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Abstract: Due to their ability to offer more comprehensive information than data from a single
view, multi-view (e.g., multi-source, multi-modal, multi-perspective) data are being used more
frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality
is becoming more apparent, limiting the potential benefits of multi-view data. Although recent deep
neural network (DNN)-based models can learn the weight of data adaptively, a lack of research
on explicitly quantifying the data quality of each view when fusing them renders these models
inexplicable, performing unsatisfactorily and inflexibly in downstream remote sensing tasks. To fill
this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view
remote sensing scene classification to model the credibility of each view. Specifically, the theory
of evidence is used to calculate an uncertainty value which describes the decision-making risk of
each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure
that the view with lower risk obtains more weight, making the classification more credible. On
two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the
proposed approach achieves state-of-the-art results, demonstrating its effectiveness.

Keywords: multi-view data fusion; remote sensing scene classification; uncertainty estimation;
evidential learning; Dirichlet distribution

1. Introduction

Remote sensing scene classification is one of the fundamental tasks and research
hotspots in the field of remote sensing information analysis, which is of great significance
to the management of natural resources and urban activities [1,2]. Over the last few
decades, significant progress has been made in designing efficient models for data from a
single source, such as hyperspectral [3], synthetic aperture radar [4], very high-resolution
images [5,6], and so forth. However, remote sensing scene classification is still regarded
as a challenging task [7] when using only overhead images due to their lack of diverse
detailed information.

Fortunately, with the rise of various social media platforms (e.g., Flickr) and mapping
software (e.g., Google Maps, Google Street View), it is becoming easier to collect geo-tagged
data from various sources, modals and perspectives. From a data processing standpoint,
the various types of data mentioned above that describe the same object are commonly
referred to as “multi-view” data. The fusion approaches for multi-view data can be imple-
mented at three levels [8], namely the data-level, the feature-level and the decision-level.
The data-level fusion strategy usually fuses raw or pre-processed data from multi-resolution
images [9] or multi-spectral images [10], and so forth, usually appearing in early works.
Feature-level fusion [11–22], on the other hand, combines multiple intermediate features
extracted from multi-view data. The fused features were then used in downstream tasks.
After the emergence of DNN, feature-level fusion often adopts the network structure of
multi-input-single-output [14,17–19,21,22], in which some layers concatenate the interme-
diate features of multi-views into subsequent layers. Decision-level fusion adopts different
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fusion rules to aggregate predictions from multiple classifiers, each of which is obtained
from a separate model. It works best for data from various modals [23–26] because the
features of each view are learned separately and independently of one another. When
fusing data from the same modal [27–29] the decision-level fusion also performs well.

Among many multi-view data for remote sensing scene classification, aerial-ground
dual-view images are frequently used due to their widespread geographic availability
and easy of access [30]. Unlike other commonly used multi-view remote sensing images
(e.g., hyperspectral and multi-spectral [20], hyperspectral and LiDAR [21]), the differ-
ence between the matched aerial image and ground image are too huge to be fused at
data-level directly. Thus, fusion methods at feature-level and decision-level are often
used. The first application of aerial-ground dual-view image fusion was for image geo-
localization. Lin et al. [11] matched high resolution orthophoto (HRO) with street view
images from Panoramio using four handcrafted features. To extend their method, they
used a two-stream CNN to learn deep features between Google Street View (GSV) images
and 45° aerial images [12]. Workman et al. [14] fused aerial images and GSV images by
an DNN outputting a pixel-wise annotation for three different classification tasks: land
use, building function and building age. Zhang et al. [15] fused thirteen parcel features
from airborne light detection and ranging (LiDAR) data, HRO and GSV images for land
use classification using a random forest classifier. Cao et al. [17] fused images from Bing
Maps and GSV for land use segmentation using a two-stream encoder and one decoder
architecture. Hoffmann et al. [18] also used a two-stream CNN to fuse overhead images
and street view images for building functions classification. They significantly improved
the performance using a decision-level fusion approach. Srivastava et al. [19] used a
multi-input-single-output CNN to learn the complementarity of aerial-ground dual-view,
which could deal with the situation of missing aerial images using canonical correlation
analysis (CCA). Machado et al. [31] published two open datasets for scene classification
based on aerial-ground dual-view images. A thorough evaluation of the commonly used
feature-level and decision-level fusion methods is carried out on the datasets.

However, the use of multi-source data also brings about an increase in sample noise,
namely the incompatibility between the visual content of the image and its semantic label.
In the field of uncertainty estimation, sample noise is usually described by the term sample
uncertainty [32]. Higher sample uncertainty means more serious sample noise and greater
prediction risk. For example, Figure 1a shows different kinds of sample uncertainty in aerial
images. In Figure 1b, new types of sample uncertainty are introduced after the addition of
the ground view, which increases the risk of final prediction. Unfortunately, so far there is
not enough research on sample uncertainty in multi-view remote sensing data fusion.
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diversity
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religiousreligious religious

Figure 1. Different kinds of sample uncertainty in (a) aerial images and (b) ground images.

From the idea of explicitly modeling the sample uncertainty, a novel fusion approach
is proposed in this paper based on evidential deep learning [33] for remote sensing scence
classification on aerial-ground dual-view images. The primary contributions of this paper
are as follows.
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• A Theory of Evidence Based Sample Uncertainty Quantification (TEB-SUQ) approach
is used in both views of aerial and ground images to measure the decision-making
risk during their fusion.

• An Evidential Fusion strategy is proposed to fuse aerial-ground dual-view images at
decision-level for remote sensing scene classification. Unlike other existing decision-
level fusion methods, the proposed strategy focuses the results not only on the classifi-
cation probability but also on the decision-making risk of each view. Thus, the final
result will depend more on the view with lower decision-making risk.

• A more concise loss function, namely Reciprocal Loss is designed to simultaneously
constrain the uncertainty of individual view and of their fusion. It can be used not only
to train an end-to-end aerial-ground dual-view remote sensing scene classification
model, but also to train a fusion classifier without feature extraction.

2. Data and Methodology

In this section, the Evidential Fusion Network (EFN) for remote sensing scene classifi-
cation on aerial-ground dual-view images is introduced. First, two public aerial-ground
dual-view images datasets used in this paper are described. Second, overall network
architecture is introduced briefly. Third, we detail how to obtain sample uncertainty with
evidential deep learning and how to perform the evidential fusion. Finally, the proposed
Reciprocal Loss used to train the network is described.

2.1. Datasets Description

In this paper, performance of the proposed approach has been verified through experi-
ments on two public aerial-ground dual-view images datasets [31].

The AiRound dataset is a collection of landmarks from all over the world. It consists
of images from three different views: the Sentinel-2 images, the high-resolution RGB aerial
images, and the ground images. Sentinel-2 images have a size of 224 × 224 pixels. Aerial
images have a size of 500 × 500 pixels. Ground images are obtained from two different
ways, namley, Google Places’ database and Google Images. Thus they have different sizes.
Their labels are obtained from the publicly available data of the OpenStreetMap. As shown
in Figure 2a, there are 11 different land use classes in AiRound with a total of 11,753 groups
of images. The aerial and ground images are used in our experiments.
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forest, 1096 lake, 976
river, 1162

park, 1040

stadium, 1006

statue, 1171
skyscraper, 

1108
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(a)

apartment, 
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house, 7607
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vacant_lot, 468

CV-BrCT

(b)

Figure 2. Class distribution of the (a) AiRound and (b) CV-BrCT dataset.

The CV-BrCT dataset contains 23,569 pairs of images in 9 classes: apartment, hospital,
house, industrial, parking lot, religious, school, store, and vacant lot. Each pairs are com-
posed of an aerial view image and a ground view image, both of which are 500 × 500 RGB
images. The class distribution is shown in Figure 2b.
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2.2. Overview

In the task of remote sensing scene classification on aerial-ground dual-view images,
methods of data-level fusion and feature-level fusion are not satisfactory. This is because
both the raw image and the visual feature of the aerial view differ too greatly from those
of the ground view to meet the data requirements of data-level fusion and feature-level
fusion: data-level fusion requires strict alignment of raw data from different views, well
feature-level fusion requires that the dimensions and value ranges of intermediate fea-
tures extracted from different views should not be too different. Recent works [18,31]
show that decision-level fusion using a deep learning framework usually performs best.
However, due to the lack of measurement of their credibility, multi-view decisions play
equal roles during the fusion, despite the fact that their samples have unequal uncertainty.
The proposed evidential fusion network (EFN) can assess the decision-making risk of each
view by quantifying the sample uncertainty explicitly, and then assign different weight
to the decisions base on their risks when fusing them. As a result, the final classification
relies more on the view with lower decision-making risk therefore become more credible.
The overall framework of EFN is shown in Figure 3. It can be further divided into three
modules: the feature extraction module (FEM), the uncertainty quantification module
(UQM) and the evidential fusion module (EFM).
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Figure 3. The overall framework of proposed Evidential Fusion Network (EFN) on aerial-ground
dual-view images.

The trained backbone extracts the features in each view and feeds them into a fully
connected (FC) layer with a non-negative activation function to generate the “evidence
vector” for uncertainty computation. Then, the evidence vector of each view is individually
mapped to the concentration parameters of a Dirichlet distribution to estimate its credibility
and uncertainty (see Section 2.3). Finally, they are fused by a weighted decision-level fusion
(see Section 2.4).

The proposed FEM is divided into two subnets, each with a backbone and two extra
FC layers. The backbones of two the subnets could be the same or different because the
proposed approach is independent of them. It is this flexibility that makes the approach
applicable to any network structure. Finally, the last softmax layer is replaced with a
non-negative activation layer, such as softplus. This simple replacement operation makes
the proposed approach extremely portable.

2.3. Uncertainty Estimation Based on Evidential Learning

The use of the softmax operator to transform the output continuous activations into
discrete class probabilities is widely recognized for classification networks. However, recent
studies show that softmax operator has many shortcomings. Firstly, it may cause the issue
of “over-confidence” [34]. For example, the scores of the three categories in Figure 4a are
very close, indicating that the model is unsure about the input sample. However, after the
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softmax mapping in Figure 4b, the difference between the probabilities is greatly increased,
giving the model the false impression of being very certain. Secondly, softmax can only
provide a point estimate for the category probability of a sample without providing the
associated uncertainty, which often leads to unreliable conclusions [35]. Figure 5 shows
the difference between the softmax and an uncertainty estimation operation on a case of a
binary classification problem. In Figure 5a, a class probability distribution is generated by
softmax, where pi is the probability of class i, and we have p1 + p2 = 1 and p1 < p2, which
means that the classifier is more inclined to classify the sample into class 2. However, we
have no idea whether this prediction is credible.

(a) (b)
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Figure 4. The “over-confidence” caused by softmax: (a) are the probable scores of three categories
after feature extraction and (b) are their corresponding probabilities mapped by softmax.

distribution
uncertainty
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(a) (b)

class1 class2

p2p1

class1 class2
c1

c2

Figure 5. The case of a binary classification problem: (a) is the class probability distribution of a
sample generated by softmax; (b) is the “opinion” of the sample generated by the an uncertainty
estimation operation where u is the uncertainty and ci is the credibility of class i.

To address the shortcomings of softmax, a non-negative activation function is used
in place of the softmax operator to output the “evidence” for each class. Based on these
evidences, the sample uncertainty can be described by the theory of evidence (TE) [36],
which allows to explicitly express “ignorance” by taking the “base plane” (see Figure 6b)
into consideration when building the “opinion space”. In Figure 5b, an “opinion” (the
red point in the equilateral triangle) of sample is generated, where ci is the credibility of
class i which is equal to the distance from the “opinion” to the side representing class
i, and u is the sample uncertainty which is equal to the distance from the “opinion” to
the base. It is well known that the sum of the distances from any point in an equilateral
triangle to its three sides is equal to the height of the equilateral triangle. When setting the
height of the equilateral triangle to 1, We have c1 + c2 + u = 1 and p1 < p2 < u, which
means that the classifier is more likely to find the sample unreliable than to make a binary
decision. Figure 6 shows examples with three classes where the opinion equilateral triangle
in Figure 5 rises its dimension to become a opinion tetrahedron [37]. In a more general
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sense, in a space with K classes, the K credibility values ck and the uncertainty u are both
non-negative and sum to one, that is,

u +
K

∑
k=1

ck = 1, (1)

where u ≥ 0 and ck ≥ 0 for k = 1, 2, · · · , K, denote the overall uncertainty and the
credibility of k-th class respectively. For each view, the credibility of each class can be
calculated using the evidence of each class. The non-negative evidence set of a sample
can be denoted as e = [e1, e2, · · · , eK]. Let ek be the evidence of k-th class of the sample,
the credibility ck and the uncertainty u can be calculated as

ck =
ek

∑K
k=1(ek + 1)

, (2)

u =
K

∑K
k=1(ek + 1)

. (3)

school

< 0.85,    0.05,    0.05,   0.05 >

industrial

(a)

industrial

< 0.32,    0.30,    0.28,   0.10 >

< 0.08,    0.11,    0.11,   0.70 >

industrial

(b)

industrialreligious

base plane

u3

u2

u1

Figure 6. A multi-classification case of the proposed uncertainty estimation operation: (a) shows
the “opinions” of three samples (two ground view image and one aerial image); (b) is the Opinion
tetrahedron with example opinions.

The notion of TE could be further formalized as a Dirichlet distribution [37] with
concentration parameter

αk = ek + 1. (4)

That is, the credibility and uncertainty can be easily obtained from the corresponding
Dirichlet distribution using the following equations respectively:

ck =
αk − 1

α0
, (5)
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u =
K
α0

, (6)

α0 =
K

∑
k=1

αk. (7)

For a K-classification problem, the concentration parameter α = [α1, α2, · · · , αK],
and the Dirichlet distribution is given by

D(p|α) =
{

1
B(α) ∏K

k=1 pαk−1
k p ∈ SK

0 otherwise
, (8)

where B(α) is a K-dimensional multivariate beta function and SK is the K-dimensional
unit simplex,

SK = {p|
K

∑
k=1

pk = 1 and 0 ≤ p1, p2, · · · , pK ≤ 1}. (9)

Therefore, the concentration parameter of the Dirichlet distribution is thus associated
with the evidence of each class. Up to now, the TEB-SUQ is ready to be used on both views
of aerial and ground images to measure the decision-making risk during their fusion.

2.4. Evidential Fusion

As mentioned in Section 1, directly fusing the softmax outputs of the views will ignore
their decision-making risks, resulting in unreliable results. In order to reduce the weight of
the view with higher risk, a novel decision-level fusion strategy, namely Evidential Fusion
is proposed based on Equations (2) and (3). Evidential fusion uses the sample uncertainty
of each view as its decision-making risk to allocate the weight in the final prediction.

To be more precise, the opinionsO1 = {c1
1, c1

2, . . . , c1
K, u1} andO2 = {c2

1, c2
2, . . . , c2

K, u2}
of the two views are obtained after the UQM, where the superscripts denote the number
of different views. The final decision opinions O = {c1, c2, . . . , cK, u} is then calculated
as follows:

ck =
1
λ
[c1

kc2
k + (1− u1)c1

k + (1− u2)c2
k ], (10)

u =
1
λ

u1u2, (11)

λ = u1u2 + (1− u1)2 + (1− u2)2 +
K

∑
k=1

c1
kc2

k , (12)

where λ is scale factor to perform the normalization and to ensures that Equation (1) still
holds after fusion.

After obtaining the final decision opinion O from the fusion of two views, the fused
evidence ek of the k-th class can be calculated according to the following equation:

ek =
K · ck

u
, (13)

and the concentration parameters αk of the Dirichlet distribution of the k-th class can be
updated by Equation (4) to calculate the loss during training step and the category with the
largest ek is the final predicted label during test step.

An example is given to demonstrate how the the proposed evidential fusion works
in Figure 7. A multiplication fusion on the softmax outputs of aerial-ground dual-view
images is shown in Figure 7a and the proposed evidential fusion on the UQM outputting
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opinions is shown in Figure 7b, which obtains a more credible classification result based on
the sample uncertainty.

(a)

< 0.5,    0.3,    0.2 >

< 0.15,   0.09,   0.08 >religious

< 0.3,    0.3,     0.4 >

religious

(b)

< 0.10,  0.06,  0.04,   0.80 >

< 0.27,  0.27,   0.36, 0.10 >

< 0.26, 0.26,  0.30, 0.18 >
religious

religious

Figure 7. Different predictions are made when using different fusion strategies on aerial-ground
dual-view decisions: (a) using a multiplication fusion on the softmax outputs of both views; and
(b) using the proposed evidential fusion on the UQM outputting opinions. All predictions are the
class label with the highest score, whether in a single view or after fusion.

2.5. Reciprocal Loss

To train the proposed EFN in Figure 3, the following loss function is designed and
then adopted on each view:

L(α) =
N

∑
i=1

(Lpc(αi) + Lnc(αi)), (14)

Lpc(αi) =
K

∑
k=1

yik[ψ(αi0)− ψ(αik)], (15)

Lnc(αi) =
K

∑
k=1

(1− yik)
1

ψ(αi0)− ψ(αik)
, (16)

where Lpc(αi) and Lnc(αi) are positive-class loss and negative-class loss of the i-th sample
respectively, ψ(·) is the digamma function which is monotonically increasing in (0,+∞), αi0
is consistent with Equation (7), K is the number of classes and N is the number of samples.

As shown in Equation (14), the proposed loss function clearly separates the penalty
terms of the positive and negative classes, making it easy to interpret. Furthermore,
Equations (15) and (16) show that the positive-class loss and the negative-class loss are
reciprocal. More specifically, since αik = eik + 1 and eik > 0, so ψ(αik) is monotonically
increasing with αik, while Lpc(αi) is monotonically decreasing with αik, which ensures that
the positive class of each sample generates more evidence. On the contrary, Lnc(αi) is
monotonically increasing with αik to ensure that negative classes of each sample generate
less evidence. Next, taking Lpc(αi) as an example, how the proposed Reciprocal Loss is
related to the Dirichlet distribution will be derived.

For multi-class classification tasks, the cross-entropy loss function (CE Loss) is most
commonly used. For a particular sample, its CE Loss can be calculated by

Lce = −
K

∑
k=1

yk log pk, (17)

where pk is the predicted probability of the k-th class, yk is its class label and yk = 1 for
positive classes and yk = 0 for negative classes. In the proposed EFN, the evidence vector of
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a sample e obtained from the FEM can be mapped to the concentration parameters α of the
Dirichlet distribution D(p|α) by using Equation (4). Thus the Bayes risk of cross-entropy
loss Lcer(α) can be calculated as

Lcer(α) =
∫

LceD(p|α)dp

=
∫
(−

K

∑
k=1

yk log pk)D(p|α)dp.
(18)

Since pk is a D(p|α) random variable, the functions log pk are the sufficient statistics
of the Dirichlet distribution. Thus, the exponential family differential identities can be used
to get an analytic expression for the expectation of log pk [38]:

ED(p|α)(log pk) =
∫
(log pk)D(p|α)dp

= ψ(αk)− ψ(α0).
(19)

In this regard, Equation (18) can be expanded further as

Lcer(α) =
∫
(−

K

∑
k=1

yk log pk)D(p|α)dp

= −
K

∑
k=1

yk

∫
(log pk)D(p|α)dp

= −
K

∑
k=1

yk[ψ(αk)− ψ(α0)]

=
K

∑
k=1

yk[ψ(α0)− ψ(αk)].

(20)

Given that the Equation (20) can only penalize the positive class, Lcer can be written as
Lpc. We finally have Lpc(αi) in Equation (15) for the case of all samples.

In order to ensure that both views can provide reasonable opinions for scene clas-
sification and thus improve the overall opinion after fusion, the final multi-view global
Reciprocal Loss is used:

Lglobal = L1 + L2 + L f used, (21)

where L1, L2 are the Reciprocal Loss (Equation (14)) for the first view and second view, re-
spectively, and L f used is obtained using Equation (14) on the fused parameters by
Equations (4), (10), (11) and (13).

3. Results
3.1. Experimental Setup

For both datasets of AiRound and CV-BrCT, we randomly selected 80% of the samples
from each class as the training/validation set and the remaining 20% as the test set to form
one data split. All the test results except for Section 3.2.1 are the mean results of 10 splits.
The training/validation set was randomly divided into the training set and validation set
according to the ratio of 9:1.

All models were simulated by PyTorch on a computer with a GTX 1080Ti graphics
card. The details during training are as follows. Batch size: 128; the number of epochs:
200 for feature extraction and credible fusion, respectively, and all the best models on
validation data are saved, learning rate schedules: Cosine decay with the initial value of
0.01, optimizer: SGD for feature extraction and Adam for credible fusion, weight decay:
0.1, and momentum of SGD: 0.9. All models of feature extraction are trained by fine-tuning
the officially published pre-trained ones.

To quantitatively evaluate the performance of each model, we used the classification
accuracy (Acc) and F1-score (F1) as metrics. Acc is calculated by the ratio of the number of
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correctly predicted test samples to the total number of test samples. F1 is calculated by the
ratio of twice the product of precision and recall to the sum of them.

3.2. Ablation Study
3.2.1. Validation for the Effectiveness of Uncertainty Estimation

In order to validate the effectiveness of the TEB-SUQ in measuring sample uncertainty,
a subjective evaluation of sample credibility was performed. All test samples from the two
datasets (2347 pairs of AiRound and 4830 pairs of CV-BrCT) were evaluated by nine urban
planning experts from the Qingdao Research Institute of Urban and Rural Construction
based on whether their image content matched the label. A vote of nine experts deter-
mines the final conclusion (credible or uncertain) of each test sample. For the TEB-SUQ,
an appropriate threshold uth was set to distinguish between credible and uncertain sam-
ples. The number of credible samples calculated using u ≤ 0.4 (nk for the k-th class) was
compared to the one generated by experts’ votes (mk for the k-th class) in each class of each
view of the two datasets in Figure 8. Table 1 shows the average error σ̄ of the TEB-SUQ
relative to subjective evaluation of each view using

σ̄ =
1
K

K

∑
k=1

|nk −mk|
mk

, (22)

where K is the total number of classes.
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Figure 8. The number of credible samples in each class generated by experts’ votes and the TEB-SUQ
using u ≤ 0.4 in the (a) aerial and (b) ground view of AiRound; (c) aerial and (d) ground view
of CV-BrCT.

As can be observed from Table 1, except for the aerial view of CV-BrCT, the relative
error between the predicted number of credible samples and the subjective evaluation
in other views is less than 0.1, proving that the proposed sample uncertainty estimation
approach is effective.
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Table 1. The average error of the TEB-SUQ relative to subjective evaluation.

Views * A-AiRound G-AiRound A-CV-BrCT G-CV-BrCT

σ̄ 0.065 0.078 0.183 0.090
* A- for the aerial view and G- for the ground view.

3.2.2. Validation for the Effectiveness of the Reciprocal Loss

The widely used loss function for evidential deep learning (EDL Loss for short) consists
of a term of general classification loss and a term of Kullback–Leibler (KL) divergence
of two Dirichlet distributions with an extra annealing coefficient [33]. It is formally too
complex and difficult to train, in contrast to the proposed Reciprocal Loss (Equation (14) to
Equation (16)). Scene classification performances of EDL Loss and the proposed Reciprocal
Loss are shown in Table 2, where in EDL-CE Loss, the first term of general classification loss
is CE-like (see Equation (4) in the Ref. [33]), whereas in EDL-MSE Loss, it is MSE-like (see
Equation (5) in the Ref. [33]). All results were obtained using VGG-11 [39] as the backbone
with the same training setting and fusion strategy. The annealing coefficient in EDL was
calculated as min(1.0, t/10) ∈ [0, 1], where t is the index of the current training epoch. It is
clear that the use of Reciprocal Loss resulted in improved performances.

Table 2. Performances (%) ± STD of different loss functions.

Loss Functions AiRound CV-BrCT
Acc F1 Acc F1

EDL-CE Loss [33] 90.23 ± 0.32 90.64 ± 0.29 86.98 ± 0.17 81.56 ± 0.34
EDL-MSE Loss [33] 90.44 ± 0.03 91.02 ± 0.02 86.24 ± 0.02 80.89 ± 0.01

Reciprocal Loss 92.16 ± 0.31 92.49 ± 0.25 88.21 ± 0.26 83.57 ± 0.29

3.2.3. Validation for the Effectiveness of the Evidential Fusion Strategy

As described in Section 2.2, the proposed approach is backbone-independent, allowing
it to be flexibly matched with different deep feature extraction networks. In this experiment,
three of the most common backbones are used to compare the performance on scene
classification task before and after using different fusion strategies. In the columns of
single views in Tables 3 and 4, the ”-s” represents the traditional deep learning (that is,
softmax deep learning) approach where the softmax layer and CE Loss are used during the
training phase, and the class corresponding to the maximum probability calculated by the
softmax operator is used as the prediction result during the test phase. Additionally, ”-e”
denotes the evidential deep learning approach proposed in Sections 2.3 and 2.5 where
the softmax layer is replaced by the softplus layer and the proposed Reciprocal Loss are
used for training. The class corresponding to the maximum evidence value is used as the
prediction result during the test. In the columns of fusion strategies, two common decision
level fusion strategies (sum and product) [31] are used as baseline approaches to compare
the proposed evidential fusion. The best results are highlighted in bold.

The following observations can be made from Tables 3 and 4. First, all of the fusion
results are superior to any single view result. This demonstrates that information from
multi-views can significantly improve classification accuracy. Second, the performance of
the two single views obtained through evidential deep learning is marginally worse than
that of the corresponding single view obtained through softmax deep learning. This is due
to the fact that when the uncertainty of some samples is high, evidential deep learning
focuses more on estimating the uncertainty values as accurately as possible, which may
result in a loss of classification accuracy for these samples. However, in terms of sample
quality, the category labels of these high-uncertainty samples lack actual semantics. It also
does not matter whether their predictions are correct or incorrect. It makes more sense to
quantify their uncertainty. Last but not least, the evidential fusion strategy proposed in



Remote Sens. 2023, 15, 1546 12 of 19

this paper outperforms the other two baseline fusion approaches, which demonstrates the
efficacy of evidential fusion in the task of multi-view remote sensing scene classification.

Table 3. Classification accuracy (%)± STD of single views and after decision-level fusion on AiRound.

Views AlexNet [40] VGG-11 [39] ResNet-18 [41]

Single Views Aerial-s 76.96 ± 0.52 82.75 ± 0.61 80.93 ± 0.49
(softmax) Ground-s 71.35 ± 0.24 77.10 ± 0.28 76.68 ± 0.19

Single Views Aerial-e 76.04 ± 0.46 82.64 ± 0.49 80.83 ± 0.52
(evidential) Ground-e 70.96 ± 0.25 76.99 ± 0.17 76.36 ± 0.22
Decision- Sum [31] 84.02 ± 0.47 87.75 ± 0.38 88.02 ± 0.25

Level Fusion Product [31] 86.74 ± 0.25 90.41 ± 0.27 89.56 ± 0.24
Strategies Proposed 88.12 ± 0.23 92.16 ± 0.31 91.02 ± 0.35

Table 4. Classification accuracy (%)± STD of single views and after decision-level fusion on CV-BrCT.

Views AlexNet [40] VGG-11 [39] ResNet-18 [41]

Single Views Aerial-s 84.63 ± 0.24 87.11 ± 0.42 86.74 ± 0.38
(softmax) Ground-s 68.01 ± 0.12 71.43 ± 0.22 70.96 ± 0.25

Single Views Aerial-e 84.37 ± 0.10 87.06 ± 0.38 86.18 ± 0.29
(evidential) Ground-e 66.36 ± 0.25 70.15 ± 0.29 70.86 ± 0.24
Decision- Sum [31] 85.26 ± 0.45 86.70 ± 0.58 85.59 ± 0.62

Level Fusion Product [31] 86.52 ± 0.25 87.21 ± 0.22 86.83 ± 0.18
Strategies Proposed 88.02 ± 0.28 88.21 ± 0.26 87.95 ± 0.19

3.3. Comparison Experiment with Different Fusion Approaches at Data-Level, Feature-Level
and Decision-Level

In Section 3.2, the effectiveness of three innovative contributions in this paper (namely
TEB-SUQ, Evidential Fusion, and Reciprocal Loss) was validated, respectively. In this
section, more multi-view fusion methods are compared with the proposed approach to
assess its overall performance on the task of aerial-ground dual-view remote sensing
scene classification. As mentioned in Section 1, existing multi-view fusion methods can
be roughly classified as data-level, feature-level, and decision-level. In this experiment,
one data-level fusion method (six-channel [42]), two feature-level fusion methods (feature
concatenation [31] and CILM [43]), and five decision-level fusion methods (maximum [31],
minimum [31], sum [31], product [31] and SFWS [44]) were chosen to compare with the
proposed evidential fusion. These methods are briefly described below.

• Six-channel [42]: This method concatenates the RGB channels of the paired aerial
view and ground view images into a six-channel image as the input of a CNN.

• Feature concatenation [31]: A Siamese-like CNN is used to concatenate the inter-
mediate feature tensors before the first convolution layer that doubles its amount
of kernels.

• CILM [43]: The loss function of contrast learning is combined with CE Loss in this
method, allowing the features extracted by the two subnetworks to be fused without
sharing any weight.

• Maximum [31]: Each view employs an independent DNN to obtain its prediction
result, which consists of a class label and its probability. The final prediction is the class
label corresponding to the maximum of the class probabilities predicted by each view.

• Minimum [31]: Each view employs an independent DNN to obtain its prediction
result, which consists of a class label and its probability. The final prediction is the
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class label corresponding to the minimum of the class probabilities predicted by
each view.

• Sum [31]: Each view employs an independent DNN to generate a vector contain-
ing probabilities for each class. The fused vector is the sum of single view vectors.
The final prediction result is the class label corresponding to the largest element in the
fused vector.

• Product [31]: Each view employs an independent DNN to generate a vector containing
probabilities for each class. An elementwise multiplication is performed between
single view vectors to obtain the fused vector. The final prediction result is the class
label corresponding to the largest element in the fused vector.

• SFWS (Softmax Feature Weighted Strategy) [44]: Each view employs an independent
DNN to obtain a vector containing probabilities for each class. Then, the matrix nuclear
norm of the vector is computed as the weight of the fusion. The final prediction result
is the class label corresponding to the largest element in the fused vector.

Tables 5 and 6 show the performance of the fusion methods discussed above on
AiRound and CV-BrCT, respectively, when different backbones are used. The following
observations can be made. First, methods of the data-level fusion class performed the worst,
while methods of the decision-level fusion class won across the board. This observation is
consistent with the discussion of data-level fusion and feature-level fusion in Section 2.2.
The performance of the fusion improves as the features involved in it become more abstract.
This also explains why CILM outperforms feature concatenation among the two feature-
level fusion methods: CILM lacks a shared weight structure, making it more similar to
decision-level fusion in form. Second, among the decision-level fusion methods, sum and
maximum perform nearly identically, and both perform slightly worse than minimum.
This result may seem counter-intuitive at first. In fact, it confirms the overconfidence issue
caused by the softmax mentioned in Section 2.3 (see Figures 4 and 5): an overestimated
prediction is more likely to be incorrect. Last but not least, product and the proposed
evidential fusion stand out among all the fusion methods, and the latter outperforms
the former. In fact, Equation (10) can be seen as an enhancement of the product method.
The inclusion of sample uncertainty breaks down the equality of views in the fusion: views
with lower u values are given more weight adaptively.

Table 5. Classification accuracy (%) ± STD using different fusion methods on AiRound.

Methods AlexNet [40] VGG-11 [39] Inception [45] ResNet-18 [41] DenseNet [46]

Six-Ch. [42] 70.19 ± 0.23 72.34 ± 0.21 71.76 ± 0.24 71.29 ± 0.26 71.57 ± 0.25
Concat. [31] 82.52 ± 0.32 84.69 ± 0.41 83.91 ± 0.45 83.56 ± 0.39 83.72 ± 0.42

CILM [43] 83.49 ± 0.17 85.72 ± 0.19 85.05 ± 0.15 84.72 ± 0.21 84.91 ± 0.20
Max. [31] 84.86 ± 0.36 88.17 ± 0.34 88.39 ± 0.33 88.21 ± 0.38 89.96 ± 0.35
Min. [31] 85.52 ± 0.23 89.56 ± 0.25 89.12 ± 0.27 88.42 ± 0.22 90.41 ± 0.27
Sum [31] 84.02 ± 0.47 87.75 ± 0.38 88.05 ± 0.30 88.02 ± 0.25 89.88 ± 0.31

Product [31] 86.74 ± 0.25 90.41 ± 0.24 90.02 ± 0.14 89.56 ± 0.24 91.16 ± 0.17
SFWS [44] 85.94 ± 0.17 89.61 ± 0.34 89.18 ± 0.12 88.95 ± 0.26 90.05 ± 0.37
Proposed 88.12 ± 0.23 92.16 ± 0.31 91.41 ± 0.18 91.02 ± 0.35 92.16 ± 0.19

Table 7 shows the training time of the fusion methods discussed above using VGG-11
as the backbone. The proposed evidential fusion approach takes 2.72% more time than the
most time-efficient model (Six-Ch.) and only 0.51% more time than other decision-level
fusion approaches (Dec.-Lev.). During inference, the added time of the proposed method is
negligible and therefore does not affect the actual use.
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Table 6. Classification accuracy (%) ± STD using different fusion methods on CV-BrCT.

Methods AlexNet [40] VGG-11 [39] Inception [45] ResNet-18 [41] DenseNet [46]

Six-Ch. [42] 71.92 ± 0.26 73.46 ± 0.24 75.26 ± 0.25 73.25 ± 0.28 74.19 ± 0.27
Concat. [31] 81.86 ± 0.42 83.25 ± 0.39 84.65 ± 0.38 83.28 ± 0.41 84.24 ± 0.40

CILM [43] 83.10 ± 0.20 84.32 ± 0.19 85.22 ± 0.16 84.31 ± 0.17 85.19 ± 0.22
Max. [31] 85.52 ± 0.24 86.74 ± 0.39 86.70 ± 0.41 85.84 ± 0.43 86.95 ± 0.38
Min. [31] 86.02 ± 0.21 86.95 ± 0.27 86.95 ± 0.28 86.24 ± 0.35 87.02 ± 0.25
Sum [31] 85.26 ± 0.45 86.70 ± 0.58 86.24 ± 0.35 85.59 ± 0.62 86.85 ± 0.39

Product [31] 86.52 ± 0.25 87.21 ± 0.22 87.02 ± 0.21 86.83 ± 0.18 87.54 ± 0.17
SFWS [44] 86.21 ± 0.14 86.95 ± 0.22 86.73 ± 0.21 86.52 ± 0.16 87.21 ± 0.25
Proposed 88.02 ± 0.28 88.21 ± 0.26 88.21 ± 0.23 87.95 ± 0.19 88.34±0.20

Table 7. Training time (ms per sample) ± STD using different fusion methods.

Datasets
Training Time

Six-Ch. [42] Concat. [31] CILM [43] Dec.-Lev. [31,44] Proposed

AiRound 9.16 ± 0.01 9.21 ± 0.02 9.38 ± 0.02 9.37 ± 0.01 9.42 ± 0.01
Cv-BrCT 8.01 ± 0.01 8.06 ± 0.02 8.20 ± 0.02 8.19 ± 0.01 8.23 ± 0.01

Finally, on all backbones of both datasets, the proposed evidential fusion approach
outperforms the best decision-level fusion method by 1.26%, the best feature-level fusion
method by 4.96% and the data-level fusion method by 17.04%. Examples of predictions are
shown in Figure 9.
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Figure 9. Examples of predictions by single views, the product fusion and the proposed evidential fusion.
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4. Discussion
4.1. Discussion on Uncertainty Estimation

Figure 10 shows one case study of the class “stadium” in AiRound. By the TEB-
SUQ, the uncertainties and evidence of two images in different views were obtained.
The evidence values bigger than 1.00 of the aerial image are 31.59 (stadium) and 6.13 (statue),
showing a good concentration. Accordingly, its uncertainty is only about 0.23. However,
the evidence values bigger than 1.00 of the ground image are 3.24 (bridge), 3.01 (river),
1.68 (church) and 1.12 (stadium), whose distribution is more dispersed. Accordingly, its
uncertainty is about 0.54, suggesting that the model is less than half as confident about its
predictions. As can be seen from the images, the above conclusions are intuitive. More
cases of the uncertainty of samples in the CV-BrCT datasets are shown in Figure 11, whose
classes are random selected.
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river skyscraper stadium statue tower

airport bridge church forest lake park

river skyscraper stadium statue tower

aerial 
view

u = 0.23

evidences

evidences

ground 
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Figure 10. The uncertainties and evidences of sample No. 9360855 of class “stadium” in AiRound
computed by the TEB-SUQ. The evidence values in bold correspond to the predicted results.

1O_2zBm0_kid9
XOvePYhlA.jpg

_Oig9wjtfTGxWI
y6LmEU-Q.jpg

CmxaN_MGo7yUL
mC6B_CHWg.jpg

fuGqUbeqBWrHb
NfgMVOuOg.jpg

WyNqGldabWvT
6OeQ6RjCVg.jpg

6slSgE_5eYsYx5r
G6IqhrA.jpg

RyuRbwI8ZIN1T
duSMDO79A.png

Ybui2Cx84FwOb
ioPZDaL0Q.png

RKb6tT11_IFwo
Xl19OPB6w.png

ab6kyiLxrh3Ubp
EUDPAOEQ.png

F2FxERCkELT-
1x4u3ip0jw.png

hSTEGNpaEzzLf
Aw2DL07hA.png

parking_lot industrial religious hospital hospital store

0.1223 0.1497 0.4501 0.4738 0.7572 0.9881

houes apartment school religious industrial hospital

0.0790 0.0854 0.4133 0.4403 0.7013 0.9402

Figure 11. The uncertainty of samples in CV-BrCT computed by the TEB-SUQ.

More statistically, Figure 12 shows the uncertainty distributions of each view samples
in the test sets of the AiRound and CV-BrCT. The figures clearly show that the samples of
AiRound are distributed more densely in parts with lower uncertainty and have higher
peak values. This advantage is even more visible in the ground view (Figure 12b). In other
words, after the calculation by the TEB-SUQ, the quality of AiRound is higher than that
of CV-BrCT, especially in the ground view. This conclusion is supported by the following
facts. Firstly, CV-BrCT has more than twice the number of samples as AiRound. Secondly,
unlike the average distribution of AiRound, the class distribution of CV-BrCT is a typical
long-tail distribution (Figure 2b). It is well-understood that increasing the number of
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samples and unbalanced category distribution will result in a decrease in data quality.
Last but not least, the methodologies used to collect the ground view images for the two
datasets differ [31]. The ground view images of AiRound are largely derived from the
Google Places’ database, which is a well-known high-quality dataset. The ground view
images of CV-BrCT, on the other hand, were all obtained by the Google Images search
engine, meaning that image quality cannot be guaranteed.
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Figure 12. The uncertainty distributions of the (a) aerial and (b) ground view samples in the test sets
of AiRound and CV BrCT.

4.2. Discussion on Loss Functions

Figure 13 shows the training and validation loss using EDL Loss and Reciprocal Loss
(Equation (21)) with the same setting. Significant overfitting occurred during training using
EDL Loss. It has been significantly improved since switching to Reciprocal Loss.
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Figure 13. The training and validation loss using (a) EDL Loss on AiRound and (b) on CV-BrCT,
and using (c) Reciprocal Loss on AiRound and (d) on CV-BrCT.
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5. Conclusions

Deep learning models are easily influenced by data quality, especially when dealing
with massive amounts of data [47,48]. Li’s team proposed the concept of “trustworthy
AI” [49], with a focus on data quality. As multi-view data is increasingly used in various
remote sensing tasks, the issue of data quality in the original single view becomes more
apparent. In this paper, the theory of evidence was introduced to quantify the credibility
of samples. On this basis, a decision-level multi-view fusion strategy was proposed to
assign higher weights to views with lower decision-making risk. The proposed evidential
fusion network achieves the best performance on the two classical datasets in the task of
remote sensing scene classification on aerial-ground dual-view images, outperforms the
best decision-level fusion method by 1.26%, the best feature-level fusion method by 4.96%
and the data-level fusion method by 17.04%.

Focusing on data quality in multi-view tasks is a new area of research, and much
work remains to be done. First, there are few publicly available multi-view datasets for
remote sensing tasks. Large-scale, instance-level aligned remote sensing multi-view data
sets are urgently needed for public release for related research. Furthermore, effective
objective evaluation of sample uncertainty estimation is lacking. Datasets with sample
quality annotation have yet to appear in the field of remote sensing. Finally, more explicit
representation methods of sample uncertainty need to be further explored.
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