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Abstract: With a concentration of people, activities, and infrastructures, urban areas are particu-
larly vulnerable to the negative effects of climate change. Among others, the intensification of the
Urban Heat Island (UHI) effect is leading to an increased impact on citizen health and the urban
ecosystem. In this context, this study aims to investigate the effect of urban morphology and land
cover composition—which are established by exploiting the Local Climate Zone (LCZ) classification
system—on two urban climate indicators, i.e., Land Surface Temperature (LST) and air temperature.
The study area is the Metropolitan City of Milan (northern Italy). LCZ and LST maps are derived
by leveraging satellite imagery and building height datasets. Both authoritative and crowdsourced
in situ measurements are used for the analysis of air temperature. Several experiments are run to
investigate the mutual relation between LCZ, LST, and air temperature by measuring LST and air
temperature patterns in different LCZs and periods. Besides a strong temporal correlation between
LST and air temperature, results point out vegetation and natural areas as major mitigating factors
of both variables. On the other hand, higher buildings turn out to increase local air temperature
while buffering LST values. A way lower influence of building density is measured, with compact
building areas experiencing slightly higher air temperature yet no significant differences in terms of
LST. These outcomes provide valuable tools to urban planners and stakeholders for implementing
evidence-based UHI mitigation strategies.

Keywords: urban heat island; local climate zones; land surface temperature; air temperature;
geographic information systems; satellite imagery; citizen science

1. Introduction

Urban areas currently host more than 55% of the world’s population [1] and 75% of
the European citizens [2]. Accounting for more than 70% of the global carbon dioxide
emissions [3], cities are considered major contributors to climate change while being
at the same time among the most vulnerable targets of its negative effects [4]. With a
concentration of people, activities, and infrastructures, cities will be increasingly affected by
water shortages, risk of flooding, and citizen health problems connected with heat waves
and reduced air quality, among others [5].

In particular, the increasing frequency and intensity of heat waves [6] along with the
gradual substitution of natural and vegetated areas with artificial surfaces is leading to the
intensification of the Urban Heat Island (UHI) effect [7,8]. UHIs are identified where the
temperature patterns are significantly warmer in urban areas than in the surrounding rural
environment. Several factors contribute to the UHI, including the ability of urban surfaces
to absorb and store heat, urban greenness loss, anthropogenic heat fluxes, and the urban
canyon effect [9]. Given the direct impact of UHIs on human health, energy consumption,
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and urban ecosystems [10–12], several studies have been carried out to investigate the
causes and consequences of UHIs [13]. However, many research works are focused on
the analysis of temperature differences between the urban area and the neighboring rural
environment. This approach oversimplifies the investigation of the urban climate, which is
typically characterized by local-scale temperature differences and space-time patterns.

To address the inadequacy of the urban–rural dichotomy for the analysis of UHI in
urban agglomerates, a climate-based classification system called Local Climate Zone (LCZ)
was developed [14]. This classification defines 17 unique area types based on the physical
and thermal properties of their surface. For this reason, it is widely employed to account
for urban morphology and land cover in urban climatology studies [15,16]. LCZ maps are
generally computed by leveraging EO satellite imagery in conjunction with multiple ancil-
lary geo-data. According to the World Urban Database and Access Portal Tools (WUDAPT)
project protocol [17,18], LCZ maps may be derived from the supervised classification of
optical satellite imagery. This approach demands the collection of independent training
and testing samples, which may be constructed exploiting suitable datasets including land
cover and land consumption layers as well as local topographic databases.

Starting from the LCZ classification, the influence of urban morphology and land cover
on the UHI may be investigated by considering two climate-related variables—namely
Land Surface Temperature (LST) and air temperature. Despite being certainly correlated
measures [19], the two variables have different physical meanings. The former is strictly
related to the energy flux emitted by the surface, whereas the latter is an indicator of
the local atmospheric conditions [20]. Since the two variables provide complementary
information, a thorough investigation of the UHI effect should comprise the analysis of
both land surface and air temperature [21]. However, most of the studies available in
the literature focused on the analysis of only one of the two variables. For instance, the
relationship between LCZ and LST was investigated in [22,23] using satellite imagery to
compute the LST distribution. The authors found that LST values are significantly higher
in built-up areas than across natural surfaces. Furthermore, heavy industry, dense low-rise
building, and compact mid-rise building areas were found to experience the highest LST,
while water and densely forested areas exhibited cooler temperature values. On the other
hand, the relation between LCZ and air temperature was studied in [24], where they found
that night-time temperatures are, on average, 4 ◦C higher in impervious and built-up areas
than in vegetated zones. The influence of vegetation on the urban climate is directly related
to the evapotranspiration-cooling and leaf area index-shading effects [25]. In [26,27], the
air temperature distribution was measured through mobile surveys. The former study
revealed that temperature amplitude is lower during night-time in urbanized LCZ types,
with average variations ranging from 0.2 ◦C to 4.4 ◦C in the different LCZ types. The latter
pointed out that the maximum temperature values are experienced in compact mid-rise
areas, whereas cooler temperatures are recorded in open-set and sparsely built regions.

The combined analysis of LST and air temperature is complicated by the different
technologies which are required for their measurement. Specifically, while the surface
temperature can be easily acquired by satellite sensors, air temperature is measured by
ground-based sensors. In situ sensors usually belong to official weather stations that rely
on regional infrastructure for the collection of meteorological data. Despite acquiring data
with high accuracy and temporal frequency, official stations provide few point samples
whose distribution is rarely designed to effectively reflect spatial variations in air tempera-
ture [28]. In contrast, official weather stations are set up for climate monitoring and weather
forecasting purposes and are therefore generally installed outside the urban centers to limit
the temperature bias connected with the UHI effect [29].

For these reasons, some approaches have been developed aiming to derive an estimate
of the near-surface air temperature from remotely sensed LST maps. The use of LST
as a proxy of air temperature would compensate for the limited spatial coverage of on-
ground measurement networks and provide information where local sensors are not
available. However, general and straightforward procedures are hard to achieve, since
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the correlation between LST and air temperature is quite dependent on local weather
conditions and surface characteristics and variable between day-time and night-time [30,31].
An alternative solution to improve the granularity of on-ground measurements consists in
turning to non-traditional data sources such as low-cost citizen weather stations. These
stations are brought by individuals to collect meteorological parameter measurements
which are distributed by commercial or non-profit organizations. Observations are in most
cases voluntarily collected by amateurs with a similar motivation to contribute to local
climate monitoring [32]. Literature has seen many authors developing approaches that take
advantage of crowdsourced data for mapping air temperature at the urban level [33,34].
Despite the undeniable advantages, the accuracy of crowdsourced data is questionable
since no quality check is performed. Among the multiple sources of errors affecting
crowdsourced weather observations, it is worthwhile mentioning the poor quality or the
lack of calibration of the monitoring instruments, as well as the inconvenient device siting
(e.g., close to the building’s wall, or underneath vegetation), which may lead to systematic
errors in the time series [34]. Accordingly, the use of citizen-generated data demands data
cleaning and pre-processing aiming to remove local and global outliers [35].

Based on the literature summarized above, a gap appears in the research for common
mitigating factors of both LST and air temperature in the urban environment. For this
reason, the present study aims to investigate the relationship between LCZs, LST, and air
temperature to quantify the effect of urban morphology and land cover on both climate-
related indicators. This goal is accomplished by leveraging multiple geo-data, including
high-resolution Landsat 8 satellite imagery as well as authoritative and crowdsourced air
temperature observations. The Metropolitan City of Milan (northern Italy) was selected
as a case study. A preliminary analysis of the influence of urban land cover on air tem-
perature with geo-data and satellite imagery for the city of Milan was presented in [36].
However, the present work aims to go deeper into the investigation of urban climate by
considering a wider study area, a longer period, and focusing on the analysis of both LST
and air temperature.

The remainder of this paper is structured as follows. Section 2 describes the study area,
the data sources, and the software technology used. Section 3 introduces the methodology
employed to compute the LCZ and LST maps and process the air temperature observations.
Section 4 presents and discusses the results, pointing out the relationship between LCZ, LST,
and air temperature. Finally, in Section 5, a discussion of the obtained results is reported,
and the main conclusions are presented.

2. Materials
2.1. Study Area and Time Range

The analysis carried out in this study is focused on the Metropolitan City of Milan,
which is located in the Lombardy Region, northern Italy (see Figure 1). The area covers
1575 km2 and includes the city of Milan and other 133 municipalities. With more than
3 million inhabitants [37], it is the second most populous Metropolitan City in Italy after
Rome. The area is entirely flat, with an altitude ranging from 98 to 199 m above sea level.
According to the Köppen–Geiger Climate Classification [38], its climate can be summarized
as warm temperate, fully humid with hot summer, as most of the inland plain cities in
northern Italy. According to the official measurements of the Milano Linate historical
weather station [39] the average monthly temperature fluctuates between 2.5 ◦C (January)
and 23.6 ◦C (July); however, temperature peaks higher than 35 ◦C are becoming increasingly
frequent during summer, with a record temperature of 39.3 ◦C measured in August 2003.
In addition, Milan suffers from poor wind circulation, which causes stagnation of fog and
pollutants [40] and favors the persistence of the UHI effect [41]. This makes this area a
suitable target for the investigation of local climate effects.
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The Metropolitan City was selected rather than the city of Milan to comprise a wider
range of climate zones in the analysis. Since urbanization is mainly concentrated in Milan,
which hosts almost 40% of the whole area’s population, the surrounding urban centers as
well as rural and natural areas were included to best appreciate the UHI effect and local
climate differences.

A preliminary investigation of the evolution over time of land consumption, in terms of
artificialization, in the study area was conducted to define the most suitable time range for
LCZ mapping. The analysis of data distributed by the Italian Institute for the Environmental
Protection and Research (ISPRA) [42] pointed out that very small changes in terms of
land consumption occurred since 2006. The most appreciable change is represented by a
motorway (A58) which was constructed in the eastern portion of the Metropolitan City in
June 2012. However, such variations of land consumption cannot be properly accounted
into a LCZ segmentation, since LCZ maps are meant to delineate uniform climate regions
extending over hundreds of meters to kilometers [14]. Accordingly, the year 2021 was
selected for the analysis to best represent the most recent conditions in terms of land cover
and use.

The analysis of land surface and air temperatures was carried out by focusing on
the most recent years, namely from 2018 to 2022, which provide sufficiently numerous
data samples.

2.2. Data Collection

Data collected for the analysis mainly consist of optical satellite imagery, ancillary
geospatial datasets, and in situ air temperature measurements. Data used in this work
are entirely released under fully open licenses or custom open licenses allowing for its
exploitation for research purposes.

2.2.1. Satellite Imagery

Multispectral satellite imagery was exploited for both LCZ and LST mapping. Among
the numerous missions, Landsat 8 was chosen in this study for several reasons. Firstly,
it provides global coverage and freely available imagery which enables the replicability
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and improvement of the proposed approach. Moreover, it acquires images in 11 different
spectral bands through an optical sensor (the Operational Land Imager, OLI) and a thermal
sensor (the Thermal Infrared Sensor, TIRS), providing the potential to generate both LCZ
and LST maps from a single acquisition. Furthermore, the spatial resolution of the optical
sensor (i.e., 30 m) may be considered a good trade-off for LCZ mapping purposes [18]. The
Collection 2 Level 2 (C2L2) product of the Landsat 8 mission was exploited since it pro-
vides analysis-ready Bottom-of-Atmosphere (BOA) reflectance data as well as geophysical
parameters such as surface temperature values.

Five images related to the year 2021 were exploited for LCZ mapping. The motivation
behind the use of multiple imageries for a single final LCZ classification is twofold. The
first reason is to account for seasonal variations in land cover composition (i.e., vegetative
and non-vegetative periods). The second reason is to increase classification accuracy, as
found in [18]. Optical bands from 1 to 7 (with 30 m spatial resolution) were used, which
correspond to the aerosol, visible, near infrared (NIR), and short-wave infrared (SWIR)
wavelengths of the electromagnetic spectrum.

Four cloud-free images from 2020 to 2022 were selected for mapping LST as well as
analyzing the relation between LST and LCZ. The selection was limited to images with
very limited cloud cover (i.e., <5%) acquired during summer to detect the highest annual
temperatures experienced across the study area. The computation of the LST maps relied
entirely on the use of the thermal infrared (TIR) band. Despite two thermal bands being
available, namely Band 10 and Band 11, only the former was used as widely suggested
in the literature owing to the calibration errors of Band 11 [43]. Band 10 was originally
provided at 100 m spatial resolution, however, data were downscaled and distributed by
the provider with a resolution of 30 m.

The Landsat 8 images used for LCZ and LST mapping are summarized in Table 1,
where the date of acquisition of each image is reported. The number of images used
for the correlation test between LST and air temperature was increased to guarantee the
statistical validity of the analysis. Accordingly, a total number of 36 acquisitions from 2018
to 2021 were leveraged for this purpose. Images were selected to be uniformly distributed
throughout the year as well as meet the limited cloud cover requirements of the analysis.
For the sake of conciseness, the list of images is not reported.

Table 1. Acquisition date and time for Landsat 8 images used for LCZ and LST mapping. Time is
given in Greenwich Mean Time (GMT).

Acquisition Date and Time

For LCZ Mapping For LST Mapping

19 May 2021 10:10 a.m. (spring) 5 September 2020 10:10 a.m. (summer)
6 July 2021 10:10 a.m. (summer) 6 July 2021 10:10 a.m. (summer)

24 September 2021 10:10 a.m. (autumn) 9 July 2021 10:10 a.m. (summer)
5 December 2021 10:10 a.m. (winter) 17 July 2022 10:10 a.m. (summer)

16 March 2021 10:10 a.m. (additional image)

2.2.2. Ancillary Datasets

Ancillary open geo-data provided by multiple sources were exploited for defining
training and testing areas. Specifically, the land consumption dataset distributed by IS-
PRA [42], which provides a segmentation of the Italian national territory in 12 land use
classes with 10 m resolution, the building height dataset provided by the Lombardy Re-
gion within the regional topographic database [44], and very high resolution (i.e., ~15 cm)
Google Satellite imagery which was retrieved through the plugin [45] in QGIS were used.

2.2.3. Air Temperature Observations

For the air temperature analysis, official weather observations collected and dis-
tributed by the Regional Agency for Environmental Protection (ARPA) were exploited.



Remote Sens. 2023, 15, 733 6 of 23

Data were recorded with a temporal frequency of 10 min by 15 stations distributed across
the Metropolitan City of Milan. Time series length depended on the installation date
of each station, with the oldest station recording temperature measurements since 1989.
Data were downloaded through the Open Data Portal of the Lombardy Region [46] in
comma-separated values (CSV) format.

Additional weather stations were considered in this study to increase the spatial
coverage of on-ground temperature observations. Crowdsourced measurements were
collected from the Netatmo amateur network [47]. Netatmo is a commercial manufacturer
and data aggregator of citizen weather stations, distributing low-cost weather stations
for citizens around the world with the aim of monitoring outdoor and indoor weather
conditions (e.g., temperature and humidity). Netatmo stations take advantage of Wi-Fi
connection for data transfer and automatic upload on a dedicated server, and owners have
access to real-time data visualization via application software. Observations are publicly
shared through a dedicated Application Programming Interface (API), which enables free
data download within the limits expressed by the provider.

In this study, Netatmo data were retrieved through a custom Python code that was
developed by the authors. The code takes advantage of the Python package patatmo [48]
and specifically of two dedicated methods. The former is used to get instantaneous mea-
surements from all stations within a specific geographic area along with the corresponding
metadata (e.g., station identifier, latitude, and longitude). The latter allows data retrieval
for a specific station in a given time range and is thus used to extract temperature time
histories recorded by each station.

The collected temperature time series from both ARPA and Netatmo stations refer
to the period 2018–2021, which was here considered for the air temperature analysis.
The number of Netatmo stations increases over time, ranging from 368 in 2018 to 688 in
2021. The distribution of ARPA and Netatmo stations for the year 2021 is depicted in
Figure 2. This representation clearly shows that Netatmo stations are mainly concentrated
in urbanized areas rather than in rural zones, since the devices are typically installed at the
amateur’s place of residence.

Remote Sens. 2023, 15, 733 7 of 25 
 

 

 
Figure 2. Locations of Regional Agency for Environmental Protection (ARPA) and Netatmo stations 
in the study area for the year 2021. CRS: WGS84/UTM zone 32N. Basemap data: © OpenStreetMap 
Contributors. 

2.3. Software Tools and Programming Languages 
Free and Open Source Software (FOSS) was solely used in this work for data 

processing, analysis, and mapping. QGIS was primarily used for geodata management 
and visualization, including vector data digitizing and processing and multiband raster 
creation. The System for Automated Geoscientific Analyses (SAGA) was largely exploited 
to perform classification post-processing. The programming languages Python and R 
were used for code development. In particular, Python was used for Netatmo data 
extraction and cleaning and the computation of statistics and graphs (e.g., boxplots). 
Popular libraries were used for this purpose, such as pandas [49] and fiona [50]. The 
dedicated library patatmo was used for Netatmo data extraction. On the other hand, the R 
packages raster [51] and randomForest [52] were exploited for the application of the 
supervised classification algorithm on satellite imagery. 

3. Methods 
3.1. Local Climate Zones (LCZ) Mapping 

The LCZ concept comprises 17 classes, divided into 10 artificial and 7 natural classes, 
which depend on the physical and thermal properties of the surface. More specifically, 
the definition of each LCZ is primarily related to the urban morphology (in terms of height 
and density of buildings and trees) and the land cover composition (in terms of surface 
perviousness). In the Metropolitan City of Milan, only 8 classes were found out of the 17 
classes originally defined in [14]. A detailed description of each class is presented in Table 
2. 

  

Figure 2. Locations of Regional Agency for Environmental Protection (ARPA) and Netatmo
stations in the study area for the year 2021. CRS: WGS84/UTM zone 32N. Basemap data:
© OpenStreetMap Contributors.



Remote Sens. 2023, 15, 733 7 of 23

2.3. Software Tools and Programming Languages

Free and Open Source Software (FOSS) was solely used in this work for data pro-
cessing, analysis, and mapping. QGIS was primarily used for geodata management and
visualization, including vector data digitizing and processing and multiband raster cre-
ation. The System for Automated Geoscientific Analyses (SAGA) was largely exploited to
perform classification post-processing. The programming languages Python and R were
used for code development. In particular, Python was used for Netatmo data extraction
and cleaning and the computation of statistics and graphs (e.g., boxplots). Popular libraries
were used for this purpose, such as pandas [49] and fiona [50]. The dedicated library patatmo
was used for Netatmo data extraction. On the other hand, the R packages raster [51] and ran-
domForest [52] were exploited for the application of the supervised classification algorithm
on satellite imagery.

3. Methods
3.1. Local Climate Zones (LCZ) Mapping

The LCZ concept comprises 17 classes, divided into 10 artificial and 7 natural classes,
which depend on the physical and thermal properties of the surface. More specifically, the
definition of each LCZ is primarily related to the urban morphology (in terms of height
and density of buildings and trees) and the land cover composition (in terms of surface
perviousness). In the Metropolitan City of Milan, only 8 classes were found out of the
17 classes originally defined in [14]. A detailed description of each class is presented in
Table 2.

Table 2. Description of the LCZ classes identified in the Metropolitan City of Milan.

Class ID and Name Class Definition

2—Compact Mid-Rise
Dense mix of mid-rise buildings (3–9 stories).

Few or no trees. Land cover mostly paved.
Stone, brick, tile, and concrete construction materials.

3—Compact Low-Rise
Dense mix of low-rise buildings (1–3 stories).

Few or no trees. Land cover mostly paved.
Stone, brick, tile, and concrete construction materials.

5—Open Mid-Rise
Open arrangement of mid-rise buildings (3–9 stories).

Abundance of pervious land cover (low plants, scattered trees).
Concrete, steel, stone, and glass construction materials.

6—Open Low-Rise
Open arrangement of low-rise buildings (1–3 stories).

Abundance of pervious land cover (low plants, scattered trees).
Wood, brick, stone, tile and concrete construction materials.

8—Large Low-Rise
Open arrangement of large low-rise buildings (1–3 stories).

Few or no trees. Land cover mostly paved.
Steel, concrete, metal, and stone construction materials.

102—Scattered Trees
Lightly wooded landscape of deciduous and/or evergreen trees.

Land cover mostly pervious (low plants).
Zone function is natural forest, tree cultivation or urban park.

104—Low Plants
Featureless landscape of grass or herbaceous plants/crops.

Few or no trees.
Zone function is natural grassland, agriculture, or urban park.

107—Water Large, open water bodies such as seas and lakes,
or small bodies such as rivers, reservoirs, and lagoons.

To derive the LCZ map of the Metropolitan City of Milan from Landsat 8 images,
the workflow summarized in Figure 3 was followed. To take into account the seasonal
evolution of vegetation in the final LCZ map, one Landsat 8 scene per season for the year
2021 was exploited, resulting in a total number of four images; a further image was then
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employed to improve the result. By adding a post-processing step to the resulting LCZ
maps, the methodology followed in this work extends the protocol established by the
WUDAPT project [18]. Such protocol includes the creation of a training dataset and the
application of a supervised classification algorithm—which is typically the Random Forest
(RF) —on multispectral satellite imagery to achieve a segmentation of the area of interest
into LCZs. A detailed description of each step is provided in the following subsections.
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3.1.1. Construction of Train and Test Datasets

The classification performed in this protocol takes advantage of a supervised classifi-
cation algorithm that requires a labeled dataset, called training dataset, to learn to associate
new unclassified data (pixels) to the defined set of classes. Starting from the work presented
in [53], where the author created a training dataset for the City of Milan, training areas
were here extended to the entire Metropolitan City and completed with missing classes. To
do so, a combined analysis of the building height dataset and very high-resolution Google
Satellite imagery was performed. The training data were also equally distributed among
the eight classes to guarantee an even representation of each LCZ type and thus improve
classification accuracy. In addition, to avoid any correlation between training and testing
data, the aforementioned procedure was repeated to produce an independent, so-called
“out-of-bag”, testing dataset.

3.1.2. Random Forest (RF) Classification

The supervised, pixel-based classification algorithm adopted in this work for LCZ
mapping is the RF, which offers a good compromise between achieved accuracy and
computational performance [18]. The RF algorithm creates several decision trees on data
samples, gets the prediction from each of them, and finally selects the best solution through
majority voting. Among the numerous advantages, the algorithm is non-parametric and
requires limited data pre-processing while providing high accuracy and fast computational
performance. Moreover, the RF algorithm contains an internal validation, with 2/3 of the
training dataset used for learning and the remaining 1/3 for testing the model accuracy.
This is particularly helpful when creating the training areas since the internal validation of
the algorithm can be leveraged to get a first estimate of the overall accuracy of the result.
Accordingly, the training dataset was here iteratively updated until a satisfactory global
accuracy was obtained.

To carry out the RF classification, the algorithm implemented in RStudio in [54] was
exploited. For each of the four pre-processed Landsat 8 images, the classification was run,
resulting in four LCZ maps.

3.1.3. Post-Processing and Accuracy Assessment

Pixel-based classification algorithms such as the RF typically produce a “salt-and-
pepper” noise in the output. This effect is often removed through a post-processing step to
achieve a smoother classification map. For this reason, a majority filter with 2 × 2 (pixels)
moving window was applied to each of the obtained LCZ maps using SAGA. The filtered
images were then combined through majority voting, resulting in the final LCZ map.
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To assess the accuracy of the result, the confusion matrix was computed using the Semi-
Automatic Classification Plugin (SCP) in QGIS and the independent testing set. Common
accuracy measures were derived from the confusion matrix, including: (i) Overall Accuracy
(OA): percentage of correctly classified pixels with respect to the total number of pixels;
(ii) Producer’s Accuracy (PA): percentage of pixels correctly classified in each class with
respect to the number of pixels belonging to that class; and (iii) User’s Accuracy (UA):
percentage of pixels correctly classified in each class with respect to the number of pixels
predicted to belong to that class. The OA is a general evaluation of the model, whereas PA
and UA provide a class-by-class assessment of its performance.

3.1.4. Classification Improvement

Two main shortcomings can be highlighted in the procedure outlined above. Firstly,
the application of majority voting to the seasonal LCZ maps outputs a “no-data” value
whenever no majority is found, while it is preferable to limit the number of unclassified
pixels in the final map. Secondly, some built-up types (namely, classes 3, 5, 6, and 8) show
poor spectral separability at the Landsat 8 bands’ wavelengths, which prevents the classifier
from properly differentiating these artificial classes. Additional data was therefore used to
overcome these limitations and improve the classification output.

Specifically, since the number of unclassified pixels is generally higher when merging
an even number of maps, a further satellite image (i.e., the 16 March 2021 image) was
added to the classification workflow, so that five LCZ maps are produced. Furthermore,
the building height vector layer was converted to a 30 m resolution raster and merged
into each of the five Landsat 8 images as an additional feature band. Indeed, the study
presented in [55] proves that incorporating the building height layer as a new band to
the input multispectral image may significantly improve the detection and distinction of
built-up classes.

The RF classification was run on each of the five eight-band raster images, and the
same post-processing and accuracy assessment presented in the previous sub-Section were
finally carried out.

3.2. Land Surface Temperature (LST) Analysis

The steps followed to retrieve the LST from Landsat 8 C2L2 product and analyze its
variation in the different LCZs are summarized in Figure 4.
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Specifically, the LST distribution in the study area was computed and mapped us-
ing four Landsat 8 images relative to the summers 2021 and 2022. Being the Landsat 8
C2L2 product analysis-ready, the LST values could be directly computed from Band 10
by simply applying a linear transformation to the digital numbers (DNs), as shown in
Equation (1):

LSTKelvin = 0.00341802 DN + 149 (1)
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The LST was computed in Kelvin and then transformed into Celsius degrees by
subtracting 273.15 to each pixel value. Cloud-contaminated pixels were identified and
subtracted from the LST map using the CloudMasking plugin in QGIS [56], since cloud
apparent temperatures are typically much lower than the actual surface temperature, as
shown in [57].

Once the four LST maps were retrieved, the LCZ map of the Metropolitan City of
Milan was exploited to compute the temperature statistics per class. Two separate analyses
were carried out focusing on (i) the temperature difference between artificial and natural
classes and (ii) the temperature difference between the various built-up classes.

The first test was performed by merging the eight LCZ classes into two groups, namely
“artificial” and “natural” areas. The LST mean and standard deviation for the two categories
were computed and the statistical and practical significance of LST difference between
artificial and natural areas was further explored by leveraging the two-sample z-test and
computing the Cohen’s d and the Confidence Intervals (CIs), as explained in the following.

Given the large sample size (i.e., >175,000 pixels), the normal distribution for the LST
was assumed, allowing for the computation of the z-score as well as the corresponding
p-value. Accordingly, the statistical significance of the LST difference between artificial
and natural classes was verified. However, when dealing with large samples, the p-value
quickly falls to zero, leading to rejecting the null hypothesis of equal means between the
two samples without considering the “practical” significance of the result [58]. For these
reasons, the effect size—which is a measure of the effective size of the means’ difference—
was checked by computing the Cohen’s d. The interpretation of the size effect, from
negligible to huge, followed the thresholds defined by Cohen in [59]. As a complement, the
CIs at 95% confidence level were calculated to assess the variation around the estimated
LST difference.

A similar analysis was performed focusing on artificial surfaces (i.e., classes 2, 3,
5, 6, and 8). Specifically, the LST mean and standard deviation for each built-up type
were computed. The same statistics described above were calculated for each pair of
artificial classes to investigate the statistical and practical significance of the surface tem-
perature differences within the built-up types. In this case, the one-way ANOVA (anal-
ysis of variance) test was also carried out for comparing the temperature means of the
five groups.

3.3. Air Temperature Analysis

The second climate-related variable considered in this study is air temperature, which
is the most commonly ground-based measured meteorological parameter given its rele-
vance in climate and global change research. Air temperature analysis was carried out
considering the period 2018–2021. As a first step, in situ measurements from both ARPA
and Netatmo stations were cleaned and pre-processed through Python scripting. Then, the
correlation between air temperature and LST was investigated as well as air temperature
variations between different LCZs and periods.

3.3.1. Time Series Cleaning

Since crowdsourced temperature time series were largely exploited for the analysis,
a preliminary data-cleaning step was carried out. Indeed, these observations are sub-
ject to two main types of uncertainties, namely measurement uncertainties, due to the
unknown accuracy of the station measurement, and contextual uncertainties, related to
the unknown exact sensor position [33]. Official ARPA station measurements were used
as a reference for cleaning Netatmo time series. However, the downloaded ARPA data
required three steps pre-processing that was implemented for all years from 2018 to 2021
(see Figure 5).
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Specifically, from the original raw data containing the measurements from all the
weather stations in the Lombardy Region, only temperature measurements recorded by the
15 stations of the Metropolitan City of Milan were retained. Despite meeting the quality
standards required by the Italian national legislation, outlier measurements in the time
series were detected and removed using the z-score method. Finally, the time series of a
virtual ARPA station was computed as the hourly average of the measurements recorded
by the 15 ARPA stations. The virtual ARPA station was considered as a reference for the
following Netatmo data cleaning.

Different types of outliers were detected and removed from the Netatmo time series,
as depicted in Figure 5. While uncorrelated times series with respect to the virtual ARPA
station were identified with a Pearson’s coefficient lower than 0.6, unrealistic observations
were removed using the monthly minimum and maximum temperatures of the reference
time series. The biased times series, having a globally higher or lower mean than the
reference, were excluded using the hourly values of the virtual station. Finally, a 3-h
window moving average was applied to each time series to single out potential local
outliers. This four-step processing was applied to the data from 2018 to 2021 and resulted
in the final cleaned Netatmo dataset, which was used for the following analyses.

3.3.2. Correlation between Air Temperature and LST

The relationship between LST and air temperature has been extensively studied in
recent years [28,31,60]. The growing interest in understanding the correlation between
these climate-related variables is primarily connected with the possibility to derive space-
resolved air temperature estimates from remotely sensed LST measurements. This would
overcome the intrinsic limitations in the detection of air temperature from in situ sensors
with very high spatial resolution, which is demanded for micro-climate studies. The
temporal correlation between LST and air temperature is typically assessed by considering
the time series of the two variables in specific point locations over a defined time period
and computing common correlation coefficients [30,61,62]. On the other hand, the spatial
correlation is evaluated by comparing the spatial distribution of the two variables at a
specific time instant and computing similar correlation measures.

For the purposes of the present study, both the temporal and spatial correlation
between LST and air temperature were investigated. For a consistent comparison of the
two variables, the average air temperature recorded at each station location between 9:00
a.m. and 11:00 a.m. (GMT) were computed, since LST is measured by the satellite sensor at
10:10 a.m. (GMT) in the area of interest for the selected dates. More specifically, the temporal
correlation was assessed considering 36 dates corresponding to all Landsat 8 scenes with
less than 5% cloud coverage in the time interval 2018–2021. In turn, the spatial correlation
was computed considering the LST maps derived for summer 2021, namely 6th and 22 July
2021. The Pearson’s coefficient was calculated for the evaluation of both temporal and
spatial correlation.
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3.3.3. Analysis of Air Temperature per LCZ

The LCZ map was also exploited to compute the air temperature statistics per class
over the period 2018–2021. Air temperature patterns were investigated considering (i) the
whole study period as well as (ii) different seasons, to explore possible variations of
air temperature per LCZ in various time intervals. The steps followed for this analysis
are summarized in Figure 6. Each temperature station location was associated with the
corresponding LCZ class. For the first test (i), the yearly average temperature recorded at
each station was calculated and the statistics per LCZ class were easily derived. Similar
to the LST analysis, the statistical and practical significance of the air temperature means’
difference per class were assessed through ANOVA and paired t-tests as well as the
computation of the Cohen’s d. While the z-test was used for the LST, the t-test was preferred
in this case since the assumptions (i.e., sample independence, normality, and homogeneity
of variance) are met by the air temperature distribution per LCZ. For the second experiment
(ii), the same workflow was followed considering the seasonal average of air temperature
at each station location.
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4. Results
4.1. LCZ Map

The obtained LCZ maps before and after classification improvement are represented
in Figure 7a,b, respectively, while classification accuracy values for each of the two out-
puts are summarized in Table 3. Natural surfaces occupy the majority of the study area
(65.4%). Built-up classes are mainly distributed within the municipality of Milan and
the surrounding smaller urban centers, with Large Low-Rise (14.9%) and Open Low-Rise
(12.0%) covering most of the artificial surfaces. The remaining portion of built-up areas are
divided among Open Mid-Rise (3.3%), Compact Low-Rise (1.4%), and Compact Mid-Rise
(3.1%) classes, the latter being mostly present in the central neighborhoods of Milan.

Table 3. Accuracies of the LCZ classification output, before and after classification improvement.

Class
Before Improvement After Improvement

PA (%) UA (%) OA (%) PA (%) UA (%) OA (%)

2—Compact Mid-Rise 98.7 94.5

94.9

97.9 95.7

94.0

3—Compact Low-Rise 60.6 91.7 82.8 89.6
5—Open Mid-Rise 62.1 86.3 82.5 94.4
6—Open Low-Rise 94.1 80.8 90.9 85.9
8—Large Low-Rise 98.0 96.7 97.7 95.1

102—Scattered Trees 99.6 96.5 99.0 95.3
104—Low Plants 98.6 99.3 99.2 98.5

107—Water 100.0 99.5 99.4 99.6

The LCZ map obtained before any classification improvement was found to have a
very high OA of ~95%. Moreover, UA and PA values revealed good performance of the
algorithm in detecting all LCZ classes, except for Compact Low-Rise (class 3) and Open
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Mid-Rise (class 5), which exhibit far lower values of PA (~61% and 62%, respectively). The
main accountable reason for the reduced performance of the classifier in differentiating said
built-up classes is the poor spectral separability of these surface types, as demonstrated
in [36].
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By adding a further Landsat 8 image and the building height layer as a new feature
band in the classification workflow, a general improvement of the output was achieved.
Despite a slight decrease of OA to 94%, a considerable increase of PA for classes 3 and 5
was recorded, with values reaching over 82%. This result is primarily due to the increased
spectral separability of the built-up classes provided by the building height layer. Further-
more, the share of pixels labeled as no-data after the application of the majority voting
decreased from 7.7% to 3.7%.

To sum up, the considerably high values of accuracy measures point out the second
LCZ map to best represent the actual LCZ distribution in the study area. With an OA
of 94%, this map is among the best LCZ segmentations within the WUDAPT database,
which justifies the added value of the applied post-processing. Although the proposed
workflow might contribute to improving the LCZ mapping protocol, its replicability may
be partially prevented by the availability of open building height databases for other case
studies. In this context, the Copernicus Program provides a 10 m resolution raster layer
containing building height information (updated to the year 2012) for several European
cities within the Urban Atlas product [63], which might be exploited in case of unavailable
local databases.

4.2. LST per LCZ

Four LST maps relative to summers 2021 and 2022 (see Figure 8) were computed and
used to investigate the variation of LST between the different LCZs. Despite the limited
number of images used, the LST maps provided a sufficiently numerous pixel sample
to carry out a robust statistical investigation of LST per LCZ. The different temperature
patterns depicted in the four maps may be due either to the different atmospheric conditions
experienced on the different dates as well as to the presence of cloud spots that were not
correctly identified and removed. However, LST patterns in the different land cover
types are similar, with vegetated areas exhibiting lower temperature values than densely
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urbanized surfaces. The main statistics of LST per LCZ were summarized through boxplots
as depicted in Figure 9. Built-up classes exhibit higher mean temperatures, ranging between
45.9 ◦C and 48.5 ◦C, than non-built-up zones, where average temperatures range between
36.1 ◦C and 41.8 ◦C. Given the large dispersion of temperature values within each LCZ
class, the surface temperature differences between artificial and natural classes and within
the different built-up areas were further investigated.
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The first experiment consisted of merging the LCZ classes into two separate groups,
namely “natural” and “artificial” areas. Statistics computed for the two macro-classes show
that natural areas exhibit a mean LST of 40.3 ◦C in the considered dates and times, which is
6.7 ◦C lower than the temperature experienced across the built-up areas in the same time
frame (see Table 4). The statistical significance of this difference was checked through a
z-test with a significance level of 5%, which resulted in a z-score of 403.3 corresponding to
an extremely low p-value. This result suggests rejecting the null hypothesis of equal means
and indicates a statistically significant difference between the LST of natural and artificial
areas. The Cohen’s d and the CIs were computed to verify the practical significance of the
result. The obtained d-value of 0.94 indicates a large effect size, pointing out the mean
LST of the built-up group being 0.94 standard deviations above the natural classes’ one.
In addition, the difference between the two means was found to be at 95% probability
between 6.71 ◦C and 6.75 ◦C. These results provide additional pieces of evidence of the
ability of natural surfaces to buffering surface temperature values.

Table 4. LST statistics for artificial and natural classes.

LST Mean (◦C) LST Standard Deviation (◦C)

Artificial classes
(classes 2, 3, 5, 6, and 8) 47.1 3.3

Natural classes
(classes 102, 104, and 107) 40.3 7.3

In the second experiment, the LST patterns within the artificial surface types were
investigated to derive additional considerations on the local effects of urban morphology
and land cover on the surface temperature distribution. Table 5 depicts LST mean and
standard deviation values for the different built-up classes. Compact Low-Rise (class 3) and
Large Low-Rise (class 8) exhibit the highest LST with a mean of 48.5 ◦C, while the Open
Mid-Rise (class 5) ended up with the lowest mean value, 2.6 ◦C below. Intermediate values
were found for Compact Mid-Rise (class 2) and Open Low-Rise (class 6), where mean LST
equals 47.1 ◦C and 47.3 ◦C, respectively. As in the previous experiment, the statistical and
practical significance of such temperature differences were examined.

Table 5. LST statistics for artificial classes.

LST Mean (◦C) LST Standard Deviation (◦C)

2—Compact Mid-Rise 47.1 3.3
3—Compact Low-Rise 48.5 3.7

5—Open Mid-Rise 45.9 4.2
6—Open Low-Rise 47.3 4.3
8—Large Low-Rise 48.5 4.4

The ANOVA test was used as a powerful tool to investigate the statistical significance
in the case of more than two data categories. Since the hypothesis of homogeneity of
variance in the distribution is not met, the Welch’s ANOVA test was used as an alternative.
The low p-value (<0.05) proves the statistical significance of the difference between the
mean temperatures.

The practical significance of the result was checked by comparing the temperature
difference between each pair of built-up classes. Table 6 summarizes the Cohen’s d values,
the corresponding effect size, and the 95% CIs of the mean temperature difference for each
pair. Medium effect size was revealed for the temperature difference between Compact
Low-Rise and Open Mid-Rise as well as Open Mid-Rise and Large Low-Rise. With a mean
LST difference ranging from 2.6 ◦C to 2.7 ◦C, higher temperatures were experienced in the
Compact and Large Low-Rise zones. This could be explained by the fact that, in contrast to
classes 3 and 8, class 5 contains mid-rise buildings that introduce shadows onto the urban
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surfaces, thus contributing to lowering the LST values. In addition, class 8 corresponds to a
paved, impervious surface, which significantly reduces the percentage of the permeable
area and prevents the decrease of LST. On their side, all the other pairs exhibited similar
behavior, with a Cohen’s d suggesting small or very small effects.

Table 6. Cohen’s d (size effect) and 95% Cis for LST difference between each pair of artificial classes.
The letters in parenthesis indicate the corresponding effect size: Negligible (N), Very small (VS), Small
(S), Medium (M), Large (L), Very large (VL).

Classes 2 and 3 2 and 5 2 and 6 2 and 8 3 and 5 3 and 6 3 and 8 5 and 6 5 and 8 6 and 8

Cohen’s d 0.40 (S) 0.32 (S) 0.06 (VS) 0.34 (S) 0.65 (M) 0.27 (S) 0.02 (VS) 0.35 (S) 0.61 (M) 0.28 (S)
CIs (◦C) 1.38–1.43 1.19–1.23 0.24–0.27 1.45–1.49 2.59–2.65 1.12–1.16 0.04–0.09 1.46–1.49 2.67–2.70 1.19–1.23

These results point out two main factors contributing to the LST decrease in the urban
environment: the presence of vegetation and the height of buildings. Indeed, vegetated
areas with mid-rise buildings (Open Mid-Rise) experience the lowest average LST, whereas
impervious surfaces with low-rise buildings (Compact Low-Rise and Large Low-Rise)
exhibit the highest mean LST. Intermediate LST values are recorded across impervious
surfaces with medium-sized buildings (Compact Mid-Rise) as well as vegetated areas with
mostly low-rise buildings (Open Low-Rise). This suggests that the presence of vegetation
may compensate for the lack of high buildings and vice versa.

A further consideration concerning the building density is in order: results show that
building density does not play a significant role in the LST distribution. In fact, classes
5 and 8 show very different LST values despite being both characterized by low-density
buildings. In contrast, classes 3 and 6, which only differ in the density of their buildings,
experience a similar LST, and a small effect size for the LST difference is recorded.

4.3. Correlation between LST and Air Temperature

The temporal correlation between LST and air temperature was assessed over the
period 2018–2021, considering the ARPA and Netatmo stations’ measurements separately.
The obtained Pearson’s coefficients range from 0.91 to 0.99 for the former, and from 0.85 to
0.99 for the latter, revealing a strong linear correlation between the two temperatures. This
result agrees with the findings reported in [62,64].

On the other hand, the spatial correlation between LST and air temperature was
computed for the 6th and the 22nd of July 2021, which resulted in a very low Pearson’s
coefficient of 0.1 for both dates. When considering only the official ARPA station measure-
ments, this value turned out to be even lower (i.e., 0.01 and −0.04 for 22nd and 6th July,
respectively), confirming that no spatial correlation exists between the two variables. For
this reason, the LST distribution may not be representative of the actual air temperature
patterns in the different LCZs. In contrast, the urban morphology and the land cover com-
position may have a different influence on the two variables. The combined analysis LST
and air temperature is therefore justified when studying the effects of urban morphology
and land cover on the local climate.

4.4. Air Temperature per LCZ

ARPA and Netatmo measurements from January 2018 to December 2021 were also
exploited to investigate the air temperature variation between the LCZs. Computations
were carried out considering all the air temperature observations available per day. Table 7
reports the number of stations per class and highlights the lack of devices, and therefore of
records, in natural areas. Consequently, measurements recorded across natural classes are
not sufficient to draw meaningful conclusions in this study. Only data measured within the
artificial classes were therefore exploited for the analysis.
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Table 7. Number of air temperature stations per LCZ class.

Class Number of Stations

2—Compact Mid-Rise 49
3—Compact Low-Rise 57

5—Open Mid-Rise 95
6—Open Low-Rise 189
8—Large Low-Rise 44

102—Scattered Trees 5
104—Low Plants 8

107—Water 0

Results obtained in the first experiment, considering the whole study period without
seasonal distinctions, are reported in Figure 10. The Open Low-Rise area (class 6), which is
characterized by the presence of vegetation and small, low-density buildings, turned out to
be the coolest artificial class with a mean air temperature of 15.3 ◦C. In turn, the Compact
Mid-Rise zones (class 2), encompassing impervious areas with high-density, medium-sized
buildings, experienced the highest air temperature in the study period, with 1.0 ◦C higher
mean temperature. In between, the Compact Low-Rise (class 3), Large Low-Rise (class 8),
and Open Mid-Rise (class 5) areas were found to experience similar mean temperatures, i.e.,
15.7 ◦C, 15.9 ◦C, and 16.0 ◦C, respectively. The former two classes comprise non-vegetated
areas with small buildings, while the latter includes urban areas with mid-rise buildings
and more prominent vegetation. These results point out building density and height as
major contributors to the air temperature increase while suggesting vegetation as the main
mitigating factor of urban air temperatures.
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Given these first pieces of evidence, the significance of the observed temperature
differences in the LCZ built-up types was tested as well as the effect size of the three
main factors influencing the air temperature distribution. Firstly, the one-way ANOVA
resulted in a small p-value (5.83 × 10−8), which suggests rejecting the hypothesis of equal
means with a 5% significance level. To detect the LCZ classes with statistically significant
mean temperature differences, several t-tests were performed on each pair of classes. The
resulting p-values and the underlying decisions with respect to the null hypothesis of equal
means (H0) are reported in Table 8, together with the Cohen’s d and the corresponding
effect size.

By looking at the results of the t-tests, a significant mean air temperature difference was
found between Compact Mid-Rise and Open Low-Rise (equal to 0.96 ◦C), Open Mid-Rise
and Open Low-Rise (0.65 ◦C), and Large Low-Rise and Open Low-Rise (0.62 ◦C). These
outcomes confirm the different effects of building height, which contributes to increase air
temperature, and vegetation, which tends to decrease air temperature, on the urban climate.
This evidence is reinforced by the significant difference found between Compact Low-
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Rise and Compact Mid-Rise, which only differ in the height of buildings. A statistically
significant difference in air temperature (equal to 0.38 ◦C) was also found between Compact
Low-Rise and Open Low-Rise, pointing out that building density tends to increase local
air temperatures; however, given the small effect size, the influence of this factor may be
relatively low.

Table 8. Results of the t-tests and values of Cohen’s d for each pair of artificial classes (study period
2018–2021).

Classes 2 and 3 2 and 5 2 and 6 2 and 8 3 and 5 3 and 6 3 and 8 5 and 6 5 and 8 6 and 8

∆T 1 0.56 0.30 0.96 0.33 0.27 0.38 0.23 0.65 0.03 0.62
H0 (t-test) 2 NO OK NO OK OK NO OK NO OK NO
Cohen’s d 3 0.51 (M) 0.28 (S) 0.75 (M) 0.27 (S) 0.24 (S) 0.30 (S) 0.18 (VS/S) 0.52 (M) 0.03 (VS) 0.47 (S/M)

1 Mean difference of air temperature (◦C). 2 Result of the t-test: hypothesis of equal means H0 rejected (NO,
p-value < 0.05) or accepted (OK, p-value ≥ 0.05). 3 Cohen’s d value and corresponding effect size: Negligible (N),
Very small (VS), Small (S), Medium (M), Large (L), Very large (VL).

In a second phase, the same tests were carried out for the same period considering each
season separately. Figure 11 depicts the boxplots summarizing the air temperature statistics
for the four seasons. Table 9 reports the mean air temperature difference, the decision
associated with the t-test and the Cohen’s d for all pairs of built-up classes. Results confirm
the same built-up classes experiencing the highest and lowest mean air temperatures in
every season, namely Compact Mid-Rise and Open Low-Rise, respectively. A greater
mean difference is recorded during winter (1.6 ◦C), autumn (1.3 ◦C), and summer (1.1 ◦C).
Nonetheless, more pairs than in the previous experiment were found to be statistically
different as shown by the cells in bold in Table 9. This is the case of classes Compact
Mid-Rise and Large Low-Rise with an effect size ranging from “medium” to “large”, which
reinforces the evidence of a warming effect of building height in each season as well.
Similarly, a wider difference between Compact Mid-Rise and Open Mid-Rise areas was
found for all seasons except spring, with an effect size varying from small in summer, to
medium in autumn, to large in winter. Since the building density is the only characteristic
differentiating the two classes, this feature turns out to have a greater warming effect
during cooler periods. Moreover, for spring and summer, a statistically significant lower
mean temperature was found in the Compact Low-Rise class with respect to the Open
Mid-Rise class, despite the latter being characterized by the presence of vegetation and
less building density. This means that, during warm, vegetative periods, the building
height factor contributes to lowering air temperature more than building density and the
presence of vegetation.

Table 9. Results of the t-tests and values of Cohen’s d for each pair of artificial classes in the four
seasons (study period 2018–2021).

Classes 2 and 3 2 and 5 2 and 6 2 and 8 3 and 5 3 and 6 3 and 8 5 and 6 5 and 8 6 and 8

Autumn
∆T 1 0.80 0.61 1.29 0.91 0.19 0.48 0.11 0.68 0.30 0.38

H0 (t-test) 2 NO NO NO NO OK NO OK NO OK NO
Cohen’s d 3 0.74 (M) 0.65 (M) 1.17 (L) 0.93 (L) 0.18 (VS) 0.42 (S) 0.09 (VS) 0.62 (M) 0.30 (S) 0.34 (S)

Winter
∆T 1.01 0.80 1.62 1.02 0.21 0.61 0.01 0.83 0.22 0.60

H0 (t-test) NO NO NO NO OK NO OK NO OK NO
Cohen’s d 0.96 (L) 0.85 (L) 1.55

(VL) 1.02 (L) 0.21 (S) 0.56 (M) 0.01 (N) 0.80 (L) 0.23 (S) 0.57 (M)

Spring
∆T 0.48 0.19 0.83 0.55 0.29 0.35 0.07 0.63 0.36 0.28

H0 (t-test) NO OK NO NO NO NO OK NO OK OK
Cohen’s d 0.47 (S/M) 0.21 (S) 0.78 (M) 0.54 (M) 0.30 (S) 0.33 (S) 0.07 (VS) 0.62 (M) 0.37 (S) 0.26 (S)

Summer
∆T 0.68 0.41 1.03 0.59 0.28 0.35 0.09 0.63 0.18 0.44

H0 (t-test) NO NO NO NO NO NO OK NO OK NO
Cohen’s d 0.79 (M/L) 0.47 (S) 1.09 (L) 0.66 (M) 0.32 (S) 0.37 (S) 0.10 (VS) 0.67 (M) 0.21 (S) 0.46 (S)

1 Mean difference of air temperature (◦C). 2 Result of the t-test: hypothesis of equal means H0 rejected (NO,
p-value < 0.05) or accepted (OK, p-value ≥ 0.05). Bold indicates that the result is different with respect to what
obtained from the analysis of the whole study period. 3 Cohen’s d value and corresponding effect size: Negligible
(N), Very small (VS), Small (S), Medium (M), Large (L), Very large (VL).



Remote Sens. 2023, 15, 733 19 of 23Remote Sens. 2023, 15, 733 20 of 25 
 

 

 
Figure 11. Boxplots of air temperature values per class in the four seasons (all observations in the 
period 2018–2021): (a) autumn, (b) winter, (c) spring, (d) summer. 

Table 9. Results of the t-tests and values of Cohen’s d for each pair of artificial classes in the four 
seasons (study period 2018–2021). 

 Classes 2 and 3 2 and 5 2 and 6 2 and 8 3 and 5 3 and 6 3 and 8 5 and 6 5 and 8 6 and 8 

A
ut

um
n 𝛥𝑇 1 0.80 0.61 1.29 0.91 0.19 0.48 0.11 0.68 0.30 0.38 𝐻 (t-test) 2 NO NO NO NO OK NO OK NO OK NO 

Cohen’s d 3 0.74 (M) 0.65 (M) 1.17 (L) 0.93 (L) 0.18 (VS) 0.42 (S) 0.09 (VS) 0.62 (M) 0.30 (S) 0.34 (S) 

W
in

te
r 𝛥𝑇 1.01 0.80 1.62 1.02 0.21 0.61 0.01 0.83 0.22 0.60 𝐻 (t-test) NO NO NO NO OK NO OK NO OK NO 

Cohen’s d 0.96 (L) 0.85 (L) 1.55 (VL) 1.02 (L) 0.21 (S) 0.56 (M) 0.01 (N) 0.80 (L) 0.23 (S) 0.57 (M) 

Sp
ri

ng
 𝛥𝑇 0.48 0.19 0.83 0.55 0.29 0.35 0.07 0.63 0.36 0.28 𝐻 (t-test) NO OK NO NO NO NO OK NO OK OK 

Cohen’s d 0.47 (S/M) 0.21 (S) 0.78 (M) 0.54 (M) 0.30 (S) 0.33 (S) 0.07 (VS) 0.62 (M) 0.37 (S) 0.26 (S) 

Su
m

m
er

 𝛥𝑇 0.68 0.41 1.03 0.59 0.28 0.35 0.09 0.63 0.18 0.44 𝐻 (t-test) NO NO NO NO NO NO OK NO OK NO 
Cohen’s d 0.79 (M/L) 0.47 (S) 1.09 (L) 0.66 (M) 0.32 (S) 0.37 (S) 0.10 (VS) 0.67 (M) 0.21 (S) 0.46 (S) 

1 Mean difference of air temperature (°C). 2 Result of the t-test: hypothesis of equal means 𝐻 
rejected (NO, p-value < 0.05) or accepted (OK, p-value ≥ 0.05). Bold indicates that the result is 
different with respect to what obtained from the analysis of the whole study period. 3 Cohen’s d 
value and corresponding effect size: Negligible (N), Very small (VS), Small (S), Medium (M), Large 
(L), Very large (VL). 

To sum up, the analysis of air temperature per built-up type pointed out three main 
mitigating factors of urban air temperatures: presence of vegetation, reduced building 
height, and reduced building density. Indeed, the coolest and warmest temperature 
values are experienced by the Open Low-Rise and Compact Mid-Rise LCZs, regardless of 
the considered period. Results disclosed a mean temperature difference of 1.0°C between 

Figure 11. Boxplots of air temperature values per class in the four seasons (all observations in the
period 2018–2021): (a) autumn, (b) winter, (c) spring, (d) summer.

To sum up, the analysis of air temperature per built-up type pointed out three main
mitigating factors of urban air temperatures: presence of vegetation, reduced building
height, and reduced building density. Indeed, the coolest and warmest temperature values
are experienced by the Open Low-Rise and Compact Mid-Rise LCZs, regardless of the
considered period. Results disclosed a mean temperature difference of 1.0◦C between
said classes. However, the magnitude of air temperature decrease induced by the three
mitigating factors is different depending on the season. Specifically, the effect of vege-
tation and building height generally prevails on the effect of building density; yet, the
impact of building density becomes more relevant than the others during summer, autumn,
and winter.

5. Discussion and Conclusions

In this paper, the influence of urban morphology and land cover composition on the
urban climate of the Metropolitan City of Milan was presented. Satellite imagery and
multiple open geo-data were leveraged to achieve a segmentation of the study area in LCZs,
taking into account the seasonal variations of vegetation and land cover in a single map
(relative to the year 2021). Two climate-related variables, namely LST and air temperature,
were considered as a proxy of the local climate conditions. Remotely sensed thermal data
(relative to summers 2021 and 2022) was exploited to compute the LST distribution across
the study area, while ground-based sensor time series (for the period 2018–2021) collected
by both authoritative and crowdsourcing weather networks were used for the analysis of
air temperature. Several experiments including statistical tests were carried out to study
the underlying relationship between the LCZs and the two temperature variables as well
as assess the space-time correlation between LST and air temperature.

The first result in terms of LCZ classification pointed out a good performance of the
proposed classification workflow, confirming the benefits provided by the building height
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dataset for improving classification accuracy, as suggested in [55]. The LCZ mapping
protocol defined within the WUDAPT project was here slightly modified by adding a
post-processing phase consisting in the application of majority voting to five different
LCZ maps. This allowed to further improve classification accuracy as well as provide a
more comprehensive view of the seasonal variations of land cover composition in a single
LCZ map. With an OA of 94%, the LCZ classification obtained in this work is among
the best-quality LCZ maps existing within the WUDAPT database, where only 3% of
the available maps have accuracy values higher than 90% [17]. Comparable results were
achieved in [55], with OA of 88% and 92% using the Convolutional Neural Network and
RF classifiers, respectively.

As for the temperature analysis, despite a strong temporal correlation between LST
and air temperature, no spatial correlation between the two variables was found. Several
studies reported similar results in terms of temporal correlation, e.g., [30,31], with values
ranging between 0.83 and 0.99; however, far fewer studies focused on the assessment of the
spatial correlation between the two variables. The implication of these results is twofold.
First, they confirm the intuition that remotely sensed LST data cannot be extensively used
as a proxy of air temperature, whose spatial distribution should be assessed through
ground-based sensing networks. Furthermore, they justify the separate investigations of
the two temperature variables that were carried out in this study. These considerations
are in agreement with the findings of [60], where the authors pointed out the importance
of both land surface and air temperatures as complementary valuable information for
climate-related studies.

Experiments disclosed an underlying relationship between urban morphology (in
terms of urban structure and land cover) and urban temperatures (both land surface and
air temperatures). Specifically, comparing the outcomes obtained from the different tests,
vegetation turned out to be a common mitigating factor of both temperatures, a result
that is widely accepted in the literature [65–67]. Contrarily, this consensus is not always
found when considering other temperature-buffering factors. Indeed, in this study the
building height was found to reduce the LST by creating shadows on the ground while
contributing to increasing air temperature owing to heat storage and reduced local air
circulation. This is in line with [65,68], in which the authors pointed out that lower LST
values are recorded in low-rise building areas; however, it is opposite to the findings of [69],
where a positive correlation between LST and building height is reported. Furthermore,
in the present work the density of buildings resulted to have a way lower influence on
the urban climate, leading to a slight increase in air temperature while not significantly
influencing the LST. Although this result agrees with the outcomes of [27], where the most
intense cooling effect was found in open-set and sparsely built-up regions in all seasons,
some other studies came up with different conclusions. For instance, LST may increase
with decreasing building density [70], and densely urbanized areas may create local cool
islands [71], Nonetheless, these differences may be justified considering that the same factor
can have significantly different effects on the local thermal conditions mainly depending
on the background climate [2] suggesting that it is difficult to draw general conclusions
which apply to cities worldwide.

The combined use of global coverage data such as Landsat 8 imagery with in situ tem-
perature measurements and geospatial databases (typically provided by local authorities)
enables the replicability of the analysis to other case studies. Concerns on the availability
of open building height datasets have to be pointed out; however, this limitation may
be overcome by using the building height layer distributed by Copernicus within the
Urban Atlas product. Moreover, the crowdsourced data exploited in this work were key
for increasing the spatial coverage of air temperature measurements, allowing for a more
insightful investigation of its space-time patterns. Despite the undeniable advantages of
crowdsourced observations, data cleaning is a crucial step that may significantly reduce
the number of usable observations, as highlighted also in [34]. Thus, this study proves
that the integration of crowdsourced observations with official measurements may be
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beneficial for urban climate analyses, provided that a suitable data cleaning pre-processing
is carried out. In this context, starting from the pieces of code developed within this study,
the implementation of a Python application enabling a semi-automatic pre-processing
of Netatmo data is foreseen as a future development of this work. This would ensure a
straightforward usage of Netatmo measurements to many other applications and cases of
study, given the network’s worldwide coverage.

The approach looks promising for investigating UHI effect and urban climate at the
local scale. Maps, exploratory graphs, and tables produced in this work represent crucial
tools to drive evidence-based policies connected to urban planning and design as well as
urban climate monitoring.
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