
Citation: Hao, P.; Li, S.; Song, J.; Gao,

Y. Prediction of Sea Surface

Temperature in the South China Sea

Based on Deep Learning. Remote Sens.

2023, 15, 1656. https://doi.org/

10.3390/rs15061656

Academic Editor: Javier Marcello

Received: 8 February 2023

Revised: 9 March 2023

Accepted: 13 March 2023

Published: 18 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Prediction of Sea Surface Temperature in the South China Sea
Based on Deep Learning
Peng Hao , Shuang Li * , Jinbao Song and Yu Gao

Institute of Physical Oceanography and Remote Sensing, Ocean College, Zhejiang University,
Zhoushan 316021, China
* Correspondence: lshuang@zju.edu.cn

Abstract: Sea surface temperature is an important physical parameter in marine research. Accurate
prediction of sea surface temperature is important for coping with climate change, marine ecological
protection, and marine economic development. In this study, the SST prediction performance of
ConvLSTM and ST-ConvLSTM with different input lengths, prediction lengths, and hidden sizes
is investigated. The experimental results show that: (1) The input length has an impact on the
prediction results of SST, but it does not mean that the longer the input length, the better the
prediction performance. ConvLSTM and ST-ConvLSTM have the best prediction performance
when the input length is set to 1, and the prediction performance gradually decreases as the input
length increases. (2) Prediction length affects SST prediction. As the prediction length increases, the
prediction performance gradually decreases. When other parameters are kept constant and only the
prediction length is changed, the ConvLSTM gets the best result when the prediction length is set to
2, and the ST-ConvLSTM gets the best result when the prediction length is set to 1. (3) The setting of
the hidden size has a great influence on the prediction ability of the sea surface temperature, but the
hidden size cannot be set blindly. For ST-ConvLSTM, although the prediction performance of SST is
better when the hidden size is set to 128 than when it is set to 64, the consequent computational cost
increases by about 50%, and the performance only improves by about 10%.

Keywords: sea surface temperature prediction; ConvLSTM; ST-ConvLSTM; deep learning; South
China Sea

1. Introduction

Sea surface temperature (SST) is an important physical quantity to research and
understand the ocean [1–8]. The change in SST is closely related to air–sea interaction and
climate change. In addition, the temporal and spatial changes of SST also have a significant
impact on the distribution of natural fisheries, artificial aquaculture, and red tide outbreaks,
which in turn can affect the entire marine ecosystem. It can be seen that accurate prediction
of ocean temperature, especially SST, is of great significance to the research of air–sea
interaction, the change of the marine ecosystem, and the sustainable development of the
marine economy.

The South China Sea is located in the tropical and subtropical regions in the southern
part of the Asian continent, connecting the Pacific Ocean and the Indian Ocean through
the Bashi Strait, the Sulu Sea, and the Strait of Malacca. It is characterized by a remarkable
tropical maritime climate, with short springs and autumns, long summers, no ice and
snow in winters, mild seasons, humid air, and abundant rainfall [9–11]. Especially in the
central and southern sea areas, there are high temperatures and high humidity all year
round. The seawater temperature is suitable, the water quality is fertile, and the feed is
sufficient. It is a feeding and wintering ground for economic fish, and the fishery resources
are abundant [12–16]. In addition, the South China Sea is an important component of the
western Pacific warm pool, where the air–sea interaction is very strong. The changes in the
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western Pacific warm pool have an extremely important impact on the local climate and
social and economic development [17–19].

In recent years, the methods of SST prediction have become more and more accu-
rate [20–34]. The methods can be generally divided into three categories: one is the
empirical prediction method, which can make a qualitative or quantitative prediction
according to the persistence, periodicity, similarity, and correlation with other factors of SST
changes. The second is the statistical method, which selects some effective influence factors
of the SST field through correlation analysis and uses the mathematical statistics method
to predict. In terms of statistical methods currently in use, some methods of multivariate
analysis are widely used, such as regression analysis, discriminant analysis, cluster analysis,
principal component analysis, similarity analysis, etc. The third is the numerical simulation
method. The prediction model is established through the dynamics and thermal equations,
and the prediction is made based on a numerical solution according to the given initial
and boundary conditions. Among them, the first two methods need to be combined with
knowledge of ocean dynamics, and researchers need to have a solid theoretical foundation
to improve the accuracy. The last approach often requires large computing equipment to
perform complex and detailed simulations of the physical equations in the model.

Essentially, single-point SST forecasting is a temporal prediction problem that takes
past time series as input and outputs a fixed number (usually greater than 1) of future time
series. Recent advances in deep learning, especially the emergence of recurrent neural
networks (RNN), long short-term memory (LSTM), and gated recurrent unit network
(GRU), have provided some useful insights into how to solve single-point time series
prediction problems [35–46]. The deep learning method extracts feature information by
training a deep neural network, which has a stronger feature expression ability. However,
in the regional SST prediction problem, there are two key aspects: spatial correlation
and temporal dynamics. Although the above three methods can be used to solve the
spatiotemporal sequence forecasting problem, they do not consider spatial correlation.
Based on the above considerations, the researchers proposed ConvLSTM [47], a combination
of a convolutional neural network and a recurrent neural network, and derived an improved
model, ST-ConvLSTM [48] based on it. Due to its excellent spatiotemporal prediction
performance, it has received extensive attention from experts and scholars in the field of
SST prediction research [49–53].

How to design the model structure to get the best SST prediction results? With different
layer settings, input length, prediction length settings, etc., the results may be very different.
Understanding the impact of different model parameter settings on the SST predictive
ability is crucial to accurately predict SST. This study explores the impact of different
parameter settings on the performance of the ConvLSTM and ST-ConvLSTM models in
predicting SST. By setting different input lengths, prediction lengths, and the number of
hidden nodes in the network, we can comprehensively measure the influence of different
methods and parameters on the predictive ability of SST.

In Section 2, we describe some preparatory work. In Section 3, we describe the study
area, study data, study methods, etc. In Section 4, we give the experimental setting and
procedure. In Section 5, we give the experimental results and discuss them in detail. Finally,
in Section 6, we summarize our findings and provide an outlook for future work.

2. Preliminaries
2.1. SST Prediction Using Deep Learning

For the prediction of SST in a certain region, it is essentially a spatiotemporal series
prediction problem that takes past time series data as input and a certain amount of future
time series data as output. Suppose we need to predict SST over a spatial region represented
by M× N cells consisting of M rows and N columns, where each cell in the grid can map
P physical features.

As shown in Figure 1, the data value of a grid point at any time can be represented by
a tensor X ∈ R P×M×N . From the perspective of a time dimension, the observations at time
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length t form a tensor sequence X1, X2, . . . , Xt. Therefore, the SST prediction problem can
be defined as a tensor sequence of J time lengths in the past, to predict the tensor sequence
of the next K time lengths:

X̂t+1, . . . , X̂t+K = arg max
Xt+1,...,Xt+K

p
(

Xt+1, . . . , Xt+K|Xt−J+1, . . . , Xt
)

(1)

SST is one of the most important parameters in the global ocean–atmosphere system.
Accurately predicting the temporal and spatial distribution of SST is of great significance
for coping with climate change, disaster prevention and mitigation, and marine ecological
protection. In this work, each time step is a 3D tensor with P = 1 (representing SST) with a
grid size of 85 × 85.
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Figure 1. Transforming 2D Image into 3D Tensor.

2.2. Long Short-Term Memory

In previous studies, LSTM, as a special RNN structure, has been shown to be stable
and powerful in the time series prediction model. As shown in Figure 2, LSTM employs
two gates to control the content of the cell state c: the forget gate, which determines how
much of the previous moment’s unit state ct−1 is retained to the current moment ct; and
the input gate, which determines how much of the network’s current input xt is saved in
the unit state ct. The LSTM employs an output gate to control how much of the unit state ct
is fed into the LSTM’s current output value ht.
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The information state transfer formula of the unit at time t in LSTM is as follows,

it = σ(Wxixt + Whiht−1 + bi)

ft = σ(Wx f xt + Wh f ht−1 + b f )

ct = ft·ct−1 + it·tanh(Wxcxt + Whcht−1 + bc)

ot = σ(Wxoxt + Whoht−1 + bo)

ht = ot·tanh(ct)

(2)

where ft is the forget gate processing formula, it is the input gate processing formula, ot is
the output gate processing formula, W is the given weight matrix, σ is the sigmoid function,
and · is the Hadamard product.

To form more complex structures, multiple LSTMs can be stacked and temporally
concatenated. Although LSTM has proven to be powerful in dealing with time series
problems, the main disadvantage of LSTM when dealing with spatiotemporal data is
that the input features must be unrolled into 1D vectors before processing, so all spatial
information is lost during processing.

3. Materials and Methods
3.1. Data

In this study, the reanalysis data used in the established SST model are collected
from Copernicus Marine Service (CMEMS). Global ocean reanalyses are homogeneous 3D
gridded descriptions of the physical state of the ocean over several decades produced using
a numerical ocean model constrained by data assimilation of satellite and in situ observa-
tions. The ensemble mean may even provide a more reliable estimate than any individual
reanalysis product. Table 1 contains all of the detailed data information used in this experi-
ment. More information can be viewed through the following link: https://data.marine.
copernicus.eu/product/GLOBAL_REANALYSIS_PHY_001_031/description (accessed on
12 March 2023).

Table 1. Data Sources.

Input Time Dimension Spatial Dimension Temporal Resolution Spatial Resolution

SST 2015–2019 5◦N–26◦N, 105◦E–126◦E Daily Mean 0.25◦ × 0.25◦

3.2. Methods
3.2.1. ConvLSTM

Convolutional neural networks and cyclic neural networks are combined to create
ConvLSTM. Like LSTM, it can process time series, and like CNN, it can characterize local
spatial properties. A more complex architecture can be formed by superimposing multiple
ConvLSTM modules to solve the problem of spatiotemporal sequence prediction. Figure 3
depicts the ConvLSTM model’s structural layout.
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The following is the information state transfer formula for the unit in ConvLSTM at
time t:

it = σ(Wxi ∗ Xt + Whi ∗ Ht−1 + Wci·Ct−1 + bi)

ft = σ(Wx f ∗ Xt + Wh f ∗ Ht−1 + Wc f ·Ct−1 + b f )

Ct = ft·Ct−1 + it·tanh(Wxc ∗ Xt + Whc ∗ Ht−1 + bc)

ot = σ(Wxo ∗ Xt + Who ∗ Ht−1 + Wco·Ct + bo)

Ht = ot·tanh(Ct)

(3)

All of the inputs X1, . . . , Xt, cell outputs C1, . . . , Ct−1, hidden stateH1, . . . ,Ht, and
gates it, ft, ot in ConvLSTM are 3D tensors in RP×M×N , where the first dimension is the
number of measurements (for inputs) or feature maps, the last two dimensions are spatial
(M rows and N columns), and ∗ denotes the convolution operator and · as before, denotes
the Hadamard product.

3.2.2. ST-ConvLSTM

As shown in Figure 4a, the input frame is sent into the first layer of a 4-layer ConvLSTM
network, and the future prediction sequence is created in the fourth layer. In this process,
hidden states are passed from bottom to top as the information is encoded layer by layer.
In this case, as shown by the red and yellow boxes in Figure 4a, the bottom layer will
completely ignore what the top layer memorized in the previous time step.
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However, if a robust model needs to learn from features at different levels, details in
the input sequence should not be lost. In response to the above problems, the model is
specially designed by passing the feature information of the fourth-layer ConvLSTM at
time t− 1 to the first-layer ConvLSTM module at time t, as highlighted by the blue line in
Figure 4b. The information is first transmitted upwards between layers and is transmitted
forward as time goes by, and the information of the top layer at the previous moment flows
into the bottom layer at this moment for integration, enabling the effective transmission of
spatial information.

4. Experimental Design
4.1. Experimental Environment

All models are trained using the Adam optimizer [54] with a starting learning rate
of 0.0001. The training process is stopped after 20,000 iterations. All experiments are
implemented in PyTorch [55] and conducted on an NVIDIA 3070 GPU. Other detailed
parameter information from the experiment is listed in Table 2.
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Table 2. Parameters Setting.

Parameter Setting

Input length 1 / 3 / 5 / 7 / 15 / 30
Prediction length 1 / 2 / 4 / 6 / 8 / 10 / 15

Hidden size
Layers

2 / 4 / 8 / 16 / 32 / 64 / 128
4

Filter size 3 × 3
Stride 1

Batch size
Patch size

Test interval
Image size

Image channel

20
5

100
85 × 85

1

4.2. Experimental Procedures

In this study, all methods can achieve end-to-end training, and the entire calculation
process does not require manual processing but is completely handed over to the deep
learning model, from learning the input data feature to obtaining the result. The advantage
of end-to-end training is that it reduces the complexity of computational processing. The
overall flow of the experimental design is shown in Figure 5.
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The detailed steps of the SST prediction experiment are as follows.

1. Data preprocessing, using the Numpy library to normalize the input data.
2. Divide the data, using the data from 2015 to 2018 as the training set and the data in

2019 as the validation set.
3. Set a fixed random seed to ensure that each experiment can be reproduced.
4. Model training, using the Adam optimization function to iteratively train the model,

and automatically save the optimal weight.
5. Visualize the experimental results and intuitively compare the SST prediction ability

of different methods.

4.3. Metrics

We use the following three measures to assess the model’s performance: root mean
square error (RMSE), mean absolute error (MAE), and coefficient of determination (R2).
The following are the calculation algorithms for the above-mentioned three metrics,

RMSE =

√√√√√ 1
n

n

∑
i=1

(ŷi − yi)
2 (4)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (5)

R2 = 1− ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − y)2 (6)

where n is the total number of test samples, yi, ŷi and y are the true value, the predicted
value, and the arithmetic mean of yi, respectively. Note that lower values of RMSE and
MAE indicate better agreement between input and prediction, but higher values of R2

indicate more accurate predictions.

5. Results
5.1. Effect of Input Length on SST Prediction Performance

To verify the influence of the input length on the SST prediction results, when the
initial learning rate is 0.0001, the hidden size is 64, the prediction length is 6, and the input
lengths are set to 1, 3, 5, 7, 15, and 30, respectively. The influence of input length on the
prediction of SST is shown in Table 3, in which the bold font is the optimal result of this
group of experiments.

Table 3. Effect of input length on SST prediction.

Input Length
ConvLSTM ST-ConvLSTM

RMSE MAE R2 RMSE MAE R2

1-d
3-d
5-d
7-d

15-d
30-d

0.2559
0.2864
0.3217
0.3280
0.3683
0.3640

0.1885
0.2155
0.2372
0.2481
0.2796
0.2734

0.9838
0.9798
0.9745
0.9735
0.9671
0.9646

0.2673
0.2799
0.2994
0.3019
0.3384
0.2791

0.2008
0.2087
0.2187
0.2290
0.2490
0.2069

0.9824
0.9807
0.9779
0.9775
0.9722
0.9792

From the experimental results in Table 3, it can be seen that the two models, ConvLSTM
and ST-ConvLSTM, do not have better SST prediction performance when used with longer
input lengths. Within the input length range of 1–15, the SST prediction performance of the
models gradually decreases as the input length increases. However, at the input length of
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30, the SST prediction performance of the model is improved to some extent, but there is
still a gap compared to the prediction index obtained at the input length of 1.

The optimal results are obtained with an input length of 1 for both methods when the
other conditions are held constant and only the input length is changed. The possible reason
for this is that the model fully extracts and learns the feature information contained in the
data. If the input length increases, the model cannot fully extract the feature information
from the data, and thus the model’s SST prediction performance decreases as the input
length increases. It is worth mentioning that as the input length increases, the computational
effort also increases significantly, instead of achieving better results.

To show more intuitively the comparison of the prediction performance with different
parameter settings, we have plotted Figures 6 and 7. From the description in Section 3.2, it
is also clear that ST-ConvLSTM is an improved version of ConvLSTM, but from the pre-
diction results of the two methods, ConvLSTM still has an advantage over ST-ConvLSTM
when the input length is 1. However, as the input length increases, the prediction per-
formance of ST-ConvLSTM gradually outperforms that of ConvLSTM, which is mainly
attributed to ST-ConvLSTM’s unique design, which enables the effective transfer of spatial
feature information.
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5.2. Effect of Prediction Length on SST Prediction Performance

To verify the influence of prediction length on SST prediction results, according to the
analysis of experimental results in Section 5.1, the initial learning rate was set as 0.0001,
the hidden size as 64, the input length as 1, and the prediction length as 1, 2, 4, 6, 8, 10 and
15, respectively. The influence of prediction length on the prediction of SST is shown in
Table 4, in which the bold font is the optimal result of this group of experiments.

Table 4. Effect of prediction length on SST prediction.

Prediction Length
ConvLSTM ST-ConvLSTM

RMSE MAE R2 RMSE MAE R2

1-d
2-d
4-d
6-d
8-d

10-d
15-d

0.2463
0.2443
0.2538
0.2559
0.3031
0.2921
0.3055

0.1833
0.1827
0.1895
0.1885
0.2381
0.2202
0.2331

0.9856
0.9859
0.9849
0.9838
0.9775
0.9792
0.9776

0.2195
0.2287
0.2705
0.2673
0.2717
0.2744
0.3272

0.1643
0.1693
0.2029
0.2008
0.2085
0.2065
0.2595

0.9886
0.9877
0.9828
0.9824
0.9819
0.9817
0.9743

It can be seen from Table 4 that with the increase in the prediction length, the sea surface
temperature prediction performance of ConvLSTM and ST-ConvLSTM has a gradual
decline trend. For ConvLSTM, when the prediction length is 10, the sea surface temperature
prediction performance rebounds slightly. For ST-ConvLSTM, when the prediction length
is 15, the sea surface temperature prediction performance is much worse than when the
prediction length is 10. When other conditions were kept constant and only the prediction
length was changed, the ConvLSTM obtained the optimal results at the prediction length
of 2, and the ST-ConvLSTM obtained the optimal results at the prediction length of 1.

In order to show more intuitively the comparison of the prediction performance with
different parameter settings, we have plotted Figures 8 and 9. Comparing the two models,
ST-ConvLSTM does not always outperform ConvLSTM, and ConvLSTM outperforms
ST-ConvLSTM in predicting SST at input lengths of 4, 6, and 15 instead. This also means
that the overall performance of ST-ConvLSTM is not better than that of ConvLSTM, and
specific considerations are needed for SST prediction.

Remote Sens. 2023, 14, x FOR PEER REVIEW 10 of 17 
 

 

It can be seen from Table 4 that with the increase in the prediction length, the sea 
surface temperature prediction performance of ConvLSTM and ST-ConvLSTM has a 
gradual decline trend. For ConvLSTM, when the prediction length is 10, the sea surface 
temperature prediction performance rebounds slightly. For ST-ConvLSTM, when the pre-
diction length is 15, the sea surface temperature prediction performance is much worse 
than when the prediction length is 10. When other conditions were kept constant and only 
the prediction length was changed, the ConvLSTM obtained the optimal results at the 
prediction length of 2, and the ST-ConvLSTM obtained the optimal results at the predic-
tion length of 1. 

In order to show more intuitively the comparison of the prediction performance with 
different parameter settings, we have plotted Figures 8 and 9. Comparing the two models, 
ST-ConvLSTM does not always outperform ConvLSTM, and ConvLSTM outperforms ST-
ConvLSTM in predicting SST at input lengths of 4, 6, and 15 instead. This also means that 
the overall performance of ST-ConvLSTM is not better than that of ConvLSTM, and spe-
cific considerations are needed for SST prediction. 

  
Figure 8. Comparison of SST prediction performance using ConvLSTM. On the left, the prediction 
length is set to 1, and on the right, it is set to 15. 

  

Figure 9. Comparison of SST prediction performance using ST-ConvLSTM. On the left, the predic-
tion length is set to 1, and on the right, it is set to 15. 

 

 

Figure 8. Comparison of SST prediction performance using ConvLSTM. On the left, the prediction
length is set to 1, and on the right, it is set to 15.



Remote Sens. 2023, 15, 1656 10 of 16

Remote Sens. 2023, 14, x FOR PEER REVIEW 10 of 17 
 

 

It can be seen from Table 4 that with the increase in the prediction length, the sea 
surface temperature prediction performance of ConvLSTM and ST-ConvLSTM has a 
gradual decline trend. For ConvLSTM, when the prediction length is 10, the sea surface 
temperature prediction performance rebounds slightly. For ST-ConvLSTM, when the pre-
diction length is 15, the sea surface temperature prediction performance is much worse 
than when the prediction length is 10. When other conditions were kept constant and only 
the prediction length was changed, the ConvLSTM obtained the optimal results at the 
prediction length of 2, and the ST-ConvLSTM obtained the optimal results at the predic-
tion length of 1. 

In order to show more intuitively the comparison of the prediction performance with 
different parameter settings, we have plotted Figures 8 and 9. Comparing the two models, 
ST-ConvLSTM does not always outperform ConvLSTM, and ConvLSTM outperforms ST-
ConvLSTM in predicting SST at input lengths of 4, 6, and 15 instead. This also means that 
the overall performance of ST-ConvLSTM is not better than that of ConvLSTM, and spe-
cific considerations are needed for SST prediction. 

  
Figure 8. Comparison of SST prediction performance using ConvLSTM. On the left, the prediction 
length is set to 1, and on the right, it is set to 15. 

  

Figure 9. Comparison of SST prediction performance using ST-ConvLSTM. On the left, the predic-
tion length is set to 1, and on the right, it is set to 15. 

 

 

Figure 9. Comparison of SST prediction performance using ST-ConvLSTM. On the left, the prediction
length is set to 1, and on the right, it is set to 15.

5.3. Effect of Hidden Size on SST Prediction Performance

To verify the influence of the hidden layers on the SST prediction results, when the
initial learning rate is 0.0001, the input length is 1, and the prediction length is 10. The
influence of hidden size on the prediction of SST is shown in Table 5, in which the bold font
is the optimal result of this group of experiments.

Table 5. Effect of hidden size on SST prediction.

Hidden Size
ConvLSTM ST-ConvLSTM

RMSE MAE R2 RMSE MAE R2

2
4
8

16
32
64

128

4.0448
3.3343
2.5523
1.4760
0.3670
0.2921
0.3226

1.8103
1.4934
1.1545
0.7289
0.2825
0.2202
0.2598

−2.9753
−1.7014
−0.5828
0.4706
0.9672
0.9792
0.9747

3.9653
3.3333
2.5377
1.4820
0.2953
0.2744
0.2459

1.7515
1.4852
1.1426
0.7500
0.2220
0.2065
0.1821

−2.8206
−1.6997
−0.5647
0.4662
0.9788
0.9817
0.9852

From Table 5, we can see that the setting of hidden size has a large impact on the
prediction ability of SST. To show more intuitively the comparison of the prediction per-
formance with different parameter settings, we have plotted Figures 10 and 11. From
the perspective of ConvLSTM, as the value of the hidden size increases, the prediction
performance gradually improves, but it does not mean that the larger the setting, the better
the prediction performance. When the hidden size is set to 128, the prediction performance
of sea surface temperature starts to decrease. The possible reason for this is that the input
feature information is less, and an overly complex network structure has side effects on the
prediction of sea surface temperature. From ST-ConvLSTM, as the hidden size increases,
the prediction performance gradually improves. This may be due to the unique design of
ST-ConvLSTM, which ensures that the feature information is not lost.
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It is worth mentioning that although the prediction performance of SST is better when
the hidden size is set to 128 than when it is set to 64, the accompanying computational cost
is increased by about 50% and the performance is only improved by about 10%.

5.4. Visualization of SST Prediction Performance

Capturing the variability of SST plays an important role in our study and use of the
ocean. To better study the SST prediction ability under different environments, we chose
March, June, September, and December 2019 from 21 to 30 for testing. After the initial
learning rate was set to 0.0001, the hidden size was set to 64, the input length was set to 1,
the prediction length was set to 10, and 20,000 rounds of iterative training, the advantages
and disadvantages of ConvLSTM and ST-ConvLSTM in predicting SST under different time
nodes were analyzed comprehensively by visualizing the difference between the “Ground
Truth” and the “Predicted”. As shown in Table 6, Figures 12 and 13, where “Ground Truth”
represents the true SST value, “Predicted” represents the model predicted SST value, and
”Error” represents the difference between the former and the latter.
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Table 6. The prediction result of SST (Maximum Error and Minimum Error).

Time Nodes
ConvLSTM ST-ConvLSTM

Max Min Max Min

21 March 2019~30 March 2019
21 June 2019~30 June 2019

21 September 2019~30 September 2019
21 December 2019~30 December 2019

1.5590
1.4458
1.6907
1.6345

−3.3055
−1.3259
−1.6543
−1.9725

2.1003
1.3666
1.3691
2.7281

−2.5679
−1.2347
−1.4009
−2.3366

1 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Visualization of the ConvLSTM predicted SST for the next 10 days.
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Figure 13. Visualization of the ST-ConvLSTM predicted SST for the next 10 days.

The South China Sea is a tropical ocean with high sea surface temperatures, but due to
the large latitudinal span and the influence of monsoons and currents, there are differences
in the distribution of surface water temperatures between the north and south. From
Figures 12 and 13, the smaller the value of “Error”, the whiter the image as a whole. When
using ConvLSTM and ST-ConvLSTM to predict SST, the predicted values of SST in March
and December are higher overall; the predicted values of SST in June and September are
lower overall. The highest error of the ConvLSTM prediction reaches −3.3055 in March,
and the highest error of the ST-ConvLSTM prediction reaches 2.7281 in December. The
possible reason is that the ocean dynamics in the South China Sea are complex, and the
mechanism behind the change is not fully learned. We take December as an example,
and it is obvious that the ConvLSTM predicts better than the ST-ConvLSTM. So although
ST-ConvLSTM is an improved version of ConvLSTM, it is not the case that ST-ConvLSTM
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is better than ConvLSTM everywhere, and specific problems need to be analyzed to make
reasonable inferences.

6. Conclusions

In this study, we used two commonly used spatiotemporal prediction models, ConvL-
STM and ST-ConvLSTM, to analyze the difference in the prediction performance of SST by
combining different input lengths, prediction lengths, and hidden sizes. The main findings
of this study are as follows:

(1) The input length has an effect on SST prediction, but that does not mean that the
longer the input length is, the better the prediction performance is. With the same
other settings, the two methods, ConvLSTM and ST-ConvLSTM, have the best SST
prediction performance when the input length is set to 1. On the whole, the SST
prediction performance tends to decrease instead as the input length increases.

(2) The prediction length has an effect on SST prediction. When other parameters are
kept constant and only the prediction length is changed, ConvLSTM gets the optimal
result when the prediction length is set to 2 and ST-ConvLSTM gets the optimal result
when the prediction length is set to 1. The SST prediction performance of ConvLSTM
and ST-ConvLSTM tends to decrease gradually as the prediction length increases.

(3) The setting of the hidden size has a large impact on the prediction ability. For Con-
vLSTM, the prediction performance first gradually improves with the increase in
the hidden size value, and the improvement is larger, and then the SST prediction
performance starts to decrease when the hidden size is set to 128. For ST-ConvLSTM,
the prediction performance gradually improves as the hidden size increases, and
the prediction performance of SST is better when the hidden size is set to 128 than
when it is set to 64, but then the computational cost increases by about 50% and the
performance only improves by about 10%.

Deep learning methods have achieved good results in SST prediction. However, there
are some drawbacks: (1) It is like a “black box”, and the inference mechanism between
model input and output is not clear. (2) These methods rely too much on the size of the
input training data, and the model prediction may be poor in the case of a small training
set. In our future work, we will focus on model interpretability, model lightweighting, and
few-shot learning to make breakthroughs.

Author Contributions: Conceptualization, P.H. and S.L.; methodology, P.H.; software, P.H.; vali-
dation, S.L., Y.G. and J.S.; formal analysis, P.H.; investigation, J.S.; resources, P.H.; data curation,
P.H.; writing—original draft preparation, P.H.; writing—review and editing, J.S.; visualization, P.H.;
supervision, S.L.; project administration, S.L.; funding acquisition, J.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
numbers 41830533 and 41876003.

Data Availability Statement: For more information, please refer to the website: https://data.marine.
copernicus.eu/product/GLOBAL_REANALYSIS_PHY_001_031/description (accessed on 12 March 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Trenberth, K.E.; Branstator, G.W.; Karoly, D.; Kumar, A.; Lau, N.C.; Ropelewski, C. Progress during TOGA in understanding and

modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. Ocean. 1998, 103, 14291–14324.
[CrossRef]

2. Ishii, M.; Shouji, A.; Sugimoto, S.; Matsumoto, T. Objective analyses of sea-surface temperature and marine meteorological
variables for the 20th century using ICOADS and the Kobe collection. Int. J. Climatol. J. R. Meteorol. Soc. 2005, 25, 865–879.
[CrossRef]

3. Xie, S.-P.; Deser, C.; Vecchi, G.A.; Ma, J.; Teng, H.; Wittenberg, A.T. Global warming pattern formation: Sea surface temperature
and rainfall. J. Clim. 2010, 23, 966–986. [CrossRef]

https://data.marine.copernicus.eu/product/GLOBAL_REANALYSIS_PHY_001_031/description
https://data.marine.copernicus.eu/product/GLOBAL_REANALYSIS_PHY_001_031/description
http://doi.org/10.1029/97JC01444
http://doi.org/10.1002/joc.1169
http://doi.org/10.1175/2009JCLI3329.1


Remote Sens. 2023, 15, 1656 15 of 16

4. Donlon, C.; Robinson, I.; Casey, K.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piollé, J.
The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 2007,
88, 1197–1214. [CrossRef]

5. Deser, C.; Alexander, M.A.; Xie, S.-P.; Phillips, A.S. Sea surface temperature variability: Patterns and mechanisms. Annu. Rev. Mar.
Sci. 2010, 2, 115–143. [CrossRef]

6. Kennedy, J.J.; Rayner, N.; Atkinson, C.; Killick, R. An ensemble data set of sea surface temperature change from 1850: The Met
Office Hadley Centre HadSST. 4.0. 0.0 data set. J. Geophys. Res. Atmos. 2019, 124, 7719–7763. [CrossRef]

7. Kilpatrick, K.; Podesta, G.; Evans, R. Overview of the NOAA/NASA advanced very high resolution radiometer Pathfinder
algorithm for sea surface temperature and associated matchup database. J. Geophys. Res. Oceans 2001, 106, 9179–9197. [CrossRef]

8. Oliver, E.C.; Benthuysen, J.A.; Darmaraki, S.; Donat, M.G.; Hobday, A.J.; Holbrook, N.J.; Schlegel, R.W.; Sen Gupta, A. Marine
heatwaves. Ann. Rev. Mar. Sci. 2021, 13, 313–342. [CrossRef]

9. Oppo, D.W.; Sun, Y. Amplitude and timing of sea-surface temperature change in the northern South China Sea: Dynamic link to
the East Asian monsoon. Geology 2005, 33, 785–788. [CrossRef]

10. Yu, Y.; Zhang, H.-R.; Jin, J.; Wang, Y. Trends of sea surface temperature and sea surface temperature fronts in the South China Sea
during 2003–2017. Acta Oceanol. Sin. 2019, 38, 106–115. [CrossRef]

11. Fang, G.; Chen, H.; Wei, Z.; Wang, Y.; Wang, X.; Li, C. Trends and interannual variability of the South China Sea surface winds,
surface height, and surface temperature in the recent decade. J. Geophys. Res. Ocean. 2006, 111, C11S16. [CrossRef]

12. Chu, P.C.; Lu, S.; Chen, Y. Temporal and spatial variabilities of the South China Sea surface temperature anomaly. J. Geophys. Res.
Ocean. 1997, 102, 20937–20955. [CrossRef]

13. Qu, T. Role of ocean dynamics in determining the mean seasonal cycle of the South China Sea surface temperature. J. Geophys.
Res. Ocean. 2001, 106, 6943–6955. [CrossRef]

14. Pelejero, C.; Grimalt, J.O. The correlation between the 37k index and sea surface temperatures in the warm boundary: The South
China Sea. Geochim. Cosmochim. Acta 1997, 61, 4789–4797. [CrossRef]

15. Wang, Y.; Yu, Y.; Zhang, Y.; Zhang, H.-R.; Chai, F. Distribution and variability of sea surface temperature fronts in the south China
sea. Estuar. Coast. Shelf Sci. 2020, 240, 106793. [CrossRef]

16. Tan, W.; Wang, X.; Wang, W.; Wang, C.; Zuo, J. Different responses of sea surface temperature in the South China Sea to various El
Niño events during boreal autumn. J. Clim. 2016, 29, 1127–1142. [CrossRef]

17. Lin, C.-Y.; Ho, C.-R.; Zheng, Q.; Huang, S.-J.; Kuo, N.-J. Variability of sea surface temperature and warm pool area in the South
China Sea and its relationship to the western Pacific warm pool. J. Oceanogr. 2011, 67, 719–724. [CrossRef]

18. Yao, Y.; Wang, C. Variations in summer marine heatwaves in the South China Sea. J. Geophys. Res. Ocean. 2021, 126, e2021JC017792.
[CrossRef]

19. Xiao, F.; Wang, D.; Zeng, L.; Liu, Q.-Y.; Zhou, W. Contrasting changes in the sea surface temperature and upper ocean heat content
in the South China Sea during recent decades. Clim. Dyn. 2019, 53, 1597–1612. [CrossRef]

20. Kug, J.S.; Kang, I.S.; Lee, J.Y.; Jhun, J.G. A statistical approach to Indian Ocean sea surface temperature prediction using a
dynamical ENSO prediction. Geophys. Res. Lett. 2004, 31, L09212. [CrossRef]

21. Berliner, L.M.; Wikle, C.K.; Cressie, N. Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling. J. Clim. 2000, 13,
3953–3968. [CrossRef]

22. Kug, J.-S.; Lee, J.-Y.; Kang, I.-S. Global sea surface temperature prediction using a multimodel ensemble. Mon. Weather Rev. 2007,
135, 3239–3247. [CrossRef]

23. Repelli, C.A.; Nobre, P. Statistical prediction of sea-surface temperature over the tropical Atlantic. Int. J. Climatol. J. R. Meteorol.
Soc. 2004, 24, 45–55. [CrossRef]

24. Borchert, L.F.; Menary, M.B.; Swingedouw, D.; Sgubin, G.; Hermanson, L.; Mignot, J. Improved decadal predictions of North
Atlantic subpolar gyre SST in CMIP6. Geophys. Res. Lett. 2021, 48, e2020GL091307. [CrossRef]

25. Colman, A.; Davey, M. Statistical prediction of global sea-surface temperature anomalies. Int. J. Climatol. J. R. Meteorol. Soc. 2003,
23, 1677–1697. [CrossRef]

26. Barnett, T.; Graham, N.; Pazan, S.; White, W.; Latif, M.; Flügel, M. ENSO and ENSO-related predictability. Part I: Prediction of
equatorial Pacific sea surface temperature with a hybrid coupled ocean–atmosphere model. J. Clim. 1993, 6, 1545–1566. [CrossRef]

27. Davis, R.E. Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys.
Oceanogr. 1976, 6, 249–266. [CrossRef]

28. Alexander, M.A.; Matrosova, L.; Penland, C.; Scott, J.D.; Chang, P. Forecasting Pacific SSTs: Linear inverse model predictions of
the PDO. J. Clim. 2008, 21, 385–402. [CrossRef]

29. Gao, G.; Marin, M.; Feng, M.; Yin, B.; Yang, D.; Feng, X.; Ding, Y.; Song, D. Drivers of marine heatwaves in the East China Sea
and the South Yellow Sea in three consecutive summers during 2016–2018. J. Geophys. Res. Ocean. 2020, 125, e2020JC016518.
[CrossRef]

30. Costa, P.; Gómez, B.; Venâncio, A.; Pérez, E.; Pérez-Muñuzuri, V. Using the Regional Ocean Modelling System (ROMS) to improve
the sea surface temperature predictions of the MERCATOR Ocean System. Sci. Mar. 2012, 76, 165–175. [CrossRef]

31. Xue, Y.; Leetmaa, A. Forecasts of tropical Pacific SST and sea level using a Markov model. Geophys. Res. Lett. 2000, 27, 2701–2704.
[CrossRef]

http://doi.org/10.1175/BAMS-88-8-1197
http://doi.org/10.1146/annurev-marine-120408-151453
http://doi.org/10.1029/2018JD029867
http://doi.org/10.1029/1999JC000065
http://doi.org/10.1146/annurev-marine-032720-095144
http://doi.org/10.1130/G21867.1
http://doi.org/10.1007/s13131-019-1416-4
http://doi.org/10.1029/2005JC003276
http://doi.org/10.1029/97JC00982
http://doi.org/10.1029/2000JC000479
http://doi.org/10.1016/S0016-7037(97)00280-9
http://doi.org/10.1016/j.ecss.2020.106793
http://doi.org/10.1175/JCLI-D-15-0338.1
http://doi.org/10.1007/s10872-011-0072-x
http://doi.org/10.1029/2021JC017792
http://doi.org/10.1007/s00382-019-04697-1
http://doi.org/10.1029/2003GL019209
http://doi.org/10.1175/1520-0442(2001)013&lt;3953:LLPOPS&gt;2.0.CO;2
http://doi.org/10.1175/MWR3458.1
http://doi.org/10.1002/joc.982
http://doi.org/10.1029/2020GL091307
http://doi.org/10.1002/joc.956
http://doi.org/10.1175/1520-0442(1993)006&lt;1545:EAERPP&gt;2.0.CO;2
http://doi.org/10.1175/1520-0485(1976)006&lt;0249:POSSTA&gt;2.0.CO;2
http://doi.org/10.1175/2007JCLI1849.1
http://doi.org/10.1029/2020JC016518
http://doi.org/10.3989/scimar.03614.19E
http://doi.org/10.1029/1999GL011107


Remote Sens. 2023, 15, 1656 16 of 16

32. Collins, D.; Reason, C.; Tangang, F. Predictability of Indian Ocean sea surface temperature using canonical correlation analysis.
Clim. Dyn. 2004, 22, 481–497. [CrossRef]

33. Patil, K.; Deo, M.; Ravichandran, M. Prediction of sea surface temperature by combining numerical and neural techniques.
J. Atmos. Ocean. Technol. 2016, 33, 1715–1726. [CrossRef]

34. Wolff, S.; O’Donncha, F.; Chen, B. Statistical and machine learning ensemble modelling to forecast sea surface temperature. J. Mar.
Syst. 2020, 208, 103347. [CrossRef]

35. Yang, Y.; Dong, J.; Sun, X.; Lima, E.; Mu, Q.; Wang, X. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geosci.
Remote Sens. Lett. 2017, 15, 207–211. [CrossRef]

36. Zhang, Q.; Wang, H.; Dong, J.; Zhong, G.; Sun, X. Prediction of sea surface temperature using long short-term memory. IEEE
Geosci. Remote Sens. Lett. 2017, 14, 1745–1749. [CrossRef]

37. Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Gong, J.; Chen, Z. Short and mid-term sea surface temperature prediction using time-series
satellite data and LSTM-AdaBoost combination approach. Remote Sens. Environ. 2019, 233, 111358. [CrossRef]

38. Hou, S.; Li, W.; Liu, T.; Zhou, S.; Guan, J.; Qin, R.; Wang, Z. MIMO: A Unified Spatio-Temporal Model for Multi-Scale Sea Surface
Temperature Prediction. Remote Sens. 2022, 14, 2371. [CrossRef]

39. Wei, L.; Guan, L.; Qu, L.; Guo, D. Prediction of sea surface temperature in the China seas based on long short-term memory
neural networks. Remote Sens. 2020, 12, 2697. [CrossRef]

40. Cho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. arXiv 2014, arXiv:1406.1078.

41. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
42. Jordan, M.I. Serial order: A parallel distributed processing approach. In Advances in Psychology; Elsevier: Amsterdam, The

Netherlands, 1997; Volume 121, pp. 471–495.
43. Xie, J.; Zhang, J.; Yu, J.; Xu, L. An adaptive scale sea surface temperature predicting method based on deep learning with attention

mechanism. IEEE Geosci. Remote Sens. Lett. 2019, 17, 740–744. [CrossRef]
44. Xu, S.; Dai, D.; Cui, X.; Yin, X.; Jiang, S.; Pan, H.; Wang, G. A deep learning approach to predict sea surface temperature based on

multiple modes. Ocean Model. 2023, 181, 102158. [CrossRef]
45. Shao, Q.; Li, W.; Han, G.; Hou, G.; Liu, S.; Gong, Y.; Qu, P. A deep learning model for forecasting sea surface height anomalies and

temperatures in the South China Sea. J. Geophys. Res. Ocean. 2021, 126, e2021JC017515. [CrossRef]
46. Kim, M.; Yang, H.; Kim, J. Sea surface temperature and high water temperature occurrence prediction using a long short-term

memory model. Remote Sens. 2020, 12, 3654. [CrossRef]
47. Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM network: A machine learning approach

for precipitation nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28. [CrossRef]
48. Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. Predrnn: Recurrent neural networks for predictive learning using spatiotemporal

lstms. Adv. Neural Inform. Process. Syst. 2017, 30.
49. Li, C.; Feng, Y.; Sun, T.; Zhang, X. Long term Indian Ocean Dipole (IOD) index prediction used deep learning by convLSTM.

Remote Sens. 2022, 14, 523. [CrossRef]
50. Zhang, K.; Geng, X.; Yan, X.-H. Prediction of 3-D ocean temperature by multilayer convolutional LSTM. IEEE Geosci. Remote Sens.

Lett. 2020, 17, 1303–1307. [CrossRef]
51. Xiao, C.; Chen, N.; Hu, C.; Wang, K.; Xu, Z.; Cai, Y.; Xu, L.; Chen, Z.; Gong, J. A spatiotemporal deep learning model for sea

surface temperature field prediction using time-series satellite data. Environ. Model. Softw. 2019, 120, 104502. [CrossRef]
52. De Mattos Neto, P.S.; Cavalcanti, G.D.; de O Santos Júnior, D.S.; Silva, E.G. Hybrid systems using residual modeling for sea

surface temperature forecasting. Sci. Rep. 2022, 12, 487. [CrossRef]
53. Qiao, B.; Wu, Z.; Ma, L.; Zhou, Y.; Sun, Y. Effective ensemble learning approach for SST field prediction using attention-based

PredRNN. Front. Comput. Sci. 2023, 17, 171601. [CrossRef]
54. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
55. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L. Pytorch: An

imperative style, high-performance deep learning library. Adv. Neural Inform. Process. Syst. 2019, 32.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00382-004-0390-4
http://doi.org/10.1175/JTECH-D-15-0213.1
http://doi.org/10.1016/j.jmarsys.2020.103347
http://doi.org/10.1109/LGRS.2017.2780843
http://doi.org/10.1109/LGRS.2017.2733548
http://doi.org/10.1016/j.rse.2019.111358
http://doi.org/10.3390/rs14102371
http://doi.org/10.3390/rs12172697
http://doi.org/10.1162/neco.1997.9.8.1735
http://doi.org/10.1109/LGRS.2019.2931728
http://doi.org/10.1016/j.ocemod.2022.102158
http://doi.org/10.1029/2021JC017515
http://doi.org/10.3390/rs12213654
http://doi.org/10.48550/arXiv.1506.04214
http://doi.org/10.3390/rs14030523
http://doi.org/10.1109/LGRS.2019.2947170
http://doi.org/10.1016/j.envsoft.2019.104502
http://doi.org/10.1038/s41598-021-04238-z
http://doi.org/10.1007/s11704-021-1080-7

	Introduction 
	Preliminaries 
	SST Prediction Using Deep Learning 
	Long Short-Term Memory 

	Materials and Methods 
	Data 
	Methods 
	ConvLSTM 
	ST-ConvLSTM 


	Experimental Design 
	Experimental Environment 
	Experimental Procedures 
	Metrics 

	Results 
	Effect of Input Length on SST Prediction Performance 
	Effect of Prediction Length on SST Prediction Performance 
	Effect of Hidden Size on SST Prediction Performance 
	Visualization of SST Prediction Performance 

	Conclusions 
	References

