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Abstract: Sun-induced chlorophyll fluorescence (SIF) has shown potential in quantifying plant re-
sponses to environmental changes by which abiotic drivers are dominated. However, SIF is a mixed
signal influenced by factors such as leaf physiology, canopy structure, and sun-sensor geometry.
Whether the physiological information contained in SIF can better quantify crop disease stresses
dominated by biological drivers, and clearly explain the physiological variability of stressed crops,
has not yet been sufficiently explored. On this basis, we took winter wheat naturally infected with
stripe rust as the research object and conducted a study on the responses of physiological signals and
reflectivity spectrum signals to crop disease stress dominated by biological drivers, based on in situ
canopy-scale and leaf-scale data. Physiological signals include SIF, SIFyield (normalized by absorbed
photosynthetically active radiation), fluorescence yield (ΦF) retrieved by NIRvP (non-physiological
components of canopy SIF) and relative fluorescence yield (ΦF-r) retrieved by near-infrared radiance
of vegetation (NIRvR). Reflectance spectrum signals include normalized difference vegetation index
(NDVI) and near-infrared reflectance of vegetation (NIRv). At the canopy scale, six signals reached
extremely significant correlations (p < 0.001) with disease severity levels (SL) under comprehensive
experimental conditions (SL without dividing the experimental samples) and light disease conditions
(SL < 20%). The strongest correlation between NDVI and SL (R = 0.69) was observed under the com-
prehensive experimental conditions, followed by NIRv (R = 0.56), ΦF-r (R = 0.53) and SIF (R = 0.51),
and the response of ΦF (R = 0.45) and SIFyield (R = 0.34) to SL was weak. Under lightly diseased con-
ditions, ΦF-r (R = 0.62) showed the strongest response to disease, followed by SIFyield (R = 0.60), SIF
(R = 0.56) and NIRv (R = 0.54). The weakest correlation was observed between ΦF and SL (R = 0.51),
which also showed a result approximating NDVI (R = 0.52). In the case of a high level of crop disease
severity, NDVI showed advantages in disease monitoring. In the early stage of crop diseases, which
we pay more attention to, compared with SIF and reflectivity spectrum signals, ΦF-r estimated by
the newly proposed ‘NIRvR approach’ (which uses SIF together with NIRvR (i.e., SIF NIRvR) as
a substitute for ΦF) showed superior ability to monitor crop physiological stress, and was more
sensitive to plant physiological variation. At the leaf scale, the response of SIF to SL was stronger
than that of NDVI. These results validate the potential of ΦF-r estimated by the NIRvR approach to
monitoring disease stress dominated by biological drivers, thus providing a new research avenue for
quantifying crop responses to disease stress.

Keywords: sun-induced chlorophyll fluorescence (SIF); wheat stripe rust; severity level;
physiological signals

1. Introduction

Wheat stripe rust is a devastating hazard to wheat production. In epidemic years,
wheat stripe rust can cause more than a 40% yield reduction and, in some cases, no har-
vest [1]. Wheat stripe rust occurs mainly on the leaves of the plant, with a few occurrences
on the leaf sheaths, stalks and spikes [2]. Initially, small chlorotic spots form at the diseased
site, followed by the development of summer spore mounds arranged in dashed segments
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parallel to the leaf veins [3]. In the late stage of the disease, short thread-like black winter
spore mounds appear, the epidermis of the plant leaves breaks down and rust-colored
powdery material appears, leading to dryness and death of the leaves [4]. In recent years,
crop pests and diseases have become commonplace, with more than 566,700 ha of wheat
fields in Shaanxi Province alone experiencing outbreaks of stripe rust in 2020. Moreover,
the frequent occurrence of pests and diseases has become a major limiting factor for stable
crop yields.

Sun-induced chlorophyll fluorescence (SIF) is an optical signal emitted in the spectral
range of 650–850 nm from chlorophyll a molecules in vegetation, and is a direct probe
of photosynthesis with good sensitivity and accuracy in assessing the physiological state
of plants and their responses to environmental changes [5,6]. The SIF data obtained
from sensors at different spatial scales provide a basis for studying the structural and
physiological information contained in the SIF in response to different environments
and different stresses. Large-scale SIF data are acquired via unmanned aerial vehicles
or satellites to assess the variability of SIF on spatial scales and seasonal variation on
temporal scales [7–11]. Continuous datasets obtained from tower-based measurements
or other ground-based fixed measurements combined with meteorological variable data
allow for the assessment of observed plant physiological variability [12–15]. Ground-
based portable systems such as ASD spectrometers, QE-pro spectrometers, and canopy
analyzers were used to acquire data in experimental areas where crops were subjected to
physiological or non-physiological stress to assess the ability of SIF to quantify different
categories of stress [16–18]. However, the SIF acquired using a sensor is a mixed signal
influenced by factors such as leaf physiology, canopy structure, and sun-sensor geometry.
To better study the effects of disease stress on crops and improve the accuracy of remote-
sensing monitoring of crop diseases, it is necessary to distinguish between structural and
physiological influences that cause canopy SIF variation and test whether the isolated
physiological signals can quantify the physiological variation of crops under disease stress
conditions, and whether they are more advantageous in disease monitoring compared to
canopy SIF or the vegetation index.

Recent studies have shown that near-infrared reflectance of vegetation (NIRv) and near-
infrared radiance of vegetation (NIRvR) can better explain changes to the non-physiological
information in SIF [19–21]. However, the contribution of physiological information con-
tained in SIF to SIF variability is still being explored. Kimm et al. (2021) found that
fluorescence yield (ΦF) can better reflect the effects of a high-temperature and high vapor
pressure deficit on crops than SIF through analyzing different spectral datasets [22]. Wu
et al. (2022) found that the increased ΦF dominated the SIF variation during the early stages
of herbicide stress, while the influence of the non-physiological components (NIRvP, which
is calculated as NIRv multiplied by incoming photosynthetically active radiation (PAR),
i.e., NIRvP = NIRv × PAR) of canopy SIF was prominent in the variability of SIF in the
absence of herbicide [23]. The study by Xu et al. (2021) showed that the influence of ΦF was
prominent in the diurnal SIF response to water stress, with reduced fluorescence efficiencies
in stressed plants [24]. Recently, Zeng et al. (2022) proposed an improved approach for
estimating ΦF (NIRvR approach, this approach uses SIF together with NIRvR (i.e., SIF
NIRvR) as a substitute for ΦF. SIF/NIRvR does not represent the absolute value of ΦF, but
instead serves as a linear approximation of ΦF to indicate its response to stress. Hereafter,
SIF/NIRvR is denoted by ΦF-r.), and their estimated ΦF-r captured seasonal changes in
fluorescence and showed sensitivity to physiological responses induced by changes in
light, temperature and moisture dynamics [25]. However, the studies mentioned above all
analyze the responses of fluorescence yield to dynamic changes in abiotic drivers. Studies
on remote-sensing monitoring of crop physiological stresses caused by dynamic changes in
biological drivers such as pest and disease stresses and using fluorescence yield have not
yet been reported.

The current research is mainly focused on the monitoring of wheat stripe rust using
reflectance spectra, with information extraction and detection around the spectral bands
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that are sensitive to the crop disease. Some studies have also taken advantage of the
ability of SIF to sensitively reflect the physiological changes caused by the disease to detect
wheat under stripe rust stress. However, reflectance spectra cannot directly reveal the
physiological state of vegetation photosynthesis, and the SIF signal is also a mixed signal
influenced by leaf physiology, canopy structure and other factors.

Considering this background, we investigated the responses of four physiological
signals and two reflectivity spectrum signals to biotic-driver-dominated wheat stripe rust
stress, using field-based canopy-scale data, in winter wheat with the natural occurrence
of stripe rust. Among them, physiological signals include ΦF estimated using the NIRvP
approach (this approach uses NIRv and PAR together with SIF to approximate ΦF; i.e.,
the effect of abiotic changes and stress is detected as SIF/ (PAR × NIRv)), ΦF-r estimated
using the NIRvR approach, SIF and SIFyield (normalized by absorbed photosynthetically
active radiation (APAR)). Additionally, reflectivity spectrum signals include the normalized
difference vegetation index (NDVI) and NIRv. Our primary objectives were to investigate
whether the canopy ΦF-r estimated by the NIRvR approach could capture or quantify
the physiological variation of wheat under stripe rust stress conditions, whether ΦF-r
could improve the remote-sensing monitoring precision of wheat stripe rust under low
disease levels, and whether ΦF-r was more advantageous than SIF or vegetation index-
based disease monitoring. We then explore the relative contribution of the structural and
physiological information to SIF variability under disease stress conditions. Finally, we
discuss the applicability of SIF-derived physiological signals for the detection of other crops
and stresses.

2. Materials and Methods
2.1. Experimental Areas

Field data were collected in Qishan (Figure 1), Shaanxi Province (34◦26′52′′N, 107◦37′42′′E),
in April 2021. This region is a mid-latitude warm temperate zone that experiences a con-
tinental monsoon climate with mild weather and sufficient rainfall. The annual average
temperature is 12 °C, the annual sunshine hours are 2053 hours, and the annual average
precipitation is 615 mm. The wheat variety planted was Xinong 822. The sowing dates of
wheat are mainly concentrated from 28 September to 3 October 2020. The following year,
in late May to early June, wheat matures.
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2.2. Data Acquisition and Processing
2.2.1. Canopy-Level Spectrum Measurement

Canopy spectral observations of all samples were obtained in a 40 × 40 cm wheat
quadrat. A QE Pro spectrometer (Ocean Optics Inc., Dunedin, FL, USA) was used for
spectrum measurements, with an FWHM of 0.3 nm, a spectral sampling interval of 0.15 nm,
and a spectral range of 640–800 nm. The probe height was 0.9 m from the wheat canopy,
and the field of the probe view is 15◦. The canopy spectrum was measured at 11:00–14:00
Beijing time. Each sample (number of canopy samples: 247, Figure 2) was continuously
observed 10 times and averaged as the spectral data. Canopy spectral measurements
were performed in three separate sessions (first: 28–30 April 2021; second: 5–6 May 2021;
and third: 12–13 May 2021), and weather conditions were predicted in advance of each
measurement through the weather platform. The weather conditions on the measurement
dates were all clear and cloudless.
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2.2.2. Leaf-Level Spectrum Measurement

We performed leaf-scale spectral measurements on the flag leaves of the diseased
plants. The same QE Pro spectrometer was used for the leaf-scale spectral measurements.
However, when using this device, observation of the leaf samples was performed by the
observer holding a bare fiber probe close to, and perpendicular to, the blade surface for
continuous observations. The probe height was 3 cm from the wheat leaf (number of leaf
samples: 311, Figure 2). Leaf spectral measurements were performed in two separate
sessions (first: 5–6 May 2021 and second: 9 May 2021).

2.2.3. Severity Level (SL) Survey

Five sample sites were selected in a diagonal manner within an area of about 40 × 40 cm.
Two flag leaves were selected for each sample site, and all of the sampled leaves were
inspected using the Rules for the Monitoring and Forecast of Wheat Stripe Rust (GB/T
15795-2011) [26]. The SL of disease (the percentage of diseased spot area on the diseased
leaf relative to the total leaf area) on wheat leaves was divided into eight levels (1%, 5%,
10%, 20%, 40%, 60%, 80%, and 100%). The SL of the canopy sample was calculated using
Equation (1). The SL of the leaf sample was expressed as the percentage of diseased spot
area on the diseased leaf relative to the total leaf area:

SL = ∑(i× li)/L (1)

where i is the level value, li is the number of diseased leaves corresponding to the ith

gradient value, and L is the number of leaves investigated.

2.3. SIF Retrieval Method and Vegetation Indices Calculation

SIF retrieval algorithms are generally based on the Fraunhofer line depth (FLD) princi-
ple. To derive SIF from the spectral data, we used the 3FLD method [27], which is improved
from the FLD method [28]. Studies have shown that the 3FLD algorithm is the most robust
algorithm for detecting single-band SIF [29,30]. The algorithm assumes that chlorophyll
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fluorescence and reflectance spectra vary linearly around the absorption line band, and
calculates SIF using one band within the Fraunhofer line and two bands located on both
sides of the Fraunhofer line.

Wleft =
(

λright − λin/λright − λleft

)
Wright =

(
λin − λleft/λright − λleft

)
SIF =

(IleftWleft+IrightWright)Lin−Iin(LleftWleft+LrightWright)
IleftWleft+IrightWright−Iin

(2)

where Wleft and Wright are the weights of the left and right reference bands of the absorption
line; λleft, λright, and λin are the wavelengths of bands to the left, right, and inside of the
absorption band; Lleft, Lright and Lin are the vegetation canopy upwelling radiance values
on the left, right and inside of the absorption line; Ileft, Iright and Iin refer to the incoming
solar irradiance values on the left, right and inside of the absorption line, respectively.

Since no directly measured PAR data are available, a solar irradiance value be-
tween 645~800 nm was selected as a proxy of the PAR because of their significantly
linear relationship [31,32].

PAR = 1.17× Solar irrdiance(645 ∼ 800 nm) (3)

The detailed calculation of APAR and SIFyield are described in the following
Equation (5) [31]. The red-edge normalized difference vegetation index (RNDVI) was
used to approximate the fraction of APAR (f APAR) [33].

RNDVI = (R750 − R705)/(R750 + R705) (4)
f APRA = 1.33× RRNDVI− 0.15

APAR = PAR× f APAR
SIFyield = SIF/APAR

(5)

where R750 and R705 are the canopy reflectance of the experimental sample at 750 nm
and 705 nm.

2.4. Extraction Fluorescence Yield
2.4.1. ΦF Derivation Based on NIRvP

The canopy SIF signal can be decomposed into physiological and non-physiological
signals [34]. According to the method (NIRvP approach) proposed by Kimm et al. (2021),
NIRvP is used here as a substitute for the non-physiological signal contained in SIF, and
ΦF, which can be estimated from NIRvP and SIF, is calculated as follows:

NIRvP = NIRv·PAR (6)

where NIRv is an approximation of the near-infrared reflectance of vegetation.
ΦF (unit: nm−1) is then derived using NIRvP (unit: µmol photon m−2 s−1) and calculated
as follows [35]:

SIF = PAR·fAPARchl· fesc·ΦF (7)

fesc = NIRv/fAPARchl (8)

ΦF = SIF/NIRvP (9)

where SIF is the far-red SIF at 760 nm (unit: mW m−2 sr−1 nm−1) and f esc (unit: sr−1) is the
fraction of all SIF photons emitted from all leaves that escape from the canopy [36].

2.4.2. ΦF-r Derivation Based on NIRvR

The SIF dynamics at the canopy scale can be described as the product of three factors:
APAR, ΦF, and canopy structure (f esc). Some studies have shown that SIF can respond early
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in stress, but the effects of f esc driven by canopy structure and sun-sensor geometry have
not been clearly explained. If the fluorescence yield is not separated from the influence
of f esc, the changes of f esc and spatial observation geometry may lead to deviation in
understanding SIF dynamics.

According to Zeng et al. (2019), at a given sun-sensor geometry, the link between the
sensor-observed far-red SIF and NIRvR of a canopy can be expressed using
Equations (7) and (10) [35].

NIRvR can be expressed by Equation (10) as follows:

NIRvR = INIR·i0, green·wN · fesc = INIR·NIRv ≈ INIR·NDVI·NIR= NDVI·NIRrad (10)

where INIR is the incoming irradiance at the bottom of the atmosphere for a certain NIR
wavelength, NIRrad is the upwelling NIR radiance, wN is the NIR leaf albedo, i0,green is the
canopy directional interceptance of green components with chlorophyll, and, considering
the possible contribution of non-green leaves in the abiotic change process, i0,green is not the
total interceptance of all vegetation components. By definition, the non-green components
will not contribute to i0,green and NIRvR. In practice, NIRvR is calculated as NDVI×NIRrad,
so that non-green components have non-zero NIR reflectance and radiance, but have near-
zero NDVI and NIRvR. Therefore, NIRvR is minimally affected by non-green components.

f esc can be cancelled by dividing Equation (7) by Equation (10) as follows:

ΦF−r = SIF/NIRvR·(INIR/PAR)·
(
i0,green/fAPARchl

)
·wN (11)

where INIR is stably correlated to the incoming PAR at a given ratio of diffuse radiation,
f APARchl is a good approximation of the directional interceptance i0,green by chlorophyll
at different canopy structure/sun-sensor geometry on sunny days, and wN does not vary
with leaf chlorophyll content and can be regarded as a constant term.

Therefore, ΦF-r is proportional to SIF/NIRvR, and SIF/NIRvR can represent the
variability of ΦF-r.

ΦF−r ∝ SIF/NIRvR (12)

3. Results
3.1. Evaluation Fluorescence Yield under Disease Stress Conditions Retrieved by NIRvP Approach
and NIRvR Approach

We explored the correlation between NIRvP and NIRvR at the canopy scale using s
Pearson correlation analysis and a t-test for regression coefficient significance, to evaluate
whether SIF-derived ΦF and ΦF-r can quantify the effects of physiological stress on crops
and detect disease stress.

The coefficient of determination (R2) between NIRvP and NIRvR for the canopy-scale
experimental samples was 0.88 (Figure 3a). The comparison between ΦF obtained using the
NIRvP approach and ΦF-r obtained using the NIRvR approach indicates strong covariance
(R2 = 0.54, Figure 3b). These results show that the ΦF and ΦF-r derived from the two
approaches are consistent in their overall trends and that both methods can effectively
estimate or capture variation in the fluorescence yield.

3.2. Response of SIF, ΦF, ΦF-r, SIFyield, NIRv and NDVI to Disease Severity Level

To explore to what extent SIF-derived ΦF and ΦF-r can quantify the effects of disease
stress on crops, and whether SIF-derived physiological signals are more advantageous than
SIF and reflectance spectroscopy-derived vegetation indexes in crop disease monitoring,
we combined datasets (a comprehensive experiment without distinguishing the disease
severity levels of the experimental samples) acquired on different dates for analysis, and
assessed the association of each signal (ΦF, ΦF-r, SIF, SIFyield, NIRv and NDVI) with SL
through the correlation coefficient (R) and P-value.
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Figure 4a–f shows the responses of ΦF, ΦF-r, SIF, SIFyield, NIRv and NDVI to SL for
canopy-scale experimental samples. Correlation analysis of canopy-scale data showed that
the correlation between the six signals and SL was extremely significant (p < 0.001). The
correlation between NDVI and SL was the strongest (R = 0.69, NDVI-SL), followed by NIRv,
ΦF-r and SIF (R = 0.56, NIRv-SL; R = 0.53, ΦF-r-SL; R = 0.51, SIF-SL). Lastly, the response
of ΦF and SIFyield to SL was lower than that of SIF (R = 0.45, ΦF-SL; R = 0.34, SIFyield-SL).
These results suggest that under comprehensive experimental conditions, the NDVI, NIRv,
ΦF-r and SIF have good physiological stress monitoring abilities and can monitor the SL of
stripe rust. Correlation analysis was performed on SIF and NDVI with the SL of the experi-
mental samples at the leaf scale (Figure 4g,h). Both signals were significantly correlated
with SL (p < 0.001). However, the performance order of the SIF and NDVI responses to SL
differed from that at the canopy scale. At the leaf scale, the correlation between SIF and SL
was better than that between NDVI and SL (R = 0.61, SIF-SL; R = 0.50, NDVI-SL).

Overall, the six signals can monitor the physiological stress of crops. Under compre-
hensive experimental conditions, the sensitivity of both SIF and SIF-derived physiological
signals to SL was lower than that of NDVI and NIRv at the canopy scale. This result differs
from the results of some recent studies. The reason for these differences may be that the
high SL of the experimental samples of the canopy-scale (moderate (20% ≤ SL < 40%) and
severe (SL ≥ 40%) experimental samples accounted for 58.3% of the total number, Figure 3).
Moreover, Puccinia striiformis continued to infect plant tissues; the canopy structure showed
significant differences in the SL gradient of the samples, and the physiological and biochem-
ical parameters and population biomass of the wheat changed [37]. Therefore, NDVI and
NIRv were more sensitive to SL than SIF in the comprehensive experiment. The results at
the leaf-scale also support this hypothesis to some extent. The experimental samples at the
leaf observation scale had low SL, and SIF was more sensitive than NDVI to physiological
variation in wheat plants under lightly diseased conditions (Figure 4g,h). Compared to
wheat diseased plants with higher disease SL, we paid more attention to the sensitivity
of the six signals to SL under three conditions: incubation period wheat plants that were
infested with P. striiformis but had not yet become symptomatic, plants that had just become
symptomatic, and plants in the early stages of disease. For remote-sensing monitoring
of crop diseases, we focused on determining whether crop diseases can be detected and
prevented early.
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3.3. Response of SIF, ΦF, ΦF-r, SIFyield, NIRv and NDVI to SL with Lightly Diseased Status

To evaluate the applicability of the six signals, SIF, ΦF, ΦF-r, SIFyield, NIRv and NDVI,
to the remote-sensing monitoring of stripe rust under light wheat infection, we analyzed
experimental samples of light disease with SL < 20% [38]. We assessed the association of
the six signals with SL under lightly diseased conditions, using NDVI as a reference as it
had performed well in comprehensive experiments. The purpose of this process was first to
evaluate whether the NDVI performed equally well in the early stages of the disease, and
second to verify our speculation that the superior performance of NDVI was associated
with higher SL values (see Section 3.2).

The data analysis of the light disease condition (Figure 5) differed from that of the
comprehensive experiment (Figure 4). At the canopy scale, ΦF-r showed the strongest
response to disease among the six physiological signals (R = 0.62, ΦF-r-SL). SIFyield
had the next strongest correlation with SL, with a R of 0.60, followed by SIF and
NIRv (R = 0.56, SIF-SL; R = 0.54, NIRv-SL). The correlation between ΦF and SL was the
weakest, yet also presented a result approximating NDVI, with an R slightly lower than
that of NDVI and SL (R = 0.51, ΦF-SL; R = 0.52, NDVI-SL). ΦF and SL also passed the
significance test at a p < 0.001 level. At the leaf scale, the order of responses of SIF
and NDVI to SL was the same as that in the comprehensive experiment (Figures 4g,h
and 5g,h), and the response of SIF to SL was much stronger than that of NDVI to SL.
However, in the comprehensive experiment, the performance order of SIF and NDVI at
the two scales was reversed (Figure 4a,f–h).
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At the canopy scale, the performance order of each signal in response to SL under
light disease conditions was ΦF < NDVI < NIRv < SIF < SIFyield < ΦF-r. The performance
order of each signal in response to SL under comprehensive experimental conditions was
SIFyield < ΦF < SIF < ΦF-r < NIRv < NDVI. The performance of ΦF-r was stable and accurate
under both experimental conditions.

4. Discussion
4.1. Relative Contribution of Structural and Physiological Information to SIF Variability under
Disease Stress Conditions

We tested the responses of structural (NIRvP and NIRvR) and physiological (ΦF and
ΦF-r) information to SIF variability and analyzed their sensitivity to SL to explore the
relative contribution of structural and physiological information to SIF variability under
disease stress conditions.

Figure 6 shows the responses of structural (NIRvP and NIRvR) and physiological (ΦF
and ΦF-r) information to SIF variability at the canopy observation scale. It can be seen that
there is a strong correlation between the structural signal and SIF (R2 = 0.71, NIRvP-SIF;
R2 = 0.6, NIRvR-SIF), where structural information plays a dominant role in explaining SIF
variability. This result is consistent with the findings of Dechant et al. (2020) and Kimm
et al. (2021) at the canopy scale [22,34]. Earlier studies showed that both leaf inclination
and chlorophyll content can respond to environmental changes and stresses [39]. Changes
in leaf inclination can have two causes: one is that the leaves droop when they lose a
large amount of water, and the other is that the plant avoids strong light by reducing
absorption, making the leaves more curled or upright [40]. Additionally, NIRvP is not only
determined by canopy structure, but also by leaf pigments (nevertheless, leaf pigments only
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played a minor role compared to canopy structure) [41,42]. Therefore, SIF, which mixes
structural information and physiological information, may present the same or opposite
trend to ΦF in terms of stress responses. The opposite trend especially highlights the stress
monitoring value of ΦF in practical applications. Compared to NIRvP and NIRvR, the
physiological information contained in SIF is less pronounced in response to SIF variability
(R2 = 0.37, ΦF-SIF; R2 = 0.11, ΦF-r-SIF, Figure 6), and only a small fraction of SIF variation is
attributable to plant physiological information.
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However, fluorescence yield (ΦF and ΦF-r) explains the physiological variability of
plants under disease stress conditions (Figure 7). NIRvP and NIRvR, which characterize
the structural and radiometric information of vegetation, presented a lower response to SL
(R = 0.33, NIRvP-SL; R = 0.17, NIRvR-SL), while ΦF and ΦF-r, which characterize the physi-
ological information, showed a much stronger response (R = 0.45, ΦF-SL; R = 0.53, ΦF-r-SL)
to SL than NIRvP and NIRvR. This difference highlights the validity of the fluorescence
yield estimated by the two methods in assessing physiological stress. This result also indi-
cates that compared with NIRvP and NIRvR, ΦF and ΦF-r are more useful for quantifying
the physiological variation of plants under disease stress. The relative importance of ΦF
and ΦF-r was higher in the remote-sensing monitoring of wheat stripe rust.
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4.2. The Performance of SIF and NDVI at Two Observation Scales and under Two
Experimental Conditions

We found that SIF and NDVI showed different performance orders in response to SL
under the two experimental conditions and observation scales. Under the comprehensive
experimental conditions, at the canopy scale, NDVI showed the strongest response to
SL, and the correlation between SIF and SL was lower than that of NDVI and SL. At the
leaf scale, the correlation between SIF and SL was better than that of NDVI and SL. The
response of SIF to SL was stronger than NDVI at both observation scales under lightly
diseased conditions.

Under the comprehensive experimental conditions, the experimental samples with
moderate and severe disease (SL ≥ 20%) exceeded 50% of the total sample. When the
wheat infection was at a moderate or severe level (SL > 20%), P. striiformis continued to
infect plant tissues; disease stress became the main factor affecting the canopy reflectance
spectrum and wheat canopy structure, and the physiological and biochemical parameters,
population biomass, and leaf inclination changed [43]. The normal growth of wheat was
severely affected.

NDVI can characterize the growth status of vegetation while reflecting the population
biomass of crops [44]. This may be the reason that the correlation between NDVI and
SL was higher than that between SIF and SL for the experimental samples at the canopy
scale under comprehensive experimental conditions. When wheat infection was light,
disease spots were scattered and symptoms were not sufficiently obvious. The reflection
spectrum signal has characteristic spectral sensitivity to crop population biomass, and can
effectively reflect changes in canopy geometry and vegetation biochemical components [45].
However, it remains difficult to detect the disease status of stripe rust [46,47]. At this
time, SIF containing crop physiological information can characterize the stress status
of plants before changes in the canopy structure and leaf area index of wheat, which
can better reflect the stress status of the crops [48]. The reflectance spectrum mainly
indicates the concentration information for vegetation biochemical components and cannot
directly reveal the physiological state of vegetation photosynthesis [49]. In contrast, SIF
is sensitive to changes in plant photosynthetic physiology, which may lead to a reversed
order of responses of SIF and NDVI to SL under comprehensive experimental conditions.
This phenomenon explains why the correlation between SIF and SL was higher than that
between NDVI and SL under light disease conditions. At the same time, this result confirms
to a certain extent that the separation of physiological information in SIF has advantages
for vegetation monitoring.

4.3. The Performance of Four Physiological Signals and Two Spectral Signals at the Canopy Scale

At the canopy scale, the sensitivities of the six signals to SL showed different per-
formance orders under the two experimental conditions. The performance order of the
correlation between each signal and SL under comprehensive experimental conditions was
SIFyield < ΦF < SIF < ΦF-r < NIRv < NDVI. The performance order under lightly disease
conditions was ΦF < NDVI < NIRv < SIF < SIFyield < ΦF-r.

SIF is a mixed signal affected by many factors, such as leaf physiology, canopy struc-
ture, and sun-sensor geometry. Under comprehensive experimental conditions, the re-
sponse of ΦF and SIFyield to the physiological stress suffered by the crop at the canopy
scale was lower than that of SIF. We speculate that this discrepancy may be due to the fact
that SIF is more strongly affected by structural changes in the canopy when the severity of
the disease is greater, which leads to an increase in the weight of structural information
in the SIF signal when it is reflected in the severity of the disease. Consequently, the
relative importance of ΦF decreases, and its response to SL decreases. SIFyield is obtained by
removing APAR information (i.e., main structure information) from the SIF signal. Studies
have shown that for soybean crops, SIFyield responds to canopy structure and physiological
stress [22]. When wheat is in a moderate (20% < SL ≤ 40%) or severe (SL > 40%) disease
state, with the accumulation of physiological stress, the canopy structural variation tends
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to be consistent with the physiological variation, and the weight of structural information
contained in the SIF signal reflecting the disease severity increases, while the SIFyield that
attenuates the influence of structural information will lead to incomplete interpretation of
disease information; this may explain the lower response of SIFyield to SL. This phenomenon
also indicates that SIF can capture crop responses to stress from both the canopy structure
and plant physiology. NIRv is directly related to the number of near-infrared photons
reflected by plants and serves as a comprehensive index, integrating the influence of leaf
area, leaf orientation, and overall canopy structure, which is only affected by changes in
the canopy structure [19]. NIRv minimizes the effect of soil reflectance on the retrieved
reflectance values, which is insensitive to non-vegetation targets [20,50]. This may be the
reason why NIRv performed better than SIF at higher levels of wheat disease severity.

Previous studies have shown that SIF has the ability to monitor crop diseases earlier
than conventional vegetation indexes. However, based on changes in SIF, it is difficult to
distinguish whether these changes occur in response to physiological stress or in response to
structural information variation. Our results show that ΦF accounts for only a small fraction
of SIF variability (Figure 6a) but is much more strongly responsive to the physiological
stress conditions experienced by the crop than NIRvP (Figure 7a). Even so, the performance
of ΦF under both experimental conditions was still at a low level. Kimm et al. (2021)
proposed that NIRvP characterizes the structure and radiation information of crops, and
that ΦF derived from SIF characterizes the physiological influence on the crops. The authors
verified this conjecture using a canopy warming experiment [51]. In contrast, our results
are based on the effects of naturally occurring stripe rust stress on winter wheat, which may
differ from the stress coping mechanisms of the target plants under artificial treatments.
Additionally, our evaluation considered the responses of ΦF-r and ΦF to SL under different
growth cycles of wheat. The results of the evaluation indicate that ΦF-r estimated by NIRvR
approach has a well-defined response to the SL of stripe rust disease.

Under light disease conditions, due to the small SL values of the experimental samples,
the reflectance spectrum cannot directly reveal the physiological state of vegetation photo-
synthesis [49], making it difficult to achieve early detection of crop diseases based only on
the reflectance spectrum. Compared to the reflectance spectrum, the physiological infor-
mation of SIF is clearer. The chlorophyll fluorescence spectrum can reflect physiological
changes caused by disease earlier and more sensitively than the reflectance spectrum [52],
and the physiological status and stress state of vegetation can be understood through the
fluorescence spectrum [53]. This is also the reason that the response of SIF to SL under light
disease conditions was found to be stronger than that of NIRv and NDVI. We found that
SIFyield accurately captured the physiological variation in wheat at the early stage of disease
stress. Although SIFyield is normalized by APAR, the SIFyield may still carry both canopy
structural information and plant physiological signals [54]. When wheat canopy structure is
at a relatively consistent level (SL < 20%), the physiological variation in the crop may result
in significant differences in SIFyield. This may be the reason for the excellent performance
of SIFyield under lightly disease conditions. As seen in Figures 6 and 7, ΦF and ΦF-r isolated
from the SIF signal explained the variability of SIF only to a small extent, but quantified the
physiological variability of plants under stress conditions to a large extent. Data analysis
of lightly diseased samples showed that ΦF-r better reflected the physiological response
of winter wheat to disease stress than SIF, and had the highest sensitivity to SL. The ΦF-r
estimated using the NIRvR approach provided a clear response of the leaf physiological to
stress. This response could be minimally affected by PAR, sun-sensor geometry, and diurnal
or seasonal variations in structural information [24]. The advantage of this approach is that
changes in SIF can be clearly attributed to different factors. Despite large uncertainties, ΦF-r
has a stronger ability to monitor stress under disease stress conditions than SIF and can
detect plant stress symptoms on a shorter time scale than NIRvR. Among the six signals,
ΦF-r was more stable and stronger in its ability to monitor crop disease stress. Since ΦF-r
mainly contains physiological information, abiotic changes and disease stress may lead
to changes in crop canopy structure and leaf optical properties. Therefore, we suggest
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not relying solely on ΦF or ΦF-r for stress monitoring, but instead using a combination of
SIF, SIFyield, NIRV, and fluorescence yield to make complementary contributions to crop
disease stress monitoring.

4.4. Applicability of SIF-Derived Physiological Signals for Monitoring Other Crops and Stresses

Our results show that at the early stage of wheat infected by stripe rust, ΦF-r estimated
using the NIRvR approach showed a superior ability to monitor crop disease stress than
SIF and reflectivity spectrum signals. SIF-derived physiological signals are more sensitive
to physiological variation in plants than structural and radiation information. Additionally,
the separation of physiological information from SIF helped us more clearly observe
physiological stress effects without superimposing relevant structural effects. However,
wheat has some differences from other crops, so we cannot directly apply the results of
wheat studies to other crops.

Recent studies have different explanations for the contribution of fluorescence yield to
SIF. One explanation is that physiological signals have a small contribution to SIF variation
and the physiological signals relatively constant throughout their datasets [55–57]; the
other is that ΦF or ΦF-r has strong sensitivity to the stresses suffered by the crop [24,51].
The first explanation may be related to the fact that previous studies observed crops that
were not usually subjected to stress, resulting in observed physiological signals that did
not change significantly and were relatively constant in value. In 2020, Dechant et al.
showed that the estimated fluorescence yields of two crops, maize and rice, were almost
completely uncorrelated with light use efficiency (LUEP) at seasonal and daily scales, except
for wheat [34]. In the authors’ experiments, the experimental results for rice and maize fit
the strong form of the relationship between f esc and LUEP much better than the relationship
between ΦF and LUEP; wheat satisfies this hypothesis, but only to a weaker extent. The
ΦF of wheat showed different states at different time scales. It was fairly stable at seasonal
scales, but showed a marked decrease at stages of wheat senescence, which coincided
with a decrease in chlorophyll content [58]. The ΦF of wheat was more strongly correlated
with LUEP than f esc, only at daily scales. Therefore, although light acclimation studies in
sugar beet fields, water stress studies in maize belts, sugar beet fields and potato crops,
and high temperature stress studies in oilseed rape, barley, soybean, and wheat fields have
shown the monitoring advantages of physiological signals for different crops and different
stresses [22,24,25,51], specific analysis is still required when monitoring remote sensing for
specific crops.

4.5. Prediction and Warning of Wheat Stripe Rust

In this study, the SIF signals and spectral signals of infected wheat were analyzed
on the basis of the known occurrence of stripe rust. The purpose of this analysis was
to study the characteristics of various signals under disease stress conditions and assess
the applicability of each signal at different stress stages to enable farm management to
make timely and appropriate management decisions. However, the occurrence of wheat
stripe rust is by nature a stochastic event, and its degree of occurrence is closely related to
factors such as the crop growth period, the amount of fungal sources, temperature, humid-
ity and precipitation. Existing studies usually use meteorological data combined with a
remote-sensing image of a single date to predict diseases [15,59,60]. The meteorological
data and remotely sensed observations were combined with crop characteristics and habitat
traits to simulate the probability of crop disease occurrence. By feature selection of four
meteorological factors, including precipitation, temperature, solar radiation, and humidity,
and two remote-sensing features including visible band reflectance and near-infrared band
reflectance, a disease risk map was constructed to depict the approximate spatial distri-
bution of crop diseases and their temporal dynamics in the study area. However, wheat
stripe rust occurs almost throughout the wheat growth period. In actual field management,
wheat phenology may also be different in the same period due to factors such as climate,
planting and management. Changes in wheat growth conditions caused by phenological
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differences may cause greater interference to physiological changes caused by stripe rust
stress. The physiological signals derived from SIF are sensitive to the physiological vari-
ation of crops in the early stage of disease occurrence, and have the potential to be the
sensitive characteristics of diseases. Therefore, combining meteorological factors, habitat
factors, physiological signals more sensitive to physiological variations caused by diseases,
crop growth and other factors to construct a wheat stripe rust prediction model, or using
other methods to reduce the impact of phenological differences on prediction accuracy,
may be the basis of subsequent crop disease-prediction research.

5. Conclusions

Overall, we found strong covariance between NIRvP and NIRvR at the canopy scale.
Additionally, ΦF and ΦF-r obtained using the two methods were consistent in their overall
trends; they explained the variability of SIF only to a small extent, but quantified the
physiological variability of plants under stress conditions to a large extent. In the case of
a high level of crop disease severity, NDVI showed advantages in disease monitoring. In
the early stages of crop disease, which we pay more attention to, compared with SIF and
reflectivity spectrum signals, ΦF-r showed superior ability to monitor crop physiological
stress and was more sensitive to plant physiological variation. At the leaf-scale, the
response of SIF to physiological stress was stronger than that of NDVI. These results verify
the potential of ΦF-r estimated using the NIRvR approach to understand the physiological
variation of crops to different environmental conditions, understand and the stress coping
mechanisms of crops and provide new ideas for quantifying the effects of disease stress on
crops. With the continuous expansion of the scope and research scales of SIF applications,
our future studies will emphasize canopy-scale and leaf-scale SIF and explore finer signals;
this will enable us to avoid misinterpretation of the canopy signal as much as possible, and
help us observe and understand the responses and changing relationships of SIF and its
internal signals under different environments.
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