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Abstract: Urban poverty is a major obstacle to the healthy development of urbanization. Identifying 
and mapping urban poverty is of great significance to sustainable urban development. Traditional 
data and methods cannot measure urban poverty at a fine scale. Besides, existing studies often ig-
nore the impact of the built environment and fail to consider the equal importance of poverty indi-
cators. The emerging multi-source big data provide new opportunities for accurately measuring 
and monitoring urban poverty. This study aims to map urban poverty spatial at a fine scale by using 
multi-source big data, including social sensing and remote sensing data. The urban core of Zheng-
zhou is selected as the study area. The characteristics of the community’s living environment are 
quantified by accessibility, block vitality, per unit rent, public service infrastructure, and socio-eco-
nomic factors. The urban poverty spatial index (SI) model is constructed by using the multiplier 
index of the factors. The SOM clustering method is employed to identify urban poverty space based 
on the developed SI. The performance of the proposed SI model is evaluated at the neighborhood 
scale. The results show that the urban poverty spatial measurement method based on multi-source 
big data can capture spatial patterns of typical urban poverty with relatively high accuracy. Com-
pared with the urban poverty space measured based on remote sensing data, it considers the built 
environment and socio-economic factors in the identification of the inner city poverty space, and 
avoids being affected by the texture information of the physical surface of the residential area and 
the external structure of the buildings. Overall, this study can provide a comprehensive, cost-effec-
tive, and efficient method for the refined management of urban poverty space and the improvement 
of built environment quality. 

Keywords: urban poverty spatial index (SI); built environment; sustainable urban development; 
multi-source big data 
 

1. Introduction 
Urban poverty caused by rapid urbanization has become the key concern of sustain-

able urban development [1–3]. According to the estimations of the United Nations Human 
Settlements Programme, 30% of the urban population in developing countries live in 
slums, and the proportion is expected to increase to 60% in 2050 [4–6]. Urban poverty is 
one of the major obstacles to achieving the United Nations Sustainable Development 
Goals [7]. In particular, the dilapidated spatial and physical features of the built environ-
ment in cities are not conducive to social sustainability, which is characterized by urban 
livability, universal accessibility, social justice, and democracy [8]. Therefore, identifying 
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and measuring intra-urban poverty accurately is crucial for urban sustainable develop-
ment. 

Urban poverty spaces, informal settlements, and slums have different names due to 
their different connotations. Urban poverty spaces have special characteristics in China; 
in the urban–rural dual structure system with Chinese characteristics, urban poor spaces 
are often the ideal place for migrant workers to live, where rents are low, transportation 
is convenient, and the cost of living is low [9]. Therefore, urban poverty space or urban 
poverty refers to the disadvantaged groups who cannot meet the low-level living condi-
tions of human development in terms of economic income, affordability of housing, abil-
ity to access public infrastructure services, health care, education, and social activities [10]; 
thus, the economic level, housing affordability, built environment characteristics, access 
to basic services convenience, and occupations are among the reasons for the concentra-
tion of people with a poor quality of life in these spaces. Scholars attempt to measure and 
identify urban poverty using various frameworks, data, and methods. The early urban 
poverty measurement mainly used survey data and census data. Noble et al. constructed 
a multidimensional poverty index based on census data using indicators of income dep-
rivation, housing deprivation, and educational deprivation [11]. The Human Poverty In-
dex is constructed by the United Nations Development Programme based on indicators 
such as statistical lifespan, knowledge, and a decent standard of living [12]. Alkire et al. 
constructed a new multidimensional poverty index using indicators of education, health, 
and living standards from household survey data [13]. Langlois et al. constructed a gen-
eral deprivation index based on census data using population, income, education, lan-
guage, housing, and employment indicators using principal component analysis [14]. 
However, the cost of these data is high, and they often have coarse temporal resolution 
and are difficult to update at a large scale. The methods based on survey and census data 
cannot keep pace with the speed of rapid urbanization [3]. Furthermore, survey data may 
underestimate the marginal urban population living in informal settlements [15]; for ex-
ample, there are seasonal and temporary migrant workers who often live in informal set-
tlements and urban villages [16]. Moreover, while these data sources provide a more ac-
curate measure of urban poverty from a socio-economic and cultural perspective, they 
also ignore the impact of the built environment [10], which is crucial to the urban renewal 
of the urban cores and the improvement of the built environment. 

To make up for the insufficiency of traditional survey data and census data, remote 
sensing data and social sensing big data provide opportunities for the measurement of 
urban poverty. The research on measuring urban poverty from remote sensing data is 
mainly to retrieve physical characteristics of buildings from color, structure, texture, and 
shape of the spectrum of satellite images [17–21]. Regional human economic activities can 
be extracted using the brightness value of nighttime light remote sensing data [22–24]. In 
addition, high-resolution remote sensing data can also be used to distinguish between 
formal structures and slums [25]. However, the measurement of urban poverty based on 
remote sensing data only focuses on the physical characteristics of buildings and does not 
consider the characteristics of social attributes. Besides, it rarely considers the impact of 
greenery coverage [10]. 

Social sensing big data can reflect both socio-economic conditions and built environ-
ment, and therefore have the potential to measure urban poverty [26]. Ibrahim et al. used 
urban streetscapes to identify informal settlements and slums in cities [27]. Blumenstock 
et al. used cell phone signaling data to infer the economic status of society [28]. Ta et al. 
used POI data to study the differences in floating population isolation in urban activity 
space [29]. However, the built environment and socio-economic characteristics of urban 
poverty are more complex, and the above studies are more one-sided in measuring urban 
poverty from a single dimension. To measure urban poverty from multiple dimensions, 
Niu et al. measured urban poverty using a random forest algorithm based on POI data, 
online rent data, and remote sensing data [26]. However, the random forest algorithm is 
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a machine learning model that requires a sample training set (for example, survey data or 
census data). Moreover, the metrics may be overfitted in classification or regression [30]. 

In summary, the following shortcomings exist in the measurement of urban poverty. 
(1) The impact of the built environment has not been given sufficient attention. Previous 
studies have only considered socio-economic attributes in measuring urban poverty and 
have not addressed the impact of the built environment. (2) The importance of urban pov-
erty measurement indicators has not been given equal attention. Most of the relevant stud-
ies use principal component analysis and machine learning methods to measure urban 
poverty, which fail to reflect the equal importance of its various dimensions. (3) It is es-
sential to achieve a comprehensive measurement of the spatial dynamics of urban pov-
erty, and the traditional measurement data and methods lag in updating, the cycle is long, 
the cost is high, and the research scale is large. (4) Measuring urban poverty space with 
remote sensing data only focuses on the physical characteristics of buildings on the sur-
face, without considering the characteristics of social attributes, and the performance is 
poor in regions with rapid urbanization and relatively developed economic development. 
Moreover, at the micro-scale, remote sensing data will also cause a certain degree of “eco-
logical fallacy”. 

Therefore, this study raises the following research questions: How can remote sens-
ing data and social sensing data be used to identify indicators of the built environment for 
measuring urban poverty? What approach can be used to emphasize the equal importance 
of all dimensions of urban poverty? To answer these questions, this paper uses remote 
sensing data, POI data, Baidu Map API route planning data, and housing rental data to 
construct an urban poverty spatial index (SI) model by using a multiplier index. Accessi-
bility, block vitality, and economic status are used to identify urban poverty. This study 
can provide strong technical support for the refined management of urban space and the 
improvement of the built environment. 

2. Study Area and Data 
2.1. Study Area 

Zhengzhou is located in the central part of China and is an important comprehensive 
transportation hub of the country. Zhengzhou has witnessed the rapid urbanization pro-
gress of China since the economic transformation in 1992. The permanent residential pop-
ulation in urban areas of Zhengzhou increased from 1.84 million to 7.14 million from 1995 
to 2017. However, the registered population only increased from 1.36 million to 3.54 mil-
lion, indicating that more than 3 million non-residents were beyond the welfare of resi-
dents. These non-residents are mainly migrants or “rural migrant workers in cities” who 
often live in villages in cities or urban fringes [31]. Furthermore, employees of state-owned 
enterprises decreased from 744,300 in 1995 to 432,700 in 2003 and have now stabilized at 
about 450,000. Zhengzhou’s administrative division includes six districts. Community is 
the basic unit and place of human life, as well as the basic unit and key link of national 
governance. Therefore, in this study, according to the land use status data and building 
data in the Zhengzhou Metropolitan Area Master Plan (2012~2030), the buildings in the 
residential land type are extracted, and then the residential areas are further identified 
according to the residential area POI data, and the data of non-residential area types are 
eliminated. We have identified 2494 residential areas within the Fourth Ring Road of 
Zhengzhou (Figure 1). Among them, the first ring has 116 blocks, mainly in the old city; 
the second ring has 699 blocks, mainly old industrial bases and commerce; and the third 
and fourth rings have 1027 and 652 blocks, respectively, mainly urban villages and urban 
expansion. 
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Figure 1. Scope of the study area. 

2.2. Data 
2.2.1. Social Sensing Data 

Based on the Baidu Map development platform, we used Python to mine POI data 
within the fourth ring of Zhengzhou City (https://lbsyun.baidu.com/ (accessed on  Sep-
tember 2018)). Then, according to the Urban Land Classification and Planning Construc-
tion Land Standard (http://www.mohurd.gov.cn/wjfb/201201/t20120104_208247.html (ac-
cessed on November 2018)), which has been implemented since 2012, the POIs dataset 
was divided into eight categories, namely residential land, land for public administration 
and public services, land for commercial service facilities, industrial land, land for logis-
tics and warehousing, land for roads and transportation facilities, land for public utilities, 
and land for green areas and squares. In order to calculate the infrastructure categories 
around the residential area, a 600 m buffer zone was made with the residential area as the 
center, and the number of types of POIs in the buffer zone was calculated, considering the 
decay law of distance [32]. 

Rental data from online individual rental records within the fourth ring of Zheng-
zhou City were released by the Anjuke online real estate platform (https://zheng-
zhou.anjuke.com/ (accessed on November 2018)). The rental data were mainly obtained 
by using Python programming language. The main contents include rental price, housing 
area, housing location, and latitude and longitude. However, the rent data collected did 
not cover the entire study area, and there was a missing rent component. In order to pre-
dict the missing rent values more accurately, the Weka machine learning platform was 
used for the prediction of missing rent data, and we added normalized difference vegeta-
tion index (NDVI), average light brightness values from nighttime light remote sensing 
data, and infrastructure kernel density (transportation service facilities, education, com-
merce, etc.) from POI data in the prediction process. 

The accessibility data of public service facilities were mainly calculated by using the 
real-time batch route planning Web API of the Baidu Map development platform 
(https://lbsyun.baidu.com/ (accessed on October 2020)). The distance and walking time 
between the residential area and the location of the public service facility were measured. 
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The location of public service facilities is derived from the POI data of the Baidu Map. 
Regarding the acquisition of data for the Baidu Map development platform, it includes 
POI data and route planning data for the accessibility of public service facilities. Baidu 
Maps is similar to Google Maps, which requires us to apply to Baidu Maps to register as 
a Baidu developer and then create a browser-side application. The Baidu Maps develop-
ment platform is able to obtain a unique service secret key AK and then use Python pro-
gramming to obtain it according to the type needed. 

2.2.2. Remote Sensing Data 
Remote sensing image data at Sentry 2# (https://earthexplorer.usgs.gov/ (accessed on 

October 2018)) were applied. They were acquired in 2018. The maximum likelihood 
method was used for supervised classification to extract green space and water bodies. 
On this basis, high-resolution Google satellite images were used for artificial vectorization 
complementary recognition, and then the residential area scale green space and water area 
extraction. 

The average lighting intensity value was calculated by Luojia 1# night light remote 
sensing data (http://59.175.109.173:8888/app/login.html (accessed on October 2018)). The 
night light remote sensing data of Luojia 1# were acquired in 2018, with a spatial resolu-
tion of 130 m. We extracted the average nighttime lighting brightness values for each res-
idential area in ArcGIS. 

3. Methods 
In the spatial measurement process framework of urban poverty in Figure 2, there 

are two main steps. First, we give a concept of urban poverty space, construct a model of 
urban poverty space index based on the selection of corresponding indicators, and then 
perform SOM clustering on the model results. Moreover, we also performed a compara-
tive validation using the texture feature information from remote sensing data. 

 
Figure 2. Framework of urban poverty spatial measurement process.  
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3.1. Construction of Measurement Indicators 
The spatial measurement of urban poverty consists of four indicators, which are 

based on previous research [10,26,29,33–35]. It is mainly measured from the economic sta-
tus, built environment, accessibility of public service facilities and vitality of each block, 
including unit rent, block vitality, green coverage, and accessibility. 

3.1.1. Unit Rent 
The rent price is a direct reflection of the land green coverage index, the accessibility 

of public service facilities, and the intensity of community activities, and reflects the eco-
nomic status of the residents. In metropolitan areas with free housing, urban low-income 
people are sensitive to housing prices or rent, which is an important measure of urban 
poverty. In addition, places with high housing prices or rents tend to have high access to 
subways, parks, and infrastructure. In China, the cost of housing also accounts for a large 
part of household consumption expenditure. In particular, it has a significant impact on 
low-income people [26]. Moreover, Leandro-Reguillo and Stuart’s research shows that 
housing proximity to employment opportunities, education, and health care facilities is 
positively associated with increased household income [36]. At the same time, rental in-
formation can also reflect density, accessibility, and livability to a certain extent [37]. 
Therefore, the unit rent is calculated as: 

Rj = Rtotalj/Aj (1) 

where Rj is the unit rent of block j (CNY/m2), Rtotalj is the rent of block j (CNY/m2), and A is 
the housing area of block j (m2). 

3.1.2. Block Vitality 
Urban vitality reflects the basic elements of human activities and urban life quality 

in different space–time, such as acceptable urban appearance, developed urban functions, 
and adequate urban activities [38,39]. Urban vitality is an important evaluation index of 
urban decline [40]. Therefore, it is used to reflect the diversity of surrounding residential 
areas or the degree of completion of infrastructure and land use intensity. Density, acces-
sibility, livability, and diversity are important indicators for measuring block-scale activ-
ities [29,40]. Therefore, the degree of block vitality is expressed using a diversity index, 
which is also known as an entropy model of land use mixture. The calculation formula is: 𝑉௝ = ି ∑ ቀெ೔ೕ௟௡൫ெ೔ೕ൯ቁ೔ ௟௡ேೕ  (2) 

where Vj is the block vitality of block j. Mij is the proportion of POI of type i in block j. Nj 
is the number of POI types in block j. Vj values are within [0, 1]. Vj is 0 when there is only 
one type of POI in the region and it is 1 when the proportions of different POI types in the 
region are equal. 

3.1.3. Green Coverage 
Urban green space and urban landscape have an important impact on social sustain-

ability, supporting physical, psychological, and social health, increasing urban comfort, 
and providing a whole set of ecosystem services to cities [35,41,42]. The green coverage 
rate of the residential area reflects the quality of the community’s ecological environment. 
Under different socio-economic and cultural backgrounds, there are few green spaces and 
low-quality green spaces in urban poverty space [43,44]. Similarly, the construction of 
green landscapes, green space, and other infrastructure will not only affect the recovery 
of poverty spaces, but also help residents cope with poverty [45,46]. Therefore, the green 
coverage index is: 𝐿௝ =  ௪ೕାீೕ௓ೕ  (3) 
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where Lj is the green coverage index of block j and L ranges within [0, 1]. Wj refers to the 
water area of block j. Gj is the green land area of block j. Zj is the total area of block j. 

3.1.4. Accessibility 
Urban public service facilities are the basic public spaces for community residents to 

live. The availability of urban public service facilities is one of the important factors affect-
ing residents’ quality of life. Accessibility of public service facilities affects the conven-
ience of residents’ daily life and is also an important symbol reflecting the quality of life 
of urban residents [47]. According to evidence published by the World Bank, the main 
difference between those who have escaped chronic poverty and those who remain 
trapped in poverty is not income, but access to basic services [34]. Accessibility is a stand-
ard to measure social equity [48], and an important factor to improve social sustainability 
[49]. At the socio-economic level, the supply and accessibility of public service facilities 
affect social equity and justice [50], and it is generally believed that the rich have more 
accessibility than the poor [51]. Therefore, the accessibility of public service facilities refers 
to the shortest distance and convenience of residents from the community to public ser-
vice facilities, and the value of obtaining the most resources and services from public ser-
vice facilities at the lowest cost. The longer the time spent on accessibility, the worse the 
resources available for public service facilities. With real-time Internet map-based service 
API using Python code, the average accessibility to public service facilities of primary 
schools, middle schools, and large shopping malls by walking is calculated as follows: 𝐴 = 𝐸௜ + 𝑀௜ + 𝑆௜𝑛  (4) 

where A represents the average accessibility of public service facilities to primary schools, 
middle schools, and shopping malls by walking. 𝐸௜  is the time to reach the i primary 
school. 𝑀௜ is the time to reach the i middle school. 𝑆௜ is the time to reach the i large shop-
ping center, and n is the type of public service facilities. 

3.2. Modeling Urban Poverty Spaces 
In order to measure the urban poverty space, taking into account the factors of the 

socio-economic and built environment, this paper adopts four indicators: green coverage 
index, block vitality, unit rent, and average accessibility of public service facilities based 
on multi-source big data. These four indicators reflect the environmental conditions, built 
environment, livability, vitality, and convenience of block, and the four indicators are nor-
malized. In the normalization process, the land green coverage index, block vitality, and 
unit rent are normalized as positive indicators, the calculation formula is: 𝑌௡௠ = 𝑋௡௠ − 𝑚𝑖𝑛௡௠/𝑚𝑎𝑥௡௠ − 𝑚𝑖𝑛௡௠ (5) 

The average accessibility index of public service facilities is reverse normalized, and 
the calculation formula is: 𝑌௡௠ = 𝑚𝑎𝑥௡௠ − 𝑋௡௠/𝑚𝑎𝑥௡௠ − 𝑚𝑖𝑛௡௠ (6) 

where 𝑋௡௠ is the value of n indicator m block, 𝑚𝑖𝑛௡௠ is the minimum value of n indica-
tor m block, and 𝑚𝑎𝑥௡௠ is the maximum value of n indicator m block. 

This paper uses the multiplier index to construct the urban poverty spatial index ac-
cording to the selected indicators. Most of the relevant studies use the addend principle, 
which may define urban poverty measures, but the added principle conveys the idea that 
the different dimensions are strictly interchangeable with each other [52]. However, the 
multiplier index emphasizes the importance of the simultaneous existence of all its indi-
cators and emphasizes that all components are essential. The multiplier index is usually 
written as the geometry of several exponents, the indicators are irreplaceable, and the 
multiplicative characteristics of this index also follow the construction of the Human De-
velopment Index [53]; for example, Brelsford et al. used the census data to determine the 



Remote Sens. 2023, 15, 381 8 of 21 
 

 

four different dimensions of slum dwellers’ access to improved water, improved sanita-
tion, electricity, and permanent housing, and constructed a sustainable development in-
dex (X) with a multiplier index [52]. Therefore, the multiplier index is used to construct 
the urban poverty spatial index (SI): 𝑆𝐼 =  √𝐿 ∗ 𝑉 ∗ 𝑅 ∗ 𝐴ర  (7) 

where SI is the urban poverty spatial index of the research unit; the lower the urban pov-
erty spatial index, the higher the urban poverty spatial degree. L is the green coverage 
index of the research unit. V is the block vitality intensity of the research unit. R is the unit 
rent of the research unit. A is the average accessibility of public service facilities. 

3.3. Self-Organizing Map (SOM) Clustering 
Self-Organizing Map network is an unsupervised learning clustering algorithm 

based on a neural network. Different from the general neural network training based on 
the backward transfer of the loss function, it uses a competitive learning strategy, relying 
on the competition between neurons to gradually optimize the network. It uses the nearest 
neighbor function to maintain the topology of the input space. The self-organizing map 
network is also a single-layer neural network, including an input layer and a competition 
layer. The competition layer has a topological structure composed of a series of nodes 
composed of neurons, which can be a one-dimensional structure or a two-dimensional 
structure. The minimum number of nodes in the competition layer is 5√𝑁 (N: the number 
of training samples). SOM plays the role of dimensionality reduction and can map high-
dimensional input data into one-dimensional or two-dimensional space. The hidden node 
of a one-dimensional topological relationship is a line, and the hidden point of a two-
dimensional topological relationship is a plane. After the topological relationship is deter-
mined, the calculation process starts, which is mainly divided into [54]: 
(1) Initialize the SOM. Each node randomly initializes its parameters. The number of 

parameters for each node is the same as the dimension of the input. 
(2) Finding the Best Matching Unit (BMU). Iterate through each node in the competing 

layer and calculate the similarity between them, and select the node with the smallest 
distance as the (BMU). The similarity is usually defaulted to Euclidean distance, 
which can be calculated below: 

𝑑(𝑥, 𝑦) =  ඩ෍(𝑥௜ − 𝑦௜)ଶ௡
௜ୀଵ  (8) 

(3) Learning Rate. The learning rate of the SOM decays as the number of iterations 
increases. α(t) = 𝛼଴ ∗ (𝛼௘௡ௗ𝛼଴ )௧ ௧೘ೌೣൗ  (9) 

where α(t) is the learning rate, t is the number of iterations, 𝛼଴ is the start value, 𝛼௘௡ௗ 
is the end value, and 𝑡௠௔௫ is the maximum number of iterations. 
(4) Neighborhood Function. The neighborhood function is used to determine the 

influence of the best matching unit on its nearest neighbor nodes. σ(t) = 𝜎଴ ∗ (1 − 𝑡𝑡௠௔௫) (10) 

where σ(t) represents neighborhood, and 𝜎଴ is the starting value of the neighborhood 
function. 
(5) Neighborhood Distance Weight. The neighborhood distance weights indicate the 

number of iterations and the distance between BMU and other nodes. The distance 
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between BMU and nodes is Euclidean distance by default. Therefore, the 
neighborhood distance weights are defined as: ℎ௜,௝(𝑡) = exp (− 𝑑ଶ2 ∗ 𝜎(𝑡)ଶ) (11) 

where ℎ௜,௝ represents the neighborhood distance weight between BMU and node. 
(6) Adapting Weights. The weights of the SOM are adjusted according to the learning 

rate and the neighborhood distance weights.  𝑤௜(𝑡 + 1) = 𝑤௜(𝑡) + 𝛼(𝑡) ∗ ℎ௜,௝(𝑡) ∗ (𝑥(𝑡) − 𝑤௜(𝑡)) (12) 

where ℎ௜,௝(𝑡) represents the neighborhood function, 𝛼(𝑡) is the learning rate, x(t) is the 
present data point, and 𝑤௜(𝑡) is the weight vector of node i at iteration t. 

3.4. SI Validation 
Structural and textural features of remote sensing data for the study of urban inner-

city poverty have been applied. Duque et al. used the structure and texture feature values 
of remote sensing data images and principal component analysis to identify inner-city 
poverty in Medellin, Colombia [19]. Yuan et al. extracted texture eigenvalues from remote 
sensing data, land cover types, and unit rent indicators to measure inner-urban poverty 
in Guangzhou, China, by principal component analysis [55]. Therefore, in this paper, first, 
we use the gray level co-occurrence matrix (GLCM) to extract the mean, variance, homo-
geneity, contrast, dissimilarity, entropy, angular second moment, and correlation indica-
tors of texture information feature statistics in remote sensing images, as well as land 
green coverage degree and unit rent. Moreover, we use the factor analysis of the principal 
component analysis method to perform KMO (Kaiser–Meyer–Olkin) and Bartlett spheric-
ity tests on the standardized indicators, and further compare the KMO values of each 
band. Finally, the principal components corresponding to the eigenvalues with higher cu-
mulative contribution rates are selected. Therefore, the measurement space of urban pov-
erty based on the principal component analysis method is: 

𝑃𝐶 = ෍(𝛼௝௡
௝ୀଵ × 𝛼௜௝) (13) 

where 𝛼௜௝ is the score of residential area 𝑖 in indicator 𝑗, and 𝛼௝ is the variance contri-
bution rate of indicator 𝑗. The lower the score, the higher the spatial degree of urban pov-
erty. 

4. Results 
4.1. Structural Features of Urban Poverty Spaces 

The structural characteristics of urban poverty space are mainly caused by the spatial 
differentiation of factors such as green coverage index, block vitality, unit rent, and aver-
age accessibility of urban public services. 

The spatial distribution of unit rents shows a roughly high pattern on the outside and 
low pattern in the inner city (Figure 3a). Due to the continuous expansion of the city, most 
of the houses between the second and third ring lines of the city are new residential areas 
built in recent years. The housing conditions and surrounding environment are relatively 
sufficient, especially the construction of the eastern new district of Zhengzhou City; addi-
tionally, the ecological environment is adequate, and the built environment is superior, 
with high-quality public service facilities. Part of the area between the Third Ring Road 
and the Fourth Ring Road is still under development and construction, so the rents of 
units in areas with complete facilities are higher. The areas with lower unit rents in these 
areas are far from public service facilities, and the basic service facilities are relatively 
weak. In the inner city center area of the First Ring Road, the housing is old, the surround-
ing environment is aging, and the unit rent price is low. 
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The overall block vitality is irregularly distributed (Figure 3b), and each area has ar-
eas with high block vitality, which is mainly related to the service radius of urban infra-
structure and urban planning. The area with low block vitality is in the southeastern part 
of Guancheng Hui District, that is, the southern part of the part between the Second Ring 
Road and the Third Ring Road. The main reason is that there are concentrated industrial 
areas in this area, and the layout of infrastructure and public service facilities is relatively 
simple. The areas with the highest block vitality are concentrated in the southwest area of 
the Fourth Ring Road, mainly because these areas are close to universities, industrial ar-
eas, and residential areas outside the Fourth Ring Road and have a high degree of land 
use mix. 

The green coverage index is higher in the outer urban areas than in the central urban 
areas, with the highest green coverage in the new eastern urban areas (Figure 3c). This 
area is guided by the ecological city, symbiotic city, and metabolic city planning concepts, 
and has a better ecological environment. The outer areas of the city are dominated by the 
land to be developed and the land under development, the green environment is poor, 
and the green coverage index is lower than that of the new urban area. Moreover, in the 
commercial core area of the old urban area, the land price is high and the building density 
is tight, so the green coverage index is low. 

The spatial distribution pattern of the average accessibility of public service facilities 
shows that the accessibility of residential areas in the city center is higher than that of 
residential areas outside the city (Figure 3d). This is mainly because the urban center res-
idential area has been built for a long time, the basic service facilities are more developed, 
the population mobility and density in the urban center are high, and large commercial 
centers are also concentrated there, so the accessibility of public service facilities is high. 
With the continuous increase in the population of Zhengzhou City, the expansion and 
planning of the city, and the continuous improvement of basic service facilities from the 
central area of the city to the periphery, the distance between residential areas and basic 
service facilities has reduced. The area near the Fourth Ring Road on the periphery of the 
city is the area where the city is expanding and renovating. The population density is 
small and the infrastructure services are weak. Therefore, the farther the residential areas 
outside the city are from the basic service facilities, the poorer the accessibility. 
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Figure 3. Spatial distribution of each indicator using the Jenks Natural Breaks classification method 
by GIS. (a) Unit rent; (b) block vitality; (c) green coverage; (d) accessibility. 

4.2. Classification Features of Urban Poverty Space 
According to the model measurement of urban poverty space, the classification of 

urban poverty space adopts a self-organizing mapping neural network structure with a 
competition layer of 2 × 2, where the number of iterations is 1000, the initial learning rate 
is 1, and the number of steps in the sorting stage is 2000. The space is divided into four 
clusters (Figure 4). 

The Class I living environment is the worst, with few numbers, scattered in space 
and with an independent distribution. They are mainly distributed in the northern part of 
Jinshui District and the southern part of Huiji District, and are scattered and less prevalent 
in other areas. Among them, within the first ring line, the second ring line, the third ring 
line, and the fourth ring line account for 10.26%, 5.95%, 6.80%, and 20.63% of each ring 
line block, respectively. The Fourth Ring Road area accounts for a large proportion of the 
residential area. This is mainly because there are large-scale urban villages in the north of 
Jinshui District and the south of Huiji District. This category is a key area for improving 
the quality of the built environment and urban renewal. 

The Class II living environment is relatively poor, mainly in old urban areas and res-
idential areas with long-standing buildings. Cities in these regions have low rent prices, 
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aging infrastructure, and high population densities. Another part of the area is mainly the 
old industrial area and the unit residential area under the planned economy system. This 
part of the area has low rent prices and a long construction time. Retired workers in the 
old industrial area still have a strong attachment to this area and still retain their tradi-
tional way of life. Therefore, the block vitality in these areas is relatively high. As Jane 
Jacobs believes, land use intensity, density, block size, and building age are the conditions 
that must be met to maintain urban vitality [56]. 

The Class III living environment is better. This type of residential area is sparsely 
distributed in the first ring of the city, and more distributed between the second ring and 
the third ring. This part of the area accounts for a large proportion of the fourth ring resi-
dential area. With the urbanization and real estate market economy, the expansion of cit-
ies, the upgrading of residential area planning, and the continuous improvement of public 
service facilities, inner city residents and some middle-class residents with strong eco-
nomic foundations will choose to live in these areas with better conditions. 

The Class IV living environment is the best. The spatial distribution presents a spatial 
pattern in which the eastern New District of Zhengzhou is relatively continuous and other 
areas are relatively scattered. Mainly in new urban areas, these areas are mainly modern 
new urban areas planned by the government according to high standards and high start-
ing points. This part of the area has a superior living environment, higher unit rents, a 
better built environment, sound public service facilities, and many universities and com-
panies. 

 
Figure 4. Spatial visualization of Self-Organizing Map neural network cluster results based on the 
urban poverty spatial index. 
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5. Discussions 
5.1. Model Comparison and Validation 

Based on the spatial measurement of poverty in urban inner cities by the principal 
component analysis method, we selected the third band with a large KMO value. The 
KMO value of the third band is 0.787, the degree of freedom is 45, and the significance is 
0.000. The KMO (Kaiser–Meyer–Olkin) and Bartlett's sphericity test are better, and the 
factor analysis of principal component analysis can be further executed. Finally, the prin-
cipal components corresponding to the eigenvalues with a cumulative contribution rate 
of 83.862% were selected (Table 1). The eigenvalues of each principal component were 
greater than 1, and then the total score of the three extracted principal components was 
calculated. 

Table 1. Principal component analysis method total variance interpretation. 

Component 
Eigenvalue Loading Sum of Squares 

Total Variance (%) Accumulative % Total Variance (%) Accumulative % 
1 6.121 61.211 61.211 6.121 61.211 61.211 
2 1.262 12.624 73.835 1.262 12.624 73.835 
3 1.003 10.027 83.862 1.003 10.027 83.862 
4 0.784 7.835 91.697    
5 0.521 5.206 96.903    
6 0.229 2.289 99.192    
7 0.052 0.519 99.711    
8 0.023 0.229 99.94    
9 0.005 0.051 99.991    
10 0.001 0.009 100    

It can be seen from the spatial distribution of the urban poverty spatial results meas-
ured based on principal component analysis (Figure 5) that the spatial distribution of the 
low-value area (Class I) of the urban poverty spatial is mainly in the area between the 
Third Ring Road and the Fourth Ring Road. This is followed by a sparse distribution 
within the first and second rings, and these Class I areas account for 7.8% of all residential 
areas within the fourth ring of Zhengzhou. The area between the Third Ring Road and the 
Fourth Ring Road belongs to the fringe of the built-up area of the city and is dominated 
by urban villages and bare plots of land, most of which are under construction or unde-
veloped after the demolition of urban villages. Within the First and Second Ring Roads, 
there are also fewer Class I residential areas. In these areas, the use of texture features of 
remote sensing data to measure urban poor spaces or areas with poorly built environ-
ments is often affected by the physical surface of residential areas and the appearance of 
buildings, which may affect the performance of measurement and recognition. 
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Figure 5. Spatial distribution of spatial measures of urban poverty based on principal component 
analysis method of remote sensing data. 

In the comparison of the two models, we extracted the spatial distribution of the first 
type of urban poverty space measured by the spatial index of urban poverty and based 
on the method of principal component analysis. As can be seen in Figure 6, most of the 
urban poor spaces commonly identified by both are located in the area between the Third 
and Fourth Ring Roads. The common urban poor spaces identified by both are mainly 
former urban village areas, which after demolition have now become undeveloped or de-
veloping bare land settlements. Moreover, the difference between the two measures of 
effectiveness is mainly in the old urban areas of the inner city and the bare land on the 
fringes of the built-up urban areas. In old urban areas, SI can measure the residential areas 
with poor-quality living environments in the old urban areas. However, the principal 
component analysis method based on remote sensing data is influenced by the appear-
ance of buildings, which may affect the accuracy of identification. Bare land on the fringe 
of built-up urban areas is influenced by human activities and urban vitality buffer zones. 
The accuracy of the measurement by the principal component analysis method based on 
remote sensing data is higher than that measured by SI. 
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Figure 6. The spatial distribution of SI and PC in identifying Class I. (a–d) indicate the typical urban 
poverty spatial types identified. 

To validate the identified typical urban poverty spaces, the Class I poverty spaces 
measured by SI and PC are mainly divided into four types (Figure 6). Moreover, to further 
validate the four typical urban poverty spaces, we visualized the land use changes in the 
four typical urban poverty spaces using VHR remote sensing satellite images (Figure 7). 
Figure 7a shows the old urban areas of the city, which are old and have poor built envi-
ronment quality. Figure 7b shows the urban villages close to the built-up areas, which 
have been demolished with the development of urbanization. Figure 7c indicates the ur-
ban villages that are far from the built-up area. Figure 7d indicates exposed or unused 
residential areas, urban villages before demolition at the edge of built-up areas, and ex-
posed residential areas after demolition. 

 
Figure 7. Typical urban poverty spatial type map from VRH image; (a–d) represent different types. 
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Moreover, the data and methods used by SI and PC in measuring the urban poverty 
space are different. The measurement of the principal component analysis method based 
on remote sensing data shows that the texture features of remote sensing data can be af-
fected by the physical surface of the settlement and the structure of the building exterior, 
which may affect the measurement and identification. Exposed land on the edge of built-
up urban areas can be better identified. However, the urban poverty space measured 
based on the urban poverty spatial index indicates that there is a better measurement and 
identification effect in residential areas with poorly built environments in old urban areas, 
urban villages, and bare residential areas in urban villages after demolition. In addition, 
the measurement of urban poverty space based on remote sensing data takes more into 
account the physical form and often ignores the socio-economic and built environment 
factors. However, the use of social sensing data can better fill the gap in measuring urban 
poverty space with remote sensing data. 

5.2. The Role of SI Methods in Mapping Urban Poverty Spatial 
Sustainable cities and communities are among the goals of the United Nations for 

sustainable development and are essential to humanity’s pursuit of sustainable urban de-
velopment. Urban poverty spaces have different connotations in each country and region. 
In this paper, more consideration is given to the built environment, housing affordability, 
living environment, and access to basic services and facilities, the improvement of which 
can better improve the quality of life and happiness of the people. In particular, the vul-
nerability of many cities is caused by the lack of adequate and affordable housing, public 
health systems, and inadequate access to basic services at the beginning of the COVID-19 
outbreak [57]. Although scholars have used different data and methods to measure urban 
poverty, the focus of attention varies across countries and regions, and the results of urban 
poverty measures vary. Therefore, to better fit the local situation, this paper measures 
urban poverty space at a fine scale using remote sensing data and social sensing data, 
which are massive, multi-source, heterogeneous, and multi-temporal in nature, and also 
have strong spatiotemporal and physical correlations. 

A healthy built environment benefits community sustainability and promotes 
healthy lifestyles, especially high-density and mixed-use blocks, accessibility, and a high 
presence of urban amenities [36]. The four indicators of the spatial model of urban poverty 
affect and interact with each other, where any component is related to each other, and 
each indicator is equally important. Meanwhile, green coverage, block vitality, unit rent, 
and accessibility all have a large impact on urban poverty space. Green vegetation plays 
an important role in the sustainable development of society, and there is a spatial non-
smoothness between the human-perceived green landscape and the urban poverty space 
[10]. Block vitality is the diversity of urban life; the people, spaces (places), and things in 
the city are the basis of the diversity of urban life [58]. Housing affordability is critical to 
meeting the needs of individuals, and for people in different socio-economic groups, ac-
cess to housing that meets socially acceptable standards will contribute to the sustainabil-
ity of society [35,59]. The ability to access infrastructure services also has a direct impact 
on unit rents and block dynamics. Furthermore, the spatial location of public service in-
frastructure also influences the distribution of urban poverty space. 

Moreover, COVID-19 has already had a severe impact on urban poverty, with more 
than 90% of cases occurring in urban areas, and has also exacerbated the dilemma of the 
world’s densely populated informal settlements and slum dwellers [60]. Therefore, in the 
context of global climate change and urbanization, more attention should be paid in the 
future to the vulnerability of the urban poverty space to climate change, the inequality of 
social resources, and the inequality of air pollution. To gain access to livelihoods, these 
informal settlements or slums are often vulnerable to sea level rise, flooding, landslides, 
and heat waves [61]. Furthermore, the spatial distribution of urban poverty is also a region 
of the poorer built environment, vulnerable to inequalities in air pollution. For example, 
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the use of air purifiers for the relatively wealthy population keeps them safe from air pol-
lution [62]. Moreover, for regions that are lagging in economic development and infor-
mation technology, access to open geographic big data and government census data 
should be enhanced in the future, and smarter, more effective, and more accurate artificial 
intelligence and deep learning technologies should be used to capture the characteristics 
of urban poverty and to map urban poverty. 

5.3. Strengths and Weaknesses 
The biggest contribution of this paper is the use of multi-source big data to integrate 

the built environment, economic status, and residential environment into an urban pov-
erty spatial index model. More attention has been paid to the built environment, housing 
affordability, and living environment. At the same time, the use of the multiplicative index 
emphasizes the mutual influence and interaction between the indicators, and any one 
component is related to another, and is equally important and cannot be replaced by an-
other. In addition, the use of multi-source big data makes up for the long time, high cost, 
and lagging data quality of traditional data. At the microscopic scale, it also avoids the 
“ecological fallacy” of remote sensing data in identifying poverty spaces in the inner city 
and the influence of the physical surface of the settlement and the structure of the build-
ing’s appearance. Therefore, it provides a comprehensive, low-cost, and efficient monitor-
ing method for the refined management of urban poverty space, and also provides theo-
retical and technical support for the improvement of urban built environment quality, 
sustainable urban development, urban renewal, and planning. 

Furthermore, although the study in this paper has its merits, we must admit that 
some limitations need to be addressed in future research. Firstly, due to the influence of 
humanities, social economy, built environment, and gentrification within the city, the spa-
tial measurement of urban poverty in rapidly urbanizing areas is complicated [63]. A 
small number of communities in the old urban area occupy location advantages and are 
close to school districts, resulting in higher housing prices and lower green coverage, 
which may also overestimate or underestimate the identified urban poverty space. There-
fore, how to further optimize it needs to be discussed in depth in future research. Sec-
ondly, the area studied in this paper is the urban built-up area. However, affected by the 
phenomenon of urban suburbanization, the infrastructure and public service facilities in 
these areas are not as complete as those in urban built-up areas, and high-end suburban 
communities with high green coverage and low accessibility may appear. How to further 
study the spatial measurement of poverty in the whole city still needs to be explored. 
Thirdly, due to the COVID-19 epidemic, for its prevention and control, and for safety rea-
sons, this study did not conduct a questionnaire survey on the spatial measurement of 
urban poverty at the block scale. In the future, big data and traditional survey data should 
be combined for comparative research. Lastly, this model may be a better fit for rapidly 
urbanizing and relatively developed informatization places. Other indicators and meth-
ods may be needed to measure regions with slow urbanization and information technol-
ogy development. 

6. Conclusions 
This paper measures urban poverty using remote sensing data, POI data, Baidu Map 

API path planning data, and online rent data. Block green space coverage, block vitality, 
accessibility to public service facilities, and per unit rent have been quantified as the indi-
cators of poverty. From the perspective of the built environment, economic status, and 
block environment, the multiplier index is used to construct the urban poverty spatial 
index model. It is more reflected in the quality of the habitat, the level of infrastructure, 
and the socio-economic dimension of the resident. Taking the main urban area of Zheng-
zhou as an example, the SOM artificial neural network model is used to classify the urban 
poverty spatial index. The spatial differentiation pattern of urban poverty in its main ur-
ban area was revealed and compared and validated the urban poverty space based on 
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remote sensing data measurement. The main findings of this study can be summarized as 
follows. 

Firstly, this paper uses the multiplier index to construct the urban poverty spatial 
index through the coverage of block green space, the vitality of the block, the accessibility 
of public service facilities, and the unit rent. The importance of the simultaneous existence 
of all its indicators is emphasized. The four indicators of the spatial model of urban pov-
erty affect and interact with each other, and any one component is related to another. 
Taking the built environment, economics, and living environment into consideration is 
conducive to the sustainable development of the community and the promotion of healthy 
lifestyles, especially high-density and mixed-use blocks, accessibility, and areas with a 
high presence of urban amenities. Therefore, the study can provide a comprehensive, low-
cost, efficient, and dynamic monitoring method for the fine management of urban poverty 
space, and also provide theoretical support and technical support for the improvement of 
urban built environment quality, sustainable development of cities, urban renewal, and 
planning. 

Secondly, based on the SOM artificial neural network model clustering, the urban 
poverty spatial index models are divided into four categories. Class I urban poverty space 
is a key area of concern for improving the quality of the built environment and urban 
renewal. Four typical types were identified based on Class I urban poverty spaces, namely 
old urban areas in inner cities, urban villages, urban villages after demolition, and bare 
land. 

Moreover, in model comparison and accuracy validation, the texture features of re-
mote sensing data are affected by the physical surface of the settlement and the structure 
of the building exterior, which may impact the effectiveness of the measurement and 
recognition. The remote sensing data have an adequate recognition effect on the bare land 
at the edge of the built-up area of the city. However, the urban poverty space measured 
based on the urban poverty spatial index indicates that there is a better measurement and 
identification effect in residential areas with a poor built environment in old urban areas, 
urban villages, and bare residential areas in urban villages after demolition. In addition, 
the measurement of urban poverty space based on remote sensing data takes more into 
account the physical form of the ground surface and often ignores the socio-economic and 
built environment factors. However, the use of multi-source big data can better compen-
sate for the lack of remote sensing data to measure urban poverty space. In addition, these 
multi-source big data can also make up for the time-consuming, costly, and data lag char-
acteristics of traditional data. At the microscopic scale, it also avoids the “ecological fal-
lacy” of remote sensing data in identifying poor spaces in the inner city and the influence 
of the physical surface of the settlement and the structure of the building’s appearance. 

In addition, this paper provides some policy implications. For the improvement of 
the quality of the built environment, the government needs to plan, repair, rebuild, and 
improve areas with poor quality building structures, dilapidated residential areas in the 
city, urban villages, and poor living conditions, thus improving the quality of the built 
environment and urban landscape in residential areas. In the community, the degree of 
public participation should be actively promoted to facilitate the restoration and renewal 
of dilapidated buildings from the bottom up. The concept of community life circle should 
be used to improve the service scope of spatial resources of public service facilities, in-
crease the flexibility and resilience of the process of using public service facilities, reason-
ably plan the demand and supply between public service facilities, and continuously pro-
mote the development of accessibility and equalization from communities to public ser-
vice facilities. 

Finally, in the context of global climate change and urbanization, more attention 
should be paid in the future to the vulnerability of poverty areas to climate change adap-
tation and the inequality of air pollution. Moreover, for regions lagging in economic de-
velopment and information technology, access to open geographic big data and govern-
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ment census data should be enhanced in the future, and smarter, more effective, and ac-
curate artificial intelligence and deep learning technologies should be used to capture the 
characteristics of urban poverty and map urban poverty in a more refined and dynamic 
way. 
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