559) in Sassendalen. The UAV density model estimated the lowest abundances
with the largest uncertainties (i.e., CVs range: 0.11–0.29), underestimating abundance by
70–75% compared to ground DS and UAV at the different sampling scales. The ground
DS and the independent ground TC estimated similar abundance at all sampling scales.
The independent ground TC gave the most precise estimates (CVs range: 0.07–0.24), while
ground DS precision was intermediate (CVs range: 0.22–0.26) (Table 1, Figure 5).

Table 1. Estimated Svalbard reindeer abundance ± SE in Sassendalen from density spatial models.
Predicted abundance for each density model at three scales; Ground distance sampling (DS) scale
(area covered by ground DS), UAV scale (area covered by UAV), the valley scale (ecologically relevant
management area), and helicopter scale (area covered by helicopter). See Figure 1 for delineation of
study areas. Coefficient of variations (CV) are in parentheses. Because the habitat characteristics and
elevation ranges were different for the helicopter surveyed area (0.6–601 m) than for the ground and
UAV transect area (0.7–317 m), we did not predict the ground DS and UAV density models to the
helicopter surveyed area.

Estimated Abundance

Survey Method
UAV

Sampling Area
(16.2 km2)

Ground DS
Sampling Area

(42.7 km2)

Valley Scale
(161.7 km2)

Helicopter
Surveyed Area

(286.2 km2)

Ground DS 164 ± 43
(CV = 0.26) 351 ± 84 (CV = 0.24) 920 ± 202

(CV = 0.22) -

UAV 32 ± 9
(CV = 0.29) 77 ± 15 (CV = 0.19) 243 ± 26

(CV = 0.11) -

Helicopter - - - 1559 *

Independent ground TC 131 ± 32
(CV = 0.24)

311 ± 48
(CV = 0.15)

958 ± 82
(CV = 0.09)

1515 ± 101
(CV = 0.07)

* Actual reindeer number counted in the helicopter survey.



Remote Sens. 2023, 15, 9 10 of 24
Remote Sens. 2023, 15, 9 10 of 24 
 

 

 

Figure 5. Predicted density (number of animals per km2) of Svalbard reindeer based on density spa-

tial models with maxNDVI as a covariate for the ground line transect distance sampling (upper), 

UAV survey (middle) and independent total counts model from a neighboring valley at the valley 

scale. The map shows predicted densities at the valley scale for pixel resolution of 240 × 240 m. 

4. Discussion 

Our comparison of the different survey methods—ground DS, UAV, helicopter, and 

independent ground TC surveys—for estimating Svalbard reindeer abundance and den-

sity showed that UAV imagery underestimated the number of reindeer as compared to 

all three other methods. It was feasible to identify reindeer, calculate precision and inves-

tigate factors affecting observers’ detection of reindeer using UAV, however, the UAV 

count was not able to capture accurate density patterns compared to the other survey 

Figure 5. Predicted density (number of animals per km2) of Svalbard reindeer based on density
spatial models with maxNDVI as a covariate for the ground line transect distance sampling (upper),
UAV survey (middle) and independent total counts model from a neighboring valley at the val-
ley scale (lower). The map shows predicted densities at the valley scale for pixel resolution of
240 × 240 m.
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4. Discussion

Our comparison of the different survey methods—ground DS, UAV, helicopter, and
independent ground TC surveys—for estimating Svalbard reindeer abundance and density
showed that UAV imagery underestimated the number of reindeer as compared to all
three other methods. It was feasible to identify reindeer, calculate precision and investigate
factors affecting observers’ detection of reindeer using UAV, however, the UAV count was
not able to capture accurate density patterns compared to the other survey methods. We
therefore address key challenges to improve count accuracy of UAV at a meaningful scale
for species management.

Wildlife surveys with a coefficient of variation (CV) of less than 0.25 is often considered
useful for research and wildlife management [53]. In our study, ground DS, UAV and
independent ground TC surveys all had a CV of less than 0.25 at the valley scale, which
means that all three survey methods can detect smaller changes in reindeer abundances at
a management-relevant scale. Although the UAV survey had the highest CV in our study
(0.29), the median precision of estimates in other ungulate surveys is around 0.42, and
only 26.4% of the abundance estimates reported a CV below 0.25 [3]. This means that the
precision of estimates from the UAV survey resembles other ungulate studies in the field
but is not as accurate as the traditional ground survey methods used previously to estimate
reindeer abundance in Svalbard.

Precise but biased counts have little value for informing management. Biased esti-
mation of abundance can result from a variety of sources, including violation of statistical
assumptions, survey design or observer variability [3]. Here, the UAV survey underesti-
mated abundances compared to the reference ground DS, previously demonstrated as an
accurate methodology [20,22]. Although the area covered by the quadcopter (16.2 km2) is
on the higher end of what other studies counting animals with UAV have reported [7],
it was challenging to obtain a large enough sample size in relation to the UAV covered
area. Few reindeer were present in the UAV area covered, despite the high density and
detectability of Svalbard reindeer found at the valley scale (5.7 reindeer/km2 from the
reference ground DS). Doing repeat surveys over the same transect lines would increase
precision by increasing sample size, as recommended for low-density animals [54], but
still lead to biased estimates if the area is too small to capture densities in various habitat
characteristics [54]. For this wide-ranging species, unbiased estimates require large enough
areas to capture the density gradients across the range of habitat.

Observer variability is due to non-detection of individuals that are present (false
negatives) or misidentification of individuals (false positives) [15]. In our study, we min-
imised these forms of detection error by having multiple observers scanning the same
UAV imagery and later manually reviewing the detected reindeer to remove misidentified
individuals [55]. Images with high values of the greenness index (G-B [51]) increased the
likelihood of reindeer detection, likely reflecting that dark reindeer are more distinguish-
able from the green, vegetated background. Images with high mean blue values decreased
reindeer detection, and blue as a dominant reflection can be due to, e.g., gravel, rock,
or barren ground, which will make the brownish fur of reindeer blend better in and be
more difficult to detect. Observers in aerial surveys are prone to underestimate animal
abundances, especially group size [15], and integrating forms of detection probability in
future model development of animal density functions for drone imagery will improve
accuracy. For instance, the strip transect framework by Buckland et al. [20], modelled with
a uniform key detection function (in ‘ds’ in the Distance package), or both model parts of
a hurdle model (i.e., presence/absence and count model in ‘hurdle’ in the pscl package),
currently assumes perfect detection. This is rarely the case in practice. Development of
these R-functions, allowing for imperfect detection and inclusion of covariates driving
detection is beneficial to UAV studies, as UAV survey techniques are rapidly increasing in
wildlife studies.

Here, we conducted the UAV survey in an open tundra landscape with good visibility
from the air (at 120 m) and with no terrain obstacles hindering the drone. This flying height



Remote Sens. 2023, 15, 9 12 of 24

permitted the maximum area to be covered at which a reindeer could be detected with min-
imal disturbance. Retrospectively, we could have increased detection of animals by flying
at lower heights (i.e., the observers would have been less uncertain about distinguishing
an animal from a background feature) and thus reduced observer variability further. This
comes at the cost of longer flight times due to lower swath width (i.e., denser mapping
flight lines) and thus even smaller covered areas and more imagery to scan. A way to
compensate for the increased flight time is to reduce the side or forward overlap to a lower
value. In such cases, the overlap can be reduced below 50%, thereby decreasing the amount
of flying time. Before implementing such adjustments, the effect of UAV disturbance on
reindeer should be carefully assessed in a separate study.

Studies that report aerial surveys being more accurate than traditional survey methods
often have issues with detectability in the traditional survey methods. This is the case
with counting rare deer in dense forests, where ground counts are ineffective due to forest
cover and low densities of deer [8], where aerial imagery may provide better overview or
spatial coverage. This may also be the case when there are challenges detecting marine
animals at the sea surface from boats [9,10,25]. In our study, the ground DS survey had a
maximum line of sight of about 900 m, three times more compared to other study systems
with lower linear detection rates, such as DS conducted on deer in woody, heterogenous
terrain (250 m; [56]). By comparing the helicopter count with the independent ground
TC, a methodology previously investigated as highly accurate and which here match
the ground DS estimates [21,22], we were able to assess that this helicopter count was
unbiased. Thus, using the relation from reindeer density to vegetation productivity from
a neighbouring valley, we were able to capture the spatial density in the focal study
system [32], as expected from the documented spatial synchrony in population dynamics
from this region. A measure of precision is crucially needed also for the helicopter survey
and recording reindeer geographic positions and assessing detection probability will greatly
improve the survey design.

To address the challenge of limited area and line of sight covered by our small quad-
copter drone, we suggest testing a UAV with longer range to increase the area covered and
types of tundra habitats with different textures and densities of reindeer. The UAV used
in this pilot study had limited battery capacity and flying time. Using larger quadcopter
drones or fixed-wing drones with a longer range allows for covering larger areas where
abundance can be estimated [37,57]. This, however, comes at higher costs and in the case
of fixed-wing drones, higher operation complexity, particularly in remote Arctic regions.
Therefore, it was a sensible approach to first verify the methodology with a small quad-
copter, as in this pilot study. Once the method is fully developed and evaluated it can be
easily transferred to more complex UAV systems that compensate for the limited range and
coverage (i.e., using fixed-wing UAVs) [37].

The large number of images that our UAV survey produced exemplifies key challenges
of any aerial survey methods, namely counting the animals in the images. To increase
the efficiency of the process, orthomosaics were generated and tiled into “easy-to-handle”
single images. This reduced the number of images to scan and made the process more
efficient. In the stitching process, reindeer may disappear or appear multiple times. By
scanning and comparing the raw imagery with the tiled imagery after the stitching process,
we quantified this disappearance, but at the expense of much longer processing time. In
the case of the disappearing reindeer, the reindeer were moving over heterogenous terrain
(e.g., from riverbed into swampy wetland areas). This large gradient in surface texture
of the different habitat types may explain why the algorithm resulted in removing the
reindeer in the stitching process. However, reindeer that remained stationary, or moved
over homogenous terrain did not appear multiple times, nor did they disappear in the
orthomosaic process. Datasets from UAV surveys with low-density populations in open
landscapes seem particularly well-suited for automated counting methods, e.g., using
machine learning [58]. However, this requires large training data sets of reindeer in a
varity of habitat types with different surface texture and there is a need to make manual
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counts more efficient [58]. We encourage future studies to focus on developing training
datasets using the protocol we have presented (Appendix C) as a key towards automated
detection methods.

5. Conclusions

Reliable estimates of wildlife population abundance provide information, which is
necessary to make conservation and management decisions. With this pilot study, we
confirmed that it is possible to identify, count, collect geographical positions, and quantify
covariates affecting detection of reindeer on UAV imagery. UAVs have the potential
to be an alternative to traditional monitoring methods for estimating Svalbard reindeer
abundance, if key aspects are improved: (1) Increase the covered area to capture the density-
vegetation productivity gradient of this wide-ranging species, (2) integrate imperfect
detection in hurdle models, and (3) reduce imagery processing time. While the results
gathered in this study with a quadcopter UAV are limited in their value—due to the
underestimation of reindeer abundance and the data acquisition time—they serve as a
proof of concept. The limitations can be overcome by utilizing UAV platforms that cover
larger areas in shorter time and conducting repeat surveys over the same transects. This
can be achieved, for example, by using fixed-wing UAVs with substantially larger range
and endurance compared to multirotor drones. With larger datasets, more individual
reindeer will be sampled. This is likely to increase the possibility to use machine learning
algorithms to automate the counting process. The relative lower carbon footprint and
lesser human disturbance compared to helicopter surveys encourage further UAV method
development in remote Arctic regions. Before limitations are addressed, UAV surveys may
be a supplement to the traditional, ground-based field methods but cannot yet fully replace
them when it comes to herbivore monitoring in open heterogenous landscapes. Our study
demonstrates the importance of a thorough quality assessment of survey methods before
results are applied for management inference.
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Appendix A. Independent Total Counts from Adventdalen—Background Data
and Results

Statistical Analyses

The values of all average maxNDVI pixels (240 × 240 m) in the sampling area
(Adventdalen below 250 m) were extracted (n = 3262 pixels), including all pixels with
at least one geographic position of a reindeer observation (n = 437 pixels, min positions
per pixel = 1, max positions per pixel = 22). There was positional information for 1527 out
of 1668 reindeer groups. Mean reindeer group size was 3.2 reindeer. The hurdle model
was applied to this dataset with maxNDVI as a covariate and observations per pixel as
a response variable. The best model was determined by AIC. Based on results from the
best model from the total counts in Adventdalen, a density map was created across the
Sassendalen valley in the same area as the helicopter surveyed area.
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Figure A1. Reindeer geographic positions in the Sassendalen’s neighboring valley Adventdalen
(n = 1527).

Table A1. Independent total counts density model obtained from ground counts in a neighboring
valley. We used the most parsimonious density model for total counts from Le Moullec et al. [22],
which modelled individuals per segment as a function of maxNDVI using a hurdle density model
with a zero-truncated negative binomial distribution with a dispersion parameter. This model was
fitted using the restricted maximum likelihood (REML) framework. The model presented below is
the model with the highest AIC.

Hurdle Density Model Adventdalen

β ± SE p

Count model Intercept −1.04 ± 0.57 0.07
NDVI * 0.003 ± 0.0009 0.002

P/A model Intercept −4.59 ± 0.33 <0.05
NDVI * 0.004 ± 0.0005 0.02

* NDVI is the average maximum NDVI from 2017–2021.
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Appendix B. Model Selection and Detection Curve for Estimating Svalbard Reindeer
Abundance by Ground Distance Sampling

Table A2. The four candidate detection probability models for Distance sampling (DS) of Sval-
bard reindeer, Svalbard, Norway (July 2021). Detection probability was fitted using half-normal
(hn) and hazard rate (hr) functions with weather (sunny or cloudy) as covariate (see Table S3 in
Le Moullec et al. [22] for the influence of other covariates). We ranked models using Akaike’s
Information Criterion (AIC) and differences in AIC (∆AIC).

Model Key AIC ∆AIC

~weather hr 657.893 0
~1 hr 661.477 3.584
~weather hn 663.627 5.734
~1 hn 665.857 7.964
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Figure A2. Detection probability function based on the line transect distance sampling of Svalbard
reindeer. The best model was fitted at a continuous scale for observed distances and included a
hazard rate key detection function with weather (sunny or cloudy) as covariate. Observations of
reindeer clusters are illustrated by dots along the curve.

Table A3. Density model obtained from ground distance sampling. We used the most parsimonious
density model from Le Moullec et al. [22], which modelled individuals per segment as a function of
NDVI using a log-link quasi-Poisson model. This model was fitted using the restricted maximum
likelihood (REML) framework.

Ground DS Survey Sassendalen Model by Le Moullec et al. [22]

β ± SE p β ± SE p

Intercept −19.25 ± 2.05 <0.001 −13.95 ± 0.38 <0.001

NDVI * 0.012 ± 0.003 <0.001 2.65 × 10−3 ± 0.76 × 10−3 <0.001
* Le Moullec et al., 2019 is based on average maxNDVI from 2013–2016.
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Figure A3. Density function modelling individuals per segment as a function of NDVI using a
log-link quasi-Poisson model. The model was fitted using the restricted maximum likelihood (REML).
Displayed above are diagnostic plots for the selected model using the function ‘gam.check’ in the
package mgcv.

Appendix C. Protocol for Counting Reindeer from UAV Imagery

Appendix C.1. Counting Svalbard Reindeer from Drone Imagery—Instructions to Observers (Full
Version Can Be Available from the Authors upon Request)

Background

In this protocol you will count Svalbard reindeer in UAV imageries captured in
Sassendalen, Svalbard in July 2021. Six predefined transects were flown with a multirotor at
an altitude of 100–120 m over reindeer habitats. The images were merged and postprocessed
into evenly sized tiles by Richard Hann (NTNU). The objective for you as an observer
is to help identify reindeer from the UAV imagery and assign them into simple sex and
age categories, so they can be compared with helicopter and ground surveys done the
same year.

The software you will use to count the reindeer is called DotDotGoose ver. 1.5.1 [59].
DotDotGoose is a free, open-source tool to assist with counting objects manually in images.
The software was created by the American Museum of Natural History to assist conserva-
tion researchers and practitioners working on counting objects in any kind of image format.
The benefit of DotDotGoose is that you can easily create custom classes, pan and zoom on
images and place points to identify individual objects. The metadata from each observer
will be exported for further analyses in this project.

The reindeer categories you will identify in the UAV images correspond to sex and
age classes used in helicopter counts (Governor of Svalbard 2009) and ground surveys
([total counts; 21]). These are (1) reindeer with large antlers (old male), (2) reindeer with
small antlers (female/young), (3) reindeer without antlers (female/young), (4) calves,
(5) reindeer you are unsure in which category they belong, and (6) carcasses. Carcasses are
not counted in helicopter surveys but come in addition because it will help you to keep
focused since there are many images without reindeer in them.
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The categories may look like the photos below on the UAV imagery (Figures A4 and A5).
Note that key characteristics of a reindeer is the body shape, the color (white and grey)
and sometimes the shadow. The shadow can sometimes help to determine the size of the
antlers (if antlers are present). Be aware that the objects are pixelated and blurry and it may
not always be easy to distinguish the objects, especially if the reindeer are lying down.
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Figure A5. A full-scale image like the one you will see when you go through the images and classify
reindeer into one of the five categories in Figure A7. Do you see a reindeer? Try to remember the size
of the reindeer relative to the full-scale image. If you see anything that resembles a reindeer, you can
zoom in using the buttons on the left.

For more information about the software (other than what is in this protocol) check
out the DotDotGoose QuickGuide in the folder or this video tutorial on how to use
the software: https://www.youtube.com/watch?v=VGxTiQHx4Lc (accessed on
7 December 2020).

Appendix C.2. Download Software and Get Started!

� Save and extract the ‘Reindeer_counting_drone_imagery.zip’ to your computer or
hard disk. The folder and metadata require about 4 GB of space so make sure you
have enough.

Appendix C.3. Set up DotDotGoose Software

� Click and open the dotdotgoose.exe file in the ‘Reindeer_counting_drone_
imagery’ folder

� Click on ‘Load’ in the bottom left corner. Find the imagery folder “drone_imagery_
SAS_2021” and select the point file ‘template_reindeer_counting.pnt’

� In Survey Id at the top left panel: put your first name and last name with underscore,
e.g., ole_olesen. This will create a column in the metadata with your name.

� Click the Save button and save a point file with your own name (e.g., ole_olesen.pnt)
into the same folder as the drone imagery ‘drone_imagery_SAS_2021’. It is important
that it is the same folder as the imagery—if not the save will not work!

� If you need to close the programme and finish at another time, you can open your
point file in the DotDotGoose software by locating the file and click Import.

https://www.youtube.com/watch?v=VGxTiQHx4Lc
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Appendix C.4. Reindeer Detection and Assigning Objects to Categories

Appendix C.4.1. Time Tracking

� We would like to know how long it takes for each observer to scan through each
transect line. The name of each jpeg file starts with the transect number (e.g., Line_1,
Line_2).

� When you are about to start on the first image of the transect (e.g., Line_1_tile_100.jpeg)
write down the time in ‘time_start’ from the Custom Fields (right side panel) from
your computer clock (e.g., 09:54).

� When you have scanned all images in the transect (e.g., last image is Line_1_tile_99.jpeg)
write down the time in time_stop (e.g., 11:00) on this last image of Line_1.

� Do this for every transect line (Line_1 to Line_6) so we get the start and end time
for each transect. Please try to complete every transect line in one go, but if you
need to take breaks write down the end time and start time as well so breaks can
be subtracted.

� Remember to save frequently and when you take breaks.

Appendix C.4.2. Reindeer Scanning Method

� For each image, scan the full-scale image quickly from grid to grid with your eyes
(see example below). It might be useful to move your mouse as a guide.

� If you cannot find an object of interest, go to the next image by pressing the down
arrow key on your keyboard.

� If you want to go back to any previous images use the up-arrow key or double-click
on a specific photo in the Summary table.

Remote Sens. 2023, 15, 9 19 of 24 
 

 

 

Figure A6. Example of how to scan an image. 

 If you do find an object of interest, zoom in on it to check if it is a reindeer or carcass 

by scrolling your mouse or use the zoom buttons in the right bottom corner (you 

can also drag the image up, down, and sideways by clicking and holding the 

mouse). 

 To mark a reindeer or carcass, you click on the category you want to assign on the 

left side panel (see left image below). Press the Ctrl key while you click on the object 

in the image. A dot will be created over the reindeer. 

 You can double check that the right category was assigned to the object for that im-

age by looking at the Summary table on the left panel (see right image below). 

 NB! If you accidentally make a point or assign wrong category and need to remove 

it from the image, press and hold the Shift key on your keyboard, then left click and 

drag the mouse to draw a box around the points you’d like to delete. A red circle 

around your point will show up. Press the Delete key to remove the point. 

Appendix D. UAV Density Model for Estimating Reindeer Abundance with Hurdle 

Density Model 

Table A4. UAV density model obtained from UAV sampling in Sassendalen in 2021. We used the 

most parsimonious density model from Le Moullec et al. [22], which modelled individuals per seg-

ment as a function of NDVI using a Hurdle density model with a zero-truncated negative binomial 

distribution with a dispersion parameter. Displayed below are the two candidate models with low-

est AIC. Both models were fitted using the restricted maximum likelihood (REML). The simplest of 

the two models, Hurdle model 2, was selected for the analyses. 

 UAV Density Models   

  β ± SE p AIC ΔAIC 

Hurdle 1 Count model Intercept −2.61 ± 82.8 0.975 182.50 0 

Figure A6. Example of how to scan an image.



Remote Sens. 2023, 15, 9 20 of 24

� If you do find an object of interest, zoom in on it to check if it is a reindeer or carcass
by scrolling your mouse or use the zoom buttons in the right bottom corner (you can
also drag the image up, down, and sideways by clicking and holding the mouse).

� To mark a reindeer or carcass, you click on the category you want to assign on the left
side panel (see left image below). Press the Ctrl key while you click on the object in
the image. A dot will be created over the reindeer.

� You can double check that the right category was assigned to the object for that image
by looking at the Summary table on the left panel (see right image below).

� NB! If you accidentally make a point or assign wrong category and need to remove
it from the image, press and hold the Shift key on your keyboard, then left click and
drag the mouse to draw a box around the points you’d like to delete. A red circle
around your point will show up. Press the Delete key to remove the point.

Appendix D. UAV Density Model for Estimating Reindeer Abundance with Hurdle
Density Model

Table A4. UAV density model obtained from UAV sampling in Sassendalen in 2021. We used the most
parsimonious density model from Le Moullec et al. [22], which modelled individuals per segment as a
function of NDVI using a Hurdle density model with a zero-truncated negative binomial distribution
with a dispersion parameter. Displayed below are the two candidate models with lowest AIC. Both
models were fitted using the restricted maximum likelihood (REML). The simplest of the two models,
Hurdle model 2, was selected for the analyses.

UAV Density Models

β ± SE p AIC ∆AIC

Hurdle 1 Count
model Intercept −2.61 ± 82.8 0.975 182.50 0

NDVI −9.59 ± 7.15 0.180

P/A
model Intercept −7.00 ± 1.40 <0.05

NDVI 6.67 ± 2.15 0.002

Hurdle 2 Count
model Intercept 114.19 ± −0.08 0.93 182.54 0.04

Log(theta) −10.16 ± 114.20 0.93

P/A
model Intercept −5.82 ± 1.36 <0.05

NDVI 5.19 ± 2.080 0.012

Appendix E. Detection Probability from UAV Imagery

The linear mixed effects models (glmer function), implemented in the lme4 package in
R, were developed based on two sources of detection errors related to the probability that
(1) an observer detects a reindeer in an image (presence/absence model) and (2) when they
do, how many reindeer are detected in that image (counts model). The reason for this was
also to develop detection models to fit the two-function process in the density model. For
the presence/absence model, all reindeer detected by observers (verified as a reindeer (1)
or not (0)) were given an ID based on their GPS coordinates. The image covariates median
luminance, mean red, mean green, and mean blue channels were extracted from each
image using the package imageR. High values in the red and blue channel indicated grey,
gravely backgrounds. The RGB greenness index (G-B, [51]) was calculated to identify green
background (low values = dark green, high values = light green). Due to multicollinearity
in covariates, we ran separate models including each of the individual covariate as fixed
effect and observer ID as a random effect.
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Presence/absence model

• Binomial linear mixed effect model (GLMER)
• Five separate models with observer id as a random effect and each of the fixed effects

median luminance, mean red, green, and blue channels per image. We only show the
predicted effect plots for the fixed effects with a statistical significance (p > 0.05) below
(intercepts and standard error in results section).

• Response variable: Reindeer seen (1) or reindeer not seen (0) by observers
• Sample size of reindeer n = 234

Count model

• Poisson GLMER.
• Five models with observer id as a random effect and each of the fixed effects median

luminance, mean red, green, and blue channels per image (intercepts and standard
error in results section). Below, we only show the predicted effect plots for the fixed
effects with a statistical significance (p > 0.05)

• Response variable: Number of reindeer observed in an image
• Sample size of reindeer n = 179

Remote Sens. 2023, 15, 9 21 of 24 
 

 

 

Figure A7. Predicted effects of each covariate in the five separate GLMER counts model. (A) green-

ness index, (B) mean blue channel, (C) mean red channel, (D) mean green channel, (E) median lu-

minance. 

Table A5. Model estimates from the ten separate GLMERs for UAV P/A (n = 234, 6 observers) and 

UAV count model (n = 179, 6 observers). The coefficients are on a logit scale for the P/A models and 

Poisson scale for the count models. Bold denotes significant covariate effects (p < 0.05). Random 

effect is reported as variance and standard deviation. 

 Fixed Effect Random Effect Coefficient 
Fixed Effect  

(Β ± Se) 

Random Ef-

fect  

 

AIC 

P/A model ~Greenness index observer ID 
Intercept 

Covariate 

−1.36 ± 0.48 

3.57 ± 0.92 
0.04, 0.20 301.89 

 ~mean blue channel observer ID 
Intercept 

Covariate 

1.90 ± 0.73 

−3.06 ± 1.48 
0.03, 0.17 315.10 

 ~mean green channel observer ID 
Intercept 

Covariate 

1.63 ± 0.85 

−2.25 ± 1.58 
0.03, 0.17 317.43 

 ~mean red channel observer ID 
Intercept 

Covariate 

1.35 ± 0.89 

−1.67 ± 1.61 
0.03, 0.16 318.40 

 ~median luminance observer ID 
Intercept 

Covariate 

1.07 ± 0.68 

−1.22 ± 1.28 
0.03, 0.16 318.57 

Count model ~mean red channel observer ID 
Intercept 

Covariate 

−3.91 ± 0.76 

−3.91 ± 0.76 
0.02, 0.13  709.63 

 ~mean green channel observer ID 
Intercept 

Covariate 

3.01 ± 0.38 

−3.62 ± 0.72 
0.02, 0.13  712.19 

 ~median luminance observer ID 
Intercept 

Covariate 

−2.66 ± 0.57 

−2.66 ± 0.57 
0.02, 0.14 714.17 

 ~mean blue channel observer ID 
Intercept 

Covariate 

−2.41 ± 0.58 

−2.41 ± 0.58 
0.02, 0.13 725.01 

 ~Greenness index observer ID 
Intercept 

covariate 

1.40 ± 0.14 

−0.52 ± 0.22 
0.03, 0.18 740.84 

Figure A7. Predicted effects of each covariate in the five separate GLMER counts model. (A) greenness
index, (B) mean blue channel, (C) mean red channel, (D) mean green channel, (E) median luminance.
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Table A5. Model estimates from the ten separate GLMERs for UAV P/A (n = 234, 6 observers) and
UAV count model (n = 179, 6 observers). The coefficients are on a logit scale for the P/A models and
Poisson scale for the count models. Bold denotes significant covariate effects (p < 0.05). Random
effect is reported as variance and standard deviation.

Fixed Effect Random
Effect Coefficient Fixed Effect

(B ± Se) Random Effect AIC

P/A model ~Greenness index observer ID Intercept
Covariate

−1.36 ± 0.48
3.57 ± 0.92 0.04, 0.20 301.89

~mean blue channel observer ID Intercept
Covariate

1.90 ± 0.73
−3.06 ± 1.48 0.03, 0.17 315.10

~mean green channel observer ID Intercept
Covariate

1.63 ± 0.85
−2.25 ± 1.58 0.03, 0.17 317.43

~mean red channel observer ID Intercept
Covariate

1.35 ± 0.89
−1.67 ± 1.61 0.03, 0.16 318.40

~median luminance observer ID Intercept
Covariate

1.07 ± 0.68
−1.22 ± 1.28 0.03, 0.16 318.57

Count model ~mean red channel observer ID Intercept
Covariate

−3.91 ± 0.76
−3.91 ± 0.76 0.02, 0.13 709.63

~mean green channel observer ID Intercept
Covariate

3.01 ± 0.38
−3.62 ± 0.72 0.02, 0.13 712.19

~median luminance observer ID Intercept
Covariate

−2.66 ± 0.57
−2.66 ± 0.57 0.02, 0.14 714.17

~mean blue channel observer ID Intercept
Covariate

−2.41 ± 0.58
−2.41 ± 0.58 0.02, 0.13 725.01

~Greenness index observer ID Intercept
covariate

1.40 ± 0.14
−0.52 ± 0.22 0.03, 0.18 740.84
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