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Abstract: Electromagnetic data annotation is one of the most important steps in many signal pro-
cessing applications, e.g., radar signal deinterleaving and radar mode analysis. This work considers
cooperative electromagnetic data annotation from multiple reconnaissance receivers/platforms. By
exploiting the inherent correlation of the electromagnetic signal, as well as the correlation of the
observations from multiple receivers, a low-rank matrix recovery formulation is proposed for the
cooperative annotation problem. Specifically, considering the measured parameters of the same
emitter should be roughly the same at different platforms, the cooperative annotation is modeled
as a low-rank matrix recovery problem, which is solved iteratively either by the rank minimization
method or the maximum-rank decomposition method. A comparison of the two methods, with
the traditional annotation method on both the synthetic and real data, is given. Numerical exper-
iments show that the proposed methods can effectively recover missing annotations and correct
annotation errors.

Keywords: data annotation completion; radar reconnaissance data; low-rank matrix recovery

1. Introduction

As radar has been widely used in the battlefield, radar signal reconnaissance plays
an important role in electronic warfare (EW). Typically, the first step of the radar recon-
naissance system is to annotate the intercepted radar pulses with some key parameters,
such as pulse width, carrier frequency, pulse repetition interval, direction of arrival (DOA),
etc., which is also known as pulse description word (PDW). By analyzing the range and
variation characteristics of these parameters, the working mode and behavior of the radar
can be recognized. Therefore, accurate annotation is one of the key steps for radar counter-
measure [1,2]. However, with the appearance of advanced multi-function radar systems,
the electromagnetic environment has become increasingly complex, and the annotation is
facing unprecedented challenges [3]. Firstly the electromagnetic spectrum is congested,
and the pulse density of radar signals surges. At present, the pulse density in a typical
environment may exceed millions or even tens of millions per second. Secondly, the ad-
vanced radar transmitter is programmable, networked, and intelligent, which leads to
agile and overlapping parameters. The traditional fixed pulse pattern (such as fixed carrier
frequency, repeated frequency, and unmodulated pulses) tends to be replaced with more
complex time-varying patterns in modern radar systems. In addition, to improve the
anti-reconnaissance and anti-jamming capabilities, more complex inter-pulse modulation
patterns are adopted, which makes it hard to accurately annotate the parameters from the
interception; the strong antagonism between the two sides of the non-cooperative game and
the high real-time response induce incomplete and even wrong characteristic parameters of
radar signals obtained by reconnaissance. Therefore, how to accurately and stably annotate
the parameters of radar pluses is crucial for radar countermeasures.
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Apart from radar countermeasures, data annotation is also commonly encountered in
other fields, e.g., image and text data processing. At present, most annotations still rely
on traditional manual methods. Manual annotation is often labor-intensive, tedious, and
inefficient due to differences in personal experience and a lack of effective information.
The heuristic rule-based annotation method and the pattern matching-based annotation
method are also commonly used in the field of image and text data processing [4–7]. The
annotation method based on the heuristic rule has low accuracy and generality, and
cannot add semantic annotations to all the extracted data [7]. The pattern matching
method utilizes the pre-established pattern matching relationship to annotate the data in
a complementary manner [8], but in general, it is difficult to guarantee the correctness
of the matching relationship. In view of the above shortcomings, it is difficult to adapt
the traditional annotation methods to the reconnaissance electromagnetic data obtained
under non-cooperative and strong confrontation conditions. Moreover, the reconnaissance
data obtained by multiple heterogeneous platforms often have problems such as poor data
quality, low annotation rate, and a serious lack of annotation information, which presents
an obstacle to subsequent analyses and processing. How to realize the automatic annotation
efficiently and accurately is particularly important for radar countermeasures.

In this work, we consider that radar reconnaissance data are intercepted by multiple
reconnaissance platforms, but due to interference and noisy environments, each platform
may have only partial, incomplete annotations of the radar pulses. Our goal is to use these
partial annotations to cooperatively obtain an accurate and complete annotation. To this end,
we exploit two key observations, namely, (1) radar reconnaissance data are often inherently
correlated in the time-frequency domain; (2) interceptions from multiple platforms are
highly correlated since they are from the same target. Upon the above two observations,
we expect that the collected data from multiple platforms should exhibit a certain low-rank
structure. The low-rank representation in matrix form is an important data representation,
which has been widely used in various research areas such as robust principal component
analysis [8,9] and matrix completion [10–13]. It also can be used for image restoration
combined with sparse optimization [14–16]. Low-rank matrix recovery can be regarded
as a generalization of compressed sensing, that is, how to recover the original matrix
using the observation data under the low-rank condition [17–19]. Based on the theory of
completion and recovery of the low-rank matrix, the redundancy existing in data can be
exploited to fill in the missing elements or correct the erroneous annotations. While low-
rank matrix completion has been widely used in other fields, e.g., image recovery [20–24]
and matrix completion [25–33], to the best of our knowledge we are not aware of any
work on electronic reconnaissance data annotation, especially in radar countermeasure
applications. In this work, we first formulate the cooperative annotation problem as
a low-rank matrix completion problem and then two efficient optimization algorithms
are developed; one is based on convex relaxation and the other is non-convex max-rank
decomposition. Simulations on synthetic data and real data are provided to demonstrate
the efficacy of the proposed methods by comparing them with the conventional method.

The outline of this paper is given as follows. In Section 2, the problem formulation
is presented. In Section 3, a rank-minimization algorithm for annotation completion is
proposed. In Section 4, a maximum-rank-decomposition algorithm is proposed. In Section 5,
numerical comparisons of the two proposed methods with some state-of-the-art algorithms
are given. In the end, Section 6 concludes the paper.

2. Problem Formulation

Suppose that there are n1 reconnaissance receivers/platforms and n2 emitters/targets,
e.g., radars, in the observation area within a certain time range. For each target, there are
n3 measured parameters, including time, location (such as longitude, altitude, and height),
speed, frequency band, signal intensity, etc. An illustration of the measured parameters is
given in Table 1, which records the annotation information of different platforms, where
“∗∗” represents the received value of measured parameters.
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Table 1. An illustration of annotation information of electronic reconnaissance data.

Platform
Label

Target
Label Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 · · · Feature n3

1 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ · · · ∗∗
1 ...

...
...

...
...

...
...

...
n2 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ · · · ∗∗
...

...
...

...
...

... · · · ...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
... · · · ...

1 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ · · · ∗∗
n1

...
...

...
...

...
...

...
...

n2 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ · · · ∗∗

The characteristics of the targets observed at different platforms in Table 1 can be
written as a matrix X ∈ Rm1×n3 by arranging measured parameters in the order of platforms,
where m1 = n1 × n2.

X =


x1,1 x1,2 · · · x1,n3

x2,1 x2,2 · · · x2,n3
...

...
. . .

...
xm1,1 xm1,2 · · · xm1,n3

 (1)

In general, it is difficult to collect target information all the time at each platform, and
the parameters (annotation information) detected by different platforms are not exactly
the same due to the heterogeneous characteristics between different types of platforms.
In addition, different platforms have different statuses, such as “work/maintenance”, at
the same time. All these facts lead to the missing characteristic information in Table 1 and
matrix X, which is shown in Figure 1, where the small black squares represent the missing
annotation information. Our goal is to recover the missing elements in the matrix X from
the partially observed data, i.e., annotation completion.

Figure 1. Partially annotated characteristics matrix.

According to the definition of X, the row vectors of characteristic parameters belonging
to the same target should be highly correlated; therefore, the rank of matrix X does not
exceed the number of targets n2, i.e., r = rank(X) ≤ n2. The matrix X is low-rank if there are
enough monitoring platforms and enough categories of characteristic parameters, i.e., r =
rank(X)� min{m1, n3}. Thus, the annotation completion can be formulated as a low-rank
matrix recovery problem, in which each row or column of the matrix can be expressed
linearly by other rows or columns. The missing data can be recovered perfectly with a high
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probability [10,22,23] using the redundant information when the rank of the matrix and the
number of known elements meet certain conditions. Therefore, it is theoretically feasible to
use the low-rank matrix recovery theory for annotation completion. To put it into context,
let D ∈ Rm1×n3 be the observation matrix of X, which contains the known annotation
information of X. The annotation completion problem based on low-rank matrix recovery
can be modeled as:

min
X∈Rm1×n3

‖X− D‖0 s.t. rank(X) ≤ n3 (2)

where ‖X− D‖0 is the `0-norm of X− D, i.e., the number of non-zero elements in X− D.
This is a complex non-convex optimization problem since the non-convex function ‖ · ‖0 and
the non-convex constraint on rank(X). It is difficult to obtain the global optimal solution. In
order to solve this problem, the min-rank-based convex approximation algorithm and the
max-rank-decomposition-based non-convex algorithm are employed to find approximate
solutions for problem (2).

We summarize the frequently used notations in Table 2.

Table 2. The notation of symbols.

Notation Explanation

X, D, E, Λ, U, V Matrix
ee Vector

xi,j, n1, n2, n3, c Scalar

3. The Rank-Minimization-Based Convex Approximation Algorithm

In this section, a rank-minimization-based convex algorithm is proposed to solve
problem (2). First, let Ω ⊆ {1, 2, . . . , m1} × {1, 2, . . . , n3} denote the set of indices associated
with the known annotations in X. Define the linear projection operator PΩ : Rm1×n3 →
Rm1×n3 as follows:

PΩ =

{
Di,j, (i, j) ∈ Ω
0, (i, j) /∈ Ω

(3)

where Di,j represents the element in the i-th row and j-th column of matrix D ∈ Rm1×n3 .
Then, problem (2) can be recast as the following matrix rank minimization problem.

min
X∈Rm1×n3

rank(X) s.t. PΩ(X) = PΩ(D) (4)

where rank(·) is the rank function. Problem (4) is still a non-convex problem. Here, we
consider its convex relaxation. In fact, rank(X) describes the number of non-zero singular
values of X, i.e., the `0-norm of the singular value vector. Since the `0-norm is a non-convex
function, the `1-norm is utilized as the convex approximation of `0-norm, which gives
rise to the nuclear norm of X as the convex approximation of rank(X). By introducing the
matrix slack variable E ∈ Rm1×n3 , the problem (4) can be approximated as the following
convex problem

min
X,E∈Rm1×n3

‖X‖∗ s.t. X + E = D, PΩ(E) = 0 (5)

where ‖X‖∗ is the nuclear norm of X. To solve problem (5), we employ the alternating
direction method of multiple (ADMM) algorithms. Specifically, denote the augmented
Lagrangian function Lc(X, E, Λ)

Lc(X, E, Λ) = ‖X‖∗ + Tr{ΛT(D− X− E)}+ c
2
‖D− X− E‖2

F (6)
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where c > 0 is the penalty factor, Λ ∈ Rm1×n3 is the Lagrangian multiplier matrix, Tr{·} is
the trace of the matrix, ‖ · ‖F is the Frobenius norm. Then, problem (5) can be solved by
alternately updating X, E, and Λ, respectively, as follows

Xk+1 = arg min
X∈Rm1×n3

Lc(X, Ek, Λk)

Ek+1 = arg min
PΩ(E)=0

Lc(Xk+1, E, Λk)

Λk+1 = Λk + c(D− Xk+1 − Ek+1).

(7)

In the following, the updating for (7) is given.

3.1. Updating X

The updating of X ∈ Rm1×n3 is conducted by solving the following problem (8).

min
X
‖X‖∗ − Tr{ΛT

k X}+ c
2
‖X + Ek − D‖2

F. (8)

In order to solve (8), an auxiliary variable matrix Ak ∈ Rm1×n3 is introduced, which is
defined as

Ak = D− Ek +
1
c

Λk (9)

and the singular value decomposition of Ak is given by

Ak = UkΣkVT
k (10)

where Uk ∈ Rm1×m1 and Vk ∈ Rn3×n3 are the left and right singular matrices, respectively,
Σk ∈ Rm1×n3 and Σk = Diag{σi}, i = 1, 2, . . . , min{m1, n3} is a diagonal matrix with the
diagonal elements σi being the i-th singular value of Ak. Define the operator [·]+ as

[·]+ = max{·, 0}. (11)

Then, the optimal solution of problem (8) is given by [28]

Xk+1 = UkDiag
{
[σi − c−1]+

}
VT

k , i = 1, 2, . . . , min{m1, n3} (12)

3.2. Updating E

The updating of E ∈ Rm1×n3 can be given by solving

min
E∈Rm1×n3

‖E− (D− Xk+1 + c−1Λk)‖2
F

s.t. PΩ(E) = 0.
(13)

Clearly, the optimal solution Ek+1 of problem (13) is given by D− Xk+1 + c−1Λk for
elements not in the set Ω, thus we have

Ek+1 = PΩ′(D− Xk+1 + c−1Λk) (14)

where

PΩ′(Ai,j) =

{
Ai,j, (i, j) /∈ Ω
0, (i, j) ∈ Ω

Then, the whole procedure for solving problem (5) is summarized in Algorithm 1.
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Algorithm 1 The rank-minimization-based algorithm
Initialization: D, X0, E0, Λ0, k = 0

Repeat

Xk+1 = UkDiag{[σk − c−1]+}VT
k ;

Ek+1 = PΩ(D− Xk+1 + c−1Λk);

Λk+1 = Λk + c(D− Xk+1 − Ek+1);

k = k + 1;

Until some stopping criteria satisfied;

Return Xk.

From Algorithm 1, we find that the computation consumption is mainly in updating
matrix X due to the singular value decomposition of Ak. The total computation complexity
of Algorithm 1 is at the order of O(max{m1, n3}3) since the size of Ak is m1 × n3.

4. The Maximum-Rank-Decomposition-Based Non-Convex Algorithm

In this section, we consider an alternative way to tackle the annotation comple-
tion problem (2) from the maximum-rank decomposition perspective. Specifically, the
maximum-rank decomposition of X ∈ Rm1×n3 (suppose rank(X) = m2) is given by

X = UV (15)

where U ∈ Rm1×m2 , V ∈ Rm2×n3 . Upon (15), problem (2) is recast as

min
X∈Rm1×n3 ,U∈Rm1×m2 ,V∈Rm2×n3

‖X− D‖1 s.t. X = UV (16)

As before, we employ the ADMM approach to handle problem (15). Specifically, the
augmented Lagrangian function of (16) is given as

Lc(X, U, V, Φ) = ‖X− D‖1 + Tr{ΦT(UV − X)}+ c
2
‖UV − X‖2

F (17)

where Φ ∈ Rm1×n3 is the Lagrangian multiplier matrix, c is the penalty factor. The ADMM
algorithm repeatedly runs the following updating

Xk+1 = arg min
X∈Rm1×n3

Lc(X, Uk, Vk, Φk)

Uk+1 = arg min
U∈Rm1×m2

Lc(Xk+1, U, Vk, Φk)

Vk+1 = arg min
V∈Rm2×n3

Lc(Xk+1, Uk+1, V, Φk)

Φk+1 = Φk + c(Uk+1Vk+1 − Xk+1)

(18)

until stopping criteria are satisfied.

4.1. Updating X

The updating of X is given by solving

min
X∈Rm1×n3

‖X− D‖1 − Tr{ΦT
k X}+ c

2
‖UkVk − X‖2

F. (19)



Remote Sens. 2023, 15, 121 7 of 17

By using the first-order optimality condition, we have

Φk + c(UkVk − X) ∈ ∂‖X− D‖1 (20)

where ∂‖X− D‖1 represents the sub-differential of ‖X− D‖1, which is given by

∂‖X− D‖1 =

{
X−D
‖X−D‖1

, X 6= D

{ee | ‖ee‖1 ≤ 1}, X = D
(21)

with ee ∈ Rm1×1 and ‖ee‖1 ≤ 1. Then, we have

Xk+1 =

{
D, ‖Yk‖1 ≤ 1
‖Yk‖1−1

c · Yk
‖Yk‖1+D , otherwise

(22)

where Yk = Φk + c(UkVk − D).

4.2. Updating U

The updating of U ∈ Rm1×m2 is given by solving

min
U∈Rm1×m2

Tr{ΦT
k UVk}+

c
2
‖UVk − Xk+1‖2

F. (23)

As the problem (23) is an unconstrained quadratic program, the optimal solution can
be given by the first-order optimality condition, thus we have

Uk+1 = (Xk+1 −
1
c

Φk)VT
k (VkVT

k )−1. (24)

4.3. Updating V

The V ∈ Rm2×n3 updating is given by solving

min
V∈Rm2×n3

Tr{ΦT
k Uk+1V}+ c

2
‖Uk+1V − Xk+1‖2

F. (25)

Similar to the problem (23), its optimal solution is given by

Vk+1 = (UT
k+1Uk+1)

−1UT
k+1(Xk+1 −

1
c

Φk). (26)

We summarize the whole procedure of the ADMM algorithm for problem (16) in
Algorithm 2.

The computation complexity of Algorithm 2 is decided by the updating steps. Note
that the size of Uk is (m1 ×m2), the size of Vk is (m2 × n3), and according to the low-rank
assumption, we have m2 � m1 and m2 � n3. The computation complexity for updating
Xk, Uk, and Vk is at the order of O(m1 × m2 × n3). It can be seen that the non-convex
algorithm (Algorithm 2) has lower per-iteration complexity as compared with the convex
algorithm (Algorithm 1).

In addition, two proposed methods are designed to recover the missing feature pa-
rameters, the value of parameters is real and the auxiliary variables using the algorithm are
real as well. Therefore, they cannot be utilized for complex parameters directly.
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Algorithm 2 The max-rank-decomposition-based algorithm
Initialization: D, U0, V0, Φ0, k=0

Repeat:

Xk+1 =

D, ‖Yk‖1 ≤ 1
‖Yk‖1−1

c · Yk
‖Yk‖1+D , otherwise

;

Uk+1 = (Xk+1 − 1
c Φk)VT

k (VkVT
k )−1;

Vk+1 = (UT
k+1Uk+1)

−1UT
k+1(Xk+1 − 1

c Φk);

k = k + 1;

Until some stopping criteria satisfied;

Return: Xk.

5. Numerical Experiments and Discussion

In this section, the performance of the two proposed methods is tested with synthetic
data and real data, and the comparison testing with three different methods is also given.
To evaluate the performance, the mean squared error (MSE) is adopted as performance
metrics, which is denoted as

MSE =

√
Error
m ∗ n

with

Error = ∑
i,j

‖Xi,j − X̂i,j‖2

‖Xi,j‖2

where X is the original matrix with size (m× n), and i = 1, 2, . . . , m, j = 1, 2, . . . , n, X̂ is the
recovered matrix.

5.1. Synthetic Data Test of Proposed Methods

The synthetic data is generated by a radar target simulator, including 10 platforms,
10 targets in t = (t1, . . . , t10), for each target, 10 features are utilized, and each feature is
normalized, which forms the original data matrix X with [100 × 100] and rank r = 10.
In order to test the performance of proposed methods under different missing ratios, the
observation matrix D is given by randomly dropping out elements with different ratios in
each row of X and setting them as empty. Part of the elements of X are shown in Table 3
and part of the observation matrix D with 50% of the annotations of X randomly removed
is shown in Table 4.

In Tables 5 and 6, the completed annotations by Algorithms 1 and 2 are given re-
spectively. It can be seen that the missing elements are recovered after matrix completion.
Compared with the original matrix X, we found that the proposed methods can recover X
efficiently. Take the first row of X for example, the fourth, fifth, and sixth elements in Table 5
are recovered by Algorithm 1 with values 1.1639, 1.2384, and 1.0438, which are exactly the
same as that in X; i.e., they are perfectly recovered. Meanwhile, the corresponding recov-
ered values by Algorithm 2 in Table 6 are 1.1643, 1.1978, and 1.0437, with MSE ≤ 1× 10−3,
which suggests that the proposed methods can fill in the missing annotations efficiently.
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Table 3. The original annotated matrix X.

Target
Label (ti)

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10 · · ·

1 0.8331 0.9314 1.6636 1.1639 1.2384 1.0438 1.2527 1.0609 0.5221 0.8351 · · ·
2 0.7860 1.3702 1.6861 1.6636 1.2148 0.8691 1.1024 1.7871 0.7318 1.1431 · · ·
3 1.0400 0.9844 1.1685 1.1966 0.9242 0.6846 1.0263 1.0460 0.6473 0.8802 · · ·
4 0.7558 1.1816 1.4044 1.5881 1.0996 0.7906 0.9751 1.7054 0.7131 0.9999 · · ·
5 1.1372 1.5230 2.2505 2.0789 1.7841 1.4639 1.6405 2.1031 0.9132 1.3650 · · ·
6 0.6587 0.8033 1.5688 1.2180 1.2643 1.1109 1.1562 1.2050 0.4966 0.7463 · · ·
7 0.2884 0.5634 0.5258 0.6923 0.4723 0.4630 0.3422 0.7309 0.2969 0.5746 · · ·
8 0.7313 0.8509 0.9388 1.1082 0.7031 0.3967 0.7450 1.1216 0.5658 0.6677 · · ·
9 1.0431 1.3981 1.7029 1.7407 1.3799 1.1854 1.2670 1.7087 0.8046 1.3185 · · ·
10 1.0597 1.3580 1.6473 1.9323 1.3356 0.9283 1.2509 2.0165 0.9090 1.1356 · · ·
1 1.7201 1.7509 2.6238 2.1080 2.0970 1.9122 2.1279 1.7904 1.0234 1.7243 · · ·
2 0.7612 1.3054 2.0316 1.5709 1.5117 1.3303 1.13453 1.6025 0.6299 1.2025 · · ·
3 0.7386 0.9366 1.3114 1.1991 1.1835 1.2654 1.0069 1.0870 0.5154 1.0572 · · ·
4 0.7747 1.0134 1.7442 1.3499 1.4382 1.4058 1.2767 1.2729 0.5502 1.0479 · · ·
5 1.1288 1.1637 1.5743 1.2103 1.1755 1.0365 1.2772 0.9698 0.6280 1.1144 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

Table 4. The partially annotated matrix D.

Target
Label (ti)

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10 · · ·

1 0.8331 1.6636 1.2527 0.5221 0.8351 · · ·
2 0.7860 1.3702 1.6636 1.2148 1.7871 0.7318 1.1431 · · ·
3 0.9844 1.1685 0.9242 1.0263 · · ·
4 0.7558 1.4044 1.7054 0.7131 0.9999 · · ·
5 1.1372 1.7841 1.4639 2.1031 0.9132 1.3650 · · ·
6 1.5688 1.2643 1.2050 0.4966 0.7463 · · ·
7 0.2884 0.5258 0.6923 0.4723 0.4630 0.3422 0.7309 0.2969 0.5746 · · ·
8 0.7313 0.8509 0.7450 0.5658 0.6677 · · ·
9 1.0431 1.3799 1.2670 1.3185 · · ·
10 1.6473 1.9323 1.2509 2.0165 0.9090 · · ·
1 2.6238 2.0970 1.9122 2.1279 1.7243 · · ·
2 0.7612 1.3054 1.5117 0.6299 1.2025 · · ·
3 1.3114 1.1991 1.0069 0.5154 1.0572 · · ·
4 1.0134 1.4382 1.4058 1.2729 0.5502 · · ·
5 1.1637 1.2103 1.1755 1.0365 1.2772 0.9698 0.6280 1.1144 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

In Figure 2, the MSE of two proposed methods under different missing rates is given.
It can be found that the MSE decreases with the decreasing of the missing ratio, which
suggests that both of the proposed methods can recover or recorrect the missing or wrong
elements in D efficiently. Comparing the two methods, we find that Algorithm 1 has lower
MSE with the missing ratio < 0.7, the main reason is that the completion by max rank
decomposition in Algorithm 2 results in the measurement error.

Table 5. Results recovered by Algorithm 1.

Target
Label (ti)

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10 · · ·

1 0.8331 0.9314 1.6636 1.1639 1.2384 1.0438 1.2527 1.0609 0.5221 0.8351 · · ·
2 0.7860 1.3702 1.6861 1.6636 1.2148 1.1024 1.7871 1.7871 0.7318 1.1431 · · ·
3 1.0400 0.9844 1.1685 1.1966 0.9242 0.6946 1.0263 1.0460 0.6473 0.8802 · · ·
4 0.7558 1.1816 1.4044 1.5881 1.0996 0.7906 0.9751 1.7054 0.7131 0.9999 · · ·
5 1.1372 1.5230 2.2505 2.0789 1.7841 1.4639 1.6405 2.1031 0.9132 1.3650 · · ·
6 0.6587 0.8033 1.5688 1.2180 1.2643 1.1109 1.1562 1.2050 0.4966 0.7463 · · ·
7 0.2884 0.5634 0.5258 0.6923 0.4723 0.4630 0.3422 0.7309 0.2969 0.5746 · · ·
8 0.7313 0.8509 0.9388 1.1082 0.7031 0.3967 0.7450 1.1216 0.5658 0.6677 · · ·
9 1.0431 1.3981 1.7029 1.7407 1.3799 1.1854 1.2670 1.7087 0.8046 1.3185 · · ·
10 1.0597 1.3580 1.6473 1.9323 1.3356 0.9283 1.2509 2.0165 0.9090 1.1356 · · ·
1 1.7201 1.7509 2.6238 2.1080 2.0970 1.9122 2.1279 1.7904 1.0234 1.7243 · · ·
2 0.7612 1.3054 2.0316 1.5709 1.5117 1.3303 1.3453 1.6025 0.6299 1.2025 · · ·
3 0.7386 0.9366 1.3114 1.1991 1.1835 1.2654 1.0069 1.0870 0.5154 1.0572 · · ·
4 0.7747 1.0134 1.7442 1.3499 1.4382 1.4058 1.2767 1.2729 0.5502 1.0479 · · ·
5 1.1288 1.1637 1.5743 1.2103 1.1755 1.0365 1.2772 0.9698 0.6280 1.1144 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .
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Table 6. Results recovered by Algorithm 2.

Target
Label (ti)

Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 Feature 6 Feature 7 Feature 8 Feature 9 Feature 10 · · ·

1 0.8331 0.9376 1.6636 1.1643 1.1978 1.0437 1.2527 1.0901 0.5221 0.8351 · · ·
2 0.7860 1.3702 1.6875 1.6636 1.2148 0.8691 1.1693 1.7420 0.7318 1.1431 · · ·
3 1.0413 0.9844 1.1685 1.1685 0.9242 0.6946 1.0263 1.1058 0.6496 0.8788 · · ·
4 0.7558 1.0976 1.4044 1.5837 1.1597 0.7942 1.1111 1.7054 0.7131 0.9999 · · ·
5 1.1372 1.6160 2.2437 2.0659 1.7841 1.4639 1.6631 2.1031 0.9132 1.3650 · · ·
6 0.6683 0.8156 1.5688 1.2899 1.2643 1.1103 1.0857 1.2050 0.4966 0.7463 · · ·
7 0.2884 0.5617 0.5258 0.6923 0.4723 0.4630 0.3422 0.7309 0.2969 0.5746 · · ·
8 0.7313 0.8509 0.9844 1.1183 0.7166 0.6775 0.7450 1.1288 0.5658 0.6677 · · ·
9 1.0431 1.3351 1.7504 1.6924 1.3799 0.4025 1.2670 1.5447 0.7677 1.3185 · · ·
10 1.0970 1.3589 1.6473 1.9323 1.3597 0.2262 1.2509 2.0165 0.9090 1.2495 · · ·
1 1.7189 1.8459 2.6238 2.1156 2.0970 1.9122 2.1279 1.7915 1.1190 1.7243 · · ·
2 0.7612 1.3054 1.9913 1.5768 1.5117 1.2374 1.4113 1.5867 0.6299 1.2025 · · ·
3 0.8057 0.9980 1.3114 1.1991 1.1721 1.2709 1.0069 1.1548 0.5154 1.0572 · · ·
4 0.7834 1.0134 1.5256 1.4227 1.4382 1.4058 1.1975 1.2729 0.5502 1.0699 · · ·
5 0.9414 1.1637 1.5289 1.2103 1.1755 1.0365 1.2772 0.9698 0.6280 1.1144 · · ·
...

...
...

...
...

...
...

...
...

...
...

. . .

In the discussion above, we have assumed rank(X) = 10 as a prior. In practice, the rank
of X is generally unknown and needs to be jointly estimated. In fact, the rank minimization
in Algorithm 1 cannot estimate the rank of D directly, while Algorithm 2 can predict the
rank directly due to the max-rank decomposition of D. The comparison of the estimated
rank and the real rank of X given by Algorithm 2 is presented in Figure 3. It can be seen
that the estimated rank of the proposed method is consistent with the real rank. In fact,
we find that when the missing ratio ≤ 50%, the curve of rank setting vs. estimated rank is
consistent with the curve in Figure 3. The main reason is that fewer missing records result
in better recovery results. When the missing ratio is ≥ 50%, the estimated rank is unstable
and not consistent with the rank setting, the main reason is that more missing records can
lead to rank variation.

Figure 2. The MSE of two proposed methods under different missing ratios.
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Figure 3. The rank setting vs. estimated rank of Algorithm 2.

5.2. Real Data Test of Proposed Methods

Apart from the synthetic data test, in the following, we verify the performance of the
proposed methods with real data—PDW records from real radars. For the real data test,
the missing ratio is about 30%. The missing information is set as empty, moreover, certain
errors are added to verify the error correction capability of proposed methods. Part of the
real data X and the observation data D are illustrated in Tables 7 and 8, respectively.

Table 7. Real data X.

Target Platf-1 Platf-2 · · ·
Label FW PW PT AM AOA FW PW PT AM AOA · · ·

1 4.7654× 103 2.1200 780 95.2850 428.7933 4.7655× 103 1.7600 780 95.7800 428.7967 · · ·
2 4.7653× 103 2.1400 800 95.5050 428.8067 4.7657× 103 1.8000 770 95.5050 428.7933 · · ·
3 4.7655× 103 1.7200 820 95.5600 428.7933 4.7656× 103 1.9000 770 95.5050 428.7767 · · ·
4 4.7656× 103 1.8000 830 95.5600 428.7867 4.7655× 103 1.9200 760 96.0750 428.8000 · · ·
5 4.7656× 103 1.9200 820 95.5600 428.7767 4.7655× 103 2.1200 780 95.5050 428.7633 · · ·
6 4.7653× 103 2.0800 830 95.6700 428.7700 4.7656× 103 2.1200 750 95.6700 428.7867 · · ·
7 4.7654× 103 2.1200 840 95.6700 428.7900 4.7655× 103 1.7400 770 95.3950 428.7933 · · ·
8 4.7655× 103 2.2000 840 95.6700 428.7833 4.7656× 103 1.7600 780 95.6700 428.7967 · · ·
9 4.7656× 103 2.2000 850 95.6150 428.8000 4.7656× 103 1.9000 790 95.4500 428.7733 · · ·

10 4.7656× 103 1.9000 840 95.6150 428.7700 4.7656× 103 1.9000 800 95.6150 428.8000 · · ·
11 4.7656× 103 1.9200 870 95.5600 428.8000 4.7656× 103 1.9000 780 95.5050 428.8000 · · ·
12 4.7656× 103 1.9000 870 95.5050 428.8000 4.7655× 103 1.7200 800 95.5600 428.8267 · · ·
13 4.7653× 103 2.0600 880 95.5600 428.7700 4.7657× 103 1.9000 800 95.6700 428.7733 · · ·
14 4.7655× 103 2.1200 880 95.5600 428.7833 4.7656× 103 1.8800 810 95.5050 428.8000 · · ·
15 4.7655× 103 2.1400 890 95.5600 428.8000 4.7656× 103 1.7400 810 95.6700 428.7433 · · ·
16 4.7656× 103 2.1600 890 95.6150 428.7900 4.7656× 103 1.8000 820 95.5600 428.7933 · · ·
17 4.7656× 103 2.1600 900 95.5600 428.7933 4.7656× 103 1.9200 820 95.4500 428.7767 · · ·
18 4.7656× 103 1.9200 890 95.6150 428.7767 4.7656× 103 1.8800 830 95.5600 428.8000 · · ·
19 4.7610× 103 0.2200 730 95.3400 0.3533 4.7656× 103 1.8800 830 95.5600 428.8000 · · ·
20 4.7654× 103 1.9000 900 95.5050 428.4467 4.7655× 103 2.1400 830 95.6150 428.7533 · · ·

...

...
...

...
...

...

...
...

...
...

...
. . .
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Table 8. Recorded real data D with missing annotations.

Target Platf-1 Platf-2 · · ·
Label FW PW PT AM AOA FW PW PT AM DOA · · ·

1 4.7654× 103 2.1200 95.2850 0 95.7800 428.7967 · · ·
2 4.7653× 103 800 95.5050 4.7657× 103 1.8000 95.5050 428.7933 · · ·
3 4.7655× 103 95.5600 428.7933 4.7656× 103 1.9000 95.5050 428.7767 · · ·
4 4.7656× 103 1.8000 830 428.7867 4.7655× 103 1.9200 760 96.0750 428.8000 · · ·
5 4.7656× 103 95.5600 4.7655× 103 2.1200 780 95.5050 428.7633 · · ·
6 4.7653× 103 2.0800 830 428.7700 4.7656× 103 95.6700 428.7867 · · ·
7 4.7654× 103 95.6700 1.7400 770 · · ·
8 4.7655× 103 2.2000 840 95.6700 428.7833 4.7656× 103 1.7600 95.6700 · · ·
9 2.2000 428.8000 4.7656× 103 1.9000 790 428.7733 · · ·

10 4.7656× 103 1.9000 840 95.6150 4.7656× 103 1.9000 800 95.6150 428.8000 · · ·
11 4.7656× 103 1.9200 428.8000 4.7656× 103 1.9000 95.5050 428.8000 · · ·
12 4.7656× 103 870 428.8000 4.7655× 103 800 95.5600 428.8267 · · ·
13 4.7653× 103 95.5600 428.7700 4.7657× 103 428.7733 · · ·
14 2.1200 880 428.7833 4.7656× 103 1.8800 810 95.5050 428.8000 · · ·
15 4.7655× 103 2.1400 95.5600 428.8000 4.7656× 103 810 95.6700 428.7433 · · ·
16 4.7656× 103 2.1600 890 95.6150 428.7900 4.7656× 103 1.8000 428.7933 · · ·
17 4.7656× 103 2.1600 900 95.5600 428.7933 4.7656× 103 820 95.4500 428.7767 · · ·
18 4.7656× 103 1.9200 890 428.7767 1.8800 830 95.5600 428.8000 · · ·
19 4.7610× 103 730 4.7656× 103 830 95.5600 428.8000 · · ·
20 4.7654× 103 1.9000 95.5050 4.7655× 103 2.1400 830 95.6150 428.7533 · · ·

...

...
...

...
...

...

...
...

...
...

...
. . .

The recovery for missing PDW rerecords of Algorithms 1 and 2 are shown in
Tables 9 and 10, respectively. From the two tables, it can be seen that both methods can
fill in the missing annotations accurately. Specifically, for the carrier frequency annotation
in the first column, the MSE is ≤1× 10−3; for the pulse width annotation in the second
column, the MSE is about 1× 10−2; for the amplitude annotation in the fourth column,
the error is about 1× 10−2; for the AOA parameter in the last column, the error is about
1× 10−3.

Table 9. Results recovered by Algorithm 1.

Target Platf-1 Platf-2 · · ·
Label FW PW PT AM AOA FW PW PT AM DOA · · ·

1 4.7654× 103 2.1200 862.3198 95.2850 0 4.7347× 103 1.7002 769.1010 95.7800 428.7967 · · ·
2 4.7653× 103 1.8810 800 95.5050 590.2473 4.7657× 103 1.8000 763.4213 95.5050 428.7933 · · ·
3 4.7655× 103 1.7387 813.6904 95.5600 428.7933 4.7656× 103 1.9000 778.7780 95.5050 428.7767 · · ·
4 4.7656× 103 1.8000 830 93.3096 428.7867 4.7655× 103 1.9200 760 96.0750 428.8000 · · ·
5 4.7656× 103 2.0022 839.8333 95.5600 481.1485 4.7655× 103 2.1200 780 95.5050 428.7633 · · ·
6 4.7653× 103 2.0800 830 93.5123 428.7700 4.7656× 103 1.7048 777.1674 95.6700 428.7867 · · ·
7 4.7654× 103 2.0342 848.9644 95.6700 243.2014 4.7000× 103 1.7400 770 94.1180 543.5496 · · ·
8 4.7655× 103 2.2000 840 95.6700 428.7833 4.7656× 103 1.7600 754.3832 95.6700 487.8920 · · ·
9 4.6963× 103 2.2000 789.7436 93.3603 428.8000 4.7656× 103 1.9000 790 93.2589 428.7733 · · ·

10 4.7656× 103 1.9000 840 95.6150 146.4476 4.7656× 103 1.9000 800 95.6150 428.8000 · · ·
11 4.7656× 103 1.9200 811.1999 93.4410 428.8000 4.7656× 103 1.9000 756.8295 95.5050 428.8000 · · ·
12 4.7656× 103 2.0224 870 94.6997 428.8000 4.7655× 103 1.7649 800 95.5600 428.8267 · · ·
13 4.7653× 103 1.8753 837.7079 95.5600 428.7700 4.7657× 103 1.7816 784.7113 94.5026 428.7733 · · ·
14 4.7233× 103 2.1200 880 94.4242 428.7833 4.7656× 103 1.8800 810 95.5050 428.8000 · · ·
15 4.7655× 103 2.1400 847.0041 95.5600 428.8000 4.7656× 103 1.6587 810 95.6700 428.7433 · · ·
16 4.7656× 103 2.1600 890 95.6150 428.7900 4.7656× 103 1.8000 784.9361 94.9520 428.7933 · · ·
17 4.7656× 103 2.1600 900 95.5600 428.7933 4.7656× 103 1.7786 820 95.4500 428.7767 · · ·
18 4.7656× 103 1.9200 890 94.8011 428.7767 4.7250× 103 1.8800 830 95.5600 428.8000 · · ·
19 4.7610× 103 1.7863 730 95.2033 461.7466 4.7656× 103 1.8032 830 95.5600 428.8000 · · ·
20 4.7654× 103 1.9000 813.5963 95.5050 423.7582 4.7655× 103 2.1400 830 95.6150 428.7533 · · ·

...

... ...
...

...
...

... ...
...

...
...

. . .
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Table 10. Results recovered by Algorithm 2.

Target Platf-1 Platf-2 · · ·
Label FW PW PT AM AOA FW PW PT AM DOA · · ·

1 4.7654× 103 2.1200 826.1695 95.2850 0 4.8275× 103 1.7705 802.9382 95.7800 428.7967 · · ·
2 4.7653× 103 1.8760 800 95.5050 480.4501 4.7657× 103 1.8000 800.3337 95.5050 428.7933 · · ·
3 4.7655× 103 1.8730 822.1822 95.5600 428.7933 4.7656× 103 1.9000 NaN 95.5050 428.7767 · · ·
4 4.7656× 103 1.8000 830 93.6472 428.7867 4.7655× 103 1.9200 760 96.0750 428.8000 · · ·
5 4.7656× 103 1.8156 796.9825 95.5600 464.9850 4.7655× 103 2.1200 780 95.5050 428.7633 · · ·
6 4.7653× 103 2.0800 830 93.6649 428.7700 4.7656× 103 1.7131 776.9018 95.6700 428.7867 · · ·
7 4.7654× 103 1.8653 818.7611 95.6700 477.6912 4.7842× 103 1.7400 770 95.8159 470.2310 · · ·
8 4.7655× 103 2.2000 840 95.6700 428.7833 4.7656× 103 1.7600 783.2492 95.6700 462.8508 · · ·
9 4.7506× 103 2.2000 813.6863 95.3412 428.8000 4.7656× 103 1.9000 790 95.2221 428.7733 · · ·

10 4.7656× 103 1.9000 840 95.6150 468.3993 4.7656× 103 1.9000 800 95.6150 428.8000 · · ·
11 4.7656× 103 1.9200 807.3440 94.5981 428.8000 4.7656× 103 1.9000 784.6421 95.5050 428.8000 · · ·
12 4.7656× 103 1.8600 870 95.6633 428.8000 4.7655× 103 1.7497 800 95.5600 428.8267 · · ·
13 4.7653× 103 1.8397 807.5579 95.5600 428.7700 4.7657× 103 1.7306 784.8500 94.5049 428.7733 · · ·
14 4.7536× 103 2.1200 880 95.4003 428.7833 4.7656× 103 1.8800 810 95.5050 428.8000 · · ·
15 4.7655× 103 2.1400 811.4794 95.5600 428.8000 4.7656× 103 1.7390 810 95.6700 428.7433 · · ·
16 4.7656× 103 2.1600 890 95.6150 428.7900 4.7656× 103 1.8000 794.3686 95.6510 428.7933 · · ·
17 4.7656× 103 2.1600 900 95.5600 428.7933 4.7656× 103 1.7596 820 95.4500 428.7767 · · ·
18 4.7656× 103 1.9200 890 95.7352 428.7767 4.7742× 103 1.8800 830 95.5600 428.8000 · · ·
19 4.7610× 103 1.8809 730 96.7416 481.7037 4.7656× 103 1.7994 830 95.5600 428.8000 · · ·
20 4.7654× 103 1.9000 826.6687 95.5050 482.3048 4.7655× 103 2.1400 830 95.6150 428.7533 · · ·

...

... ...
...

...
...

... ...
...

...
...

. . .

The correction for wrong PDW records of Algorithms 1 and 2 are also validated. For
the real data X in Table 7, it can be seen that the PW and AOA records of Target “19” for
platform “1” are “0.2200” and “0.3533” with underline, which is wrong and totally different
from other platform records. From Table 9, we have that the correction of Algorithm 1
for PW and AOA are “1.7863” and “461.7466”, which are close to the records of platform
“2”. The results of Algorithm 2 are consistent with Algorithm 1, which suggests that the
proposed methods can correct the wrong records efficiently.

In addition, the run times of Algorithms 1 and 2 are compared under different missing
ratios, and the result is shown in Figure 4. We see that the run time of Algorithm 2 is stable
for different missing ratios, and much lower than Algorithm 1 when the missing ratio
exceeds 0.3. This is consistent with the complexity analysis at the end of Section 4.3.

Figure 4. The running time comparison of Algorithms 1 and 2 under different missing ratios.

In the end, the iteration number of Algorithms 1 and 2 under different missing ratios
are shown in Figure 5, it can be found that the iteration number of Algorithm 2 is lower
than Algorithm 1 and stable in different missing ratios, which is consistent with the running
time and complexity analysis.
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Figure 5. The iteration number comparison of Algorithms 1 and 2 under different missing ratios.

5.3. Comparison Test

In this section, the comparison test of proposed methods with three state-of-the-
art methods for electromagnetic data annotation completion is given. Three compared
methods are:

1. The K-nearest neighbor method (KNN) in [32], which predicts the missing annotation
by its K nearest neighbors;

2. The augmented Lagrange multiplier method for low-rank matrix recovery (ALM)
in [27], where the annotation completion is formulated as a convex optimization
model solved by the ALM algorithm;

3. The nuclear norm regularized method for annotation completion (NNLS) in [28],
where the annotation completion is formulated as an optimization model solved by
the accelerated proximal gradient algorithm.

For comparison testing, the synthetic data is utilized, which is generated by the radar
target simulator with 10 platforms, 10 targets, and in t = [t1, . . . , t10], 10 features are utilized
for each target, which forms the original data matrix X with size 100× 100 and rank r =10.

Then, the performance of the proposed methods and compared methods are discussed.
The MSE of five methods under different missing ratios are shown in Figure 6. It can be
seen that the MSE increases roughly with the increase of the missing ratio for all methods.
The MSE of proposed Algorithms 1 and 2 are roughly the same, and much lower than the
KNN, ALM, and NNLS methods, which demonstrates the superior recovery performance
by using the ADMM algorithms. Compared to the KNN with Algorithms 1 and 2, it can
be found that utilizing the low-rank structure for annotation completion can recover the
missing annotation efficiently. In addition, the average MSE of the five compared methods
is presented in Table 11. For each missing ratio, the feature parameters are dropped
randomly ten times to get the average MSE of different compared methods.
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Figure 6. The MSE comparison for different methods under different missing ratios.

In the end, the running time for different methods is given in Figure 7. We find that the
proposed Algorithm 1 is more time-consuming than other compared methods since the SVD
decomposition, and the running time is much more with the increasing of missing ratio.
The KNN method has the lowest running time since the low computation. The running time
of NNLS and ALM methods are lower than the proposed method’s Algorithms 1 and 2; the
main reason is that the SVD decomposition in the proposed algorithms is time-consuming.

Table 11. The average MSE of five compared methods.

Missing Ratio Algorithm 1 Algorithm 2 KNN ALM NNLS

0.1 0.0122 0.0137 0.0357 0.0810 0.1010
0.2 0.0236 0.0242 0.0550 0.0874 0.1330
0.3 0.0355 0.0390 0.0643 0.1038 0.1027
0.4 0.0409 0.0466 0.0772 0.1052 0.1104
0.5 0.0571 0.0512 0.0878 0.2186 0.3014
0.6 0.0607 0.0612 0.0969 0.3120 0.1064
0.7 0.0695 0.0723 0.1197 0.2144 0.2665
0.8 0.0866 0.0831 0.1513 0.1141 0.1934

Figure 7. The running time comparison for different methods under different missing ratios.
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Based on the discussion above, we have that the proposed methods can recover and
correct the missing and wrong annotation efficiently, but the running time is much more
than compared methods.

6. Conclusions

In this work, we have considered cooperative annotation for electromagnetic recon-
naissance data. By exploiting the correlation of observations at different platforms, we
formulate the annotation completion problem as a low-rank matrix recovery problem and
proposed two methods to solve this problem, including the rank-minimization-based con-
vex algorithm and the maximum-rank-decomposition non-convex algorithm. Numerical
experiments on synthetic data and real data suggest that the proposed methods can recover
the missing annotation efficiently and achieve better MSE performance than the compared
annotation methods.
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