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Abstract: Radar emitter identification (REI) aims to extract the fingerprint of an emitter and 

determine the individual to which it belongs. Although many methods have used deep neural 

networks (DNNs) for an end-to-end REI, most of them only focus on a single view of signals, such 

as spectrogram, bi-spectrum, signal waveforms, and so on. When the electromagnetic environment 

varies, the performance of DNN will be significantly degraded. In this paper, a multi-view adaptive 

fusion network (MAFN) is proposed by simultaneously exploring the signal waveform and 

ambiguity function (AF). First, the original waveform and ambiguity function of the radar signals 

are used separately for feature extraction. Then, a multi-scale feature-level fusion module is 

constructed for the fusion of multi-view features from waveforms and AF, via the Atrous Spatial 

Pyramid Pooling (ASPP) structure. Next, the class probability is modeled as Dirichlet distribution 

to perform adaptive decision-level fusion via evidence theory. Extensive experiments are conducted 

on two datasets, and the results show that the proposed MAFN can achieve accurate classification 

of radar emitters and is more robust than its counterparts. 
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1. Introduction 

Radar emitter identification (REI) is a key technology in radar signal processing, 

which aims to extract features of radar emitters to identify radar attributes and types. As 

a typical pattern recognition problem, REI can provide intelligence for reconnaissance and 

operational decisions in electronic countermeasures. In the early years, the signal 

waveform of a radar emitter is simple and the modulation parameters are stable, so the 

template matching method is usually used for REI [1]. First, a parameter feature template 

of each radar emitter, such as the pulse descriptor word (PDW), is established in advance. 

Then, the radar parameters are compared with those of the templates, to perform a pattern 

matching to identify the radar emitter. However, with the rapid development of radar 

systems and the increasing complexity of the electromagnetic environment, simple 

parameter matching cannot correctly identify radar emitters. 

REI can be mainly divided into feature extraction and classification, and recently 

much effort has been made to design stable, finer and discriminative features, and reliable 

classifiers. For example, Kawalec et al. [2] extract the rise/fall time, rise/fall angle, rise and 

fall intersection point, top fall time, envelope UFMOP curve, and its regression line as 

emitter features, followed by linear discriminant analysis (LDA), for REI. Ru et al. [3] 

consider the rising edge of the envelope and part of the pulse peak as emitter features. 

Zhao et al. [4] estimate the instantaneous frequency of the signals and take the geometric 

features of the frequency drift curve as emitter features. In [5], Cao et al. compute the bi-

spectrum amplitude spectrum of the signal and use an extreme learning machine (ELM) 
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to automatically learn the signal features. To reduce the computational complexity of REI, 

Chen et al. [6] take the amplitude and phase of the first quadrant of the bi-spectrum as 

features for REI. In [7], a one-dimensional circular spectrum slice with a spectral frequency 

of zero is taken as the emitter feature. In [8], Wang first uses short-time Fourier 

transformation (STFT) of signals for REI and then uses random projection and principal 

component analysis (PCA) to extract features. In [9], Seddighi performs stripe or block 

segmentation of the Choi–William distribution (CWD) of radar signals, along the time 

axis, frequency axis, and time–frequency plane, respectively. The entropy, kurtosis, and 

skewness of each block are extracted as the emitter features. Also, the components of 

variational mode decomposition (VMD) are used as the emitter features in [10]. Based on the 

extracted emitter features, various types of classifiers are also developed for REI [11], 

including vector neural network (VNN) [12], support vector machine (SVM) [13], and so on. 

In recent years, deep neural networks (DNNs) have been used to automatically 

extract signal features and classify radar emitters in an end-to-end manner, where feature 

extraction and recognition of radar emitters are performed simultaneously in a network. 

Different features from the time domain, frequency domain, or time–frequency domain 

are considered, and convolutional neural networks (CNNs), recurrent neural networks 

(RNNs), and hybrid networks are developed to learn discriminative features or 

fingerprints of radar emitters. For example, the RF, pulse width and PRI features are fed 

into a CNN to classify 67 radar emitters in [14], which has three one-dimensional 

convolutional modules and two fully connected layers. In [15], the saliency map of the 

STFT spectrum of the signals is first computed and fed into a CNN for classification. In 

[16], Liu et al. use RNN to identify radar emitters from the binning of the pulse streams. 

To improve the robustness and accuracy of DNN-based REI, some variants of DNN are 

also developed. For example, in [17] Notaro et al. first combine global and local signal 

features and feed each feature into a separate LSTM network for ensemble classification 

of emitters. In [18], Li et al. build a plural neural network based on DenseNet and use 

three fusion methods for REI. In [19], Wu et al. use 1D-CNN to extract features and 

attention modules for feature fusion. In [20], Yuan et al. combine a CNN with a 

transformer for REI. In [21], three types of features are extracted and fed into a CNN, and 

then the prediction results are voted on for the final classification. Yuan et al. [22] develop 

a new deep network for channel slicing and feature extraction via the CBAM attention 

module. 

Although several DNNs and their variants have been developed for REI, they still 

have some limitations when used in real electromagnetic environments: 

• Most of the available DNNs focus only on a single view of signals, such as 

spectrogram, signal waveforms, bi-spectrum, empirical features, and so on. 

However, multi-view learning has proved to be able to improve the generalization 

performance of classifiers. On the other hand, radar signals have multi-dimensional 

descriptions in the time domain, frequency domain, spatial domain, and 

combinational domain, which may be complementary for a more robust REI. 

• Most of the available DNNs assume that the training set and test set have the same 

distribution, but the real electromagnetic environment is time-varying and the radar 

signals from emitters are too complex to strictly follow a fixed distribution. It is well 

known that DNNs are trained on a given set of instances collected from a limited 

number of cases. When the electromagnetic environment of signals varies, the 

performance of DNNs will deteriorate significantly. 

Considering these limitations, this paper proposes a multi-view adaptive fusion 

network (MAFN) using the signal waveform and ambiguity function of the radar signal. 

A multi-view representation of signals is processed comprehensively and simultaneously 

to formulate multi-scale deep features, by designing a suitable multi-view embedding. 

For the varied signals, the class probability is modeled as Dirichlet distribution and an 

adaptive decision-level fusion based on evidence theory is proposed. It can reduce the 
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existence of disagreement in multi-view feature learning. Compared with the current 

DNN-based REI methods, the contributions of this work can be summarized as follows: 

• A multi-modal deep neural network is proposed, to fuse the multi-view 

representation of radar emitters, and generate more discriminative and robust multi-

scale features for REI. The learned features can reveal the essential characteristics of 

radar emitters, which are beneficial for the subsequent classification.  

• A decision-level fusion algorithm based on evidence theory is proposed. Probability 

vectors of categories from different views are computed from a multi-scale feature 

fusion module and dynamically integrated at the evidence layer. The evidence from 

each view is integrated via Dirichlet distribution and D-S evidence theory. 

Experiments are performed on two radar datasets, and the results demonstrate that 

the proposed method can effectively fuse multi-view information and achieve higher 

accuracy, and is more robust compared to its counterparts. 

2. Multi-View Adaptive Fusion Network 

2.1. Ambiguity Function 

In modern radar systems, the matched filter is often used in the receiver chain to 

improve the signal-to-noise ratio (SNR). The ambiguity function (AF) [23] of a waveform 

represents the output of the matched filter when the specified waveform is used as the 

filter input. Mathematically, AF is the square of the two-dimensional correlation function 

mode of the radar signal and its echo signal. For different radar emitters, AF can reveal 

the resolution capability in both delay and Doppler domains for their waveforms, which 

can provide discriminating information for REI.  

The complex analytic form of the radar signal ( )s t  can be described as 

0 0(2 )
( ) ( )

j f t
s t g t e

 +
=  (1) 

( )( ) ( ) j tg t a t e =  (2) 

where 0f  is the signal carrier frequency, 0  is the initial phase, ( )a t  is the amplitude 

modulation function, ( )t is the phase modulation function, and ( )g t  is the complex 

form describing the envelope function of the signal waveform. Therefore, the ambiguity 

function of the radar signal ( )s t  is defined as 

* 2( , ) ( ) ( ) j tg t g t e dt   


−
= +  (3) 

where ( )g t  is the conjugate function of ( )g t ,   is the time delay between the transmit 

signal and the target echo, and   is the Doppler shift of the target in radial motion with 

respect to the radar. Unlike the time–frequency transform, the AF is a similarity between 

the radar signal itself and the echo after a time delay and Doppler shift, which can express 

the unique properties of signals and is not easily affected by noise. To establish a baseline 

for comparison, assume that the design specification of the radar system requires a 

maximum unambiguous range of 15 km and a range resolution of 1.5 km. For the sake of 

simplicity, also use 3 × 108 m/s as the speed of light. 

The three-dimensional plots of the AFs of three radar emitters are shown in Figure 1. 

In our work, the contour line of the AF is used as a view of the radar signals, which can 

stably reflect the signal distribution and hierarchical structure of the total energy in the 

time–frequency plane, as shown in Figure 2. It is well known that the height value affects 

the shape of the contour lines. If the height value is too large, the contour line will be too 

sparse to provide sufficient discriminative information for REI. If the height value is too 

low, the secondary peaks of the AF will be overemphasized. Therefore, to increase the 

difference in contour density between the main AF peak and the secondary peaks, an 
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appropriate height should be determined. In our work, the height is empirically set at 0.1 

times the peak of the AF. 

  

Figure 1. Ambiguity function of radar emitters. (a–c) are the AF of three radar emitters and different 

colors represent different height information. 

(a) (b) (c)  

Figure 2. The contours of the ambiguity function. (a) Projection of the ambiguity function; (b) height 

is set to 0.1 times the peak of the ambiguity function; (c) height is set to 0.3 times the peak of the 

ambiguity function. 

2.2. Architecture of MAFN 

To realize the multi-view feature fusion of radar emitters [24], a multi-view adaptive 

fusion network (MAFN) is proposed based on deep learning and evidence theory. The 

architecture of the network is shown in Figure 3. Two main modules of MAFN are 

described as follows. 

1. Multi-scale fusion module. The original waveform and the contour line of the AF are 

used as the input of this module. A backbone network is constructed to extract 

features from the multi-view input and then a multi-scale feature fusion layer is 

employed to fuse features from multiple scales of each view. Convolution kernels of 

different sizes are adopted in the multi-scale layer. 

2. Decision-level fusion module. A classifier follows the backbone and multi-scale 

feature fusion layers and then the predicted pseudo-labels of multi-view can be 

obtained. Then, the pseudo-label is assumed to be the Dirichlet distribution and the 

results of different views are dynamically integrated into the evidence layer via D-S 

evidence theory. 
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Figure 3. The overall structure of MAFN. 

2.3. Multi-Scale Feature Fusion Module 

In most of the CNNs for computer vision tasks, the convolution filters are often set 

as 3 3 . They can only extract local features within the shift window, but not the global 

features. Unlike images in computer vision, it is important to capture the long-range 

spatial information in signals to improve the representation. Atrous Spatial Pyramid 

Pooling (ASPP) [25] can resample a given feature layer at multiple rates, which amounts 

to probing the signal with multiple filters that have complementary effective fields of 

view. However, the dilation rate in the original ASPP is too large, so, in our work, a 

modified ASPP is designed in the multi-scale feature fusion, with the parameters shown 

in Table 1. Among the five parallel sub-branches, the 1 1  convolution layer is used to 

extract features, the dilated 3 3  convolution is used to extract features at different 

scales, and the global pooling is used to extract global features. Finally, the features of the 

five sub-branches are concentrated at the channel level to obtain multi-scale features. This 

multi-scale feature fusion module can expand the receptive field without adding too many 

parameters. 

Table 1. The parameters of the modified ASPP. 

Original ASPP  Modified ASPP  

1 1 , rate = 1 1 1 , rate = 1 

3 3 , rate = 6 3 3 , rate = 2 

3 3 , rate = 12 3 3 , rate = 3 

3 3 , rate = 18 3 3 , rate = 4 

Global pooling Global pooling 

For the AF view, 2D ResNet18 [26] is adopted as the backbone. A ResNet-like 1D 

network is designed for the backbone of the original waveform view, as shown in Figure 

4. The feature extraction part is followed by a fully connected layer to output a predicted 

label.  
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Figure 4. Modified Resnet18 (1D and 2D) basic block and simplified structure. 

2.4. Decision-Level Fusion Module 

D-S evidence theory [27], introduced by A.P. Dempster and Shafer, provides a more 

general form of Bayesian inference and is proposed for imprecise inference. This theory 

allows the transformation of observed data into confidence and can be used for fusion at 

the decision level. It can discriminate uncertain information to ensure the confidentiality 

of the fusion. Decision-level fusion based on evidence theory involves two main processes, 

namely evidence construction and evidence combination. The construction of evidence 

involves the creation of mass functions to express uncertain data, while the combination 

of evidence involves the application of rules to determine the combination when the 

evidence is reliable or conflicting. 

Definition 1 (Mass Function). Suppose   represents the propositional space or the 

identification frame. Then, suppose there exists a mapping function : 2 [0,1]m  →  from 2  to 

[0, 1] that satisfies the following conditions 

( ) 1

( ) 0

A

m A

m 



 =


 =


 (4) 

where m is defined as the mass function on the identification frame  , or basic probability 

assignment (BPA). For 2A  , ( )m A  is the confidence value of proposition A, which indicates 

the degree of confidence that the evidence supports proposition A to be true. If ( ) 0m A  , then 

proposition A is called the focal element and ( )m   denotes the confidence value of propositions 

outside the identification frame  . 

Definition 2 (Confidence Function). Let A be a proposition on the identification framework 
. The confidence function is a BPA-based belief function that measures the degree of belief in 

proposition A. It is defined as the sum of the probabilities of all subsets of proposition A within the 

identification framework, expressed as 

( ) ( )
B A

Bel A m B


=   (5) 
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where ( )Bel A  is called the confidence level of proposition A, representing the degree of confidence 

that the evidence places in that proposition. This confidence level represents the minimum level of 

support for proposition A that can be inferred from the available evidence. 

Definition 3 (Likelihood Function). The BPA-based likelihood function for proposition A on the 

identification framework   is defined as the sum of the probabilities of propositions whose 

intersection with the proposition is not empty, expressed as, 

( ) ( )
A B

Pl A m B
 

=   (6) 

where ( )Pl A  is commonly defined as the probability of proposition A, which reflects the degree of 

compatibility between the evidence and proposition A. It represents the maximum amount of 

support that the evidence can provide for proposition A. In the framework of evidence theory, the 

interval [ ( ), ( )]Bel A Pl A  is used to represent the interval of uncertainty about the level of 

confidence in proposition A within the identification framework  . 

Definition 4 (Dempster Combination Rule). For C   , the two mass functions 1m and 2m  

on the identification framework  , the combination rule for the focal elements 1 2, ,... kA A A  and 

1 2, ,... rB B B  are 

1 2

1 2
12

( ) ( )

,( ) ( ) ( )
1

0,

i j

i j

A B C

m A m B

Cm C m A m B
K

C





 =


 =  =  −


=


 (7) 

where 12K is the conflicting term for the two mass functions, defined as 

12 1 2( ) ( )
i j

i j

A B

K m A m B
 =

=   (8) 

where 12K  [0,1]. When 12 0K = , the two mass functions do not conflict completely; when 

120 1K  , the two mass functions do not completely conflict; when 12 1K = , the combination 

rule fails.  

Subjective logic (SL) [28] describes uncertainty in subjective knowledge by adding 

uncertainty to the notion of confidence. For the K classification problem, SL provides a 

theoretical framework to describe the uncertainty of an instance belonging to different 

classes based on the evidence learned in the data. For the vth view, denote the belief mass 

of an instance belonging to the kth category as v

kb , and denote the total uncertainty mass 

as vu . The relationship between the belief mass and the total uncertainty mass can be 

expressed as 

1

1
K

v v

k

k

b u
=

+ =  (9) 

Here the evidence is the output of the multi-scale feature fusion module, but it must 

be ensured that its value is not negative, denoted as 

( ; )v vf input =evidence  (10) 

where vinput  is the input of the vth view, f corresponds to the backbone followed by a 

multi-scale feature fusion module and the classifier mapping function. For the vth view, 

an evidence vector v
evidence  is then formulated for the subsequent operations. It should 

be noted that the activation function takes the Softplus function with non-negative output. 

Thus, each value in the evidence vector satisfies 0v

kevidence  .  
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In the context of multi-class classification, SL obtains the probabilities of different 

classes and the overall uncertainty by modeling the classification probability as Dirichlet 

distribution. Therefore, after obtaining the evidence vector v
evidence  for each view, 

according to the subjective logic theory, the parameters of the Dirichlet distribution can 

be expressed as 

1v v

k kevidence = +  (11) 

The belief mass and total uncertainty mass for each category are calculated as follows 

1

v v

v k k

k v K
v

i

i

evidence evidence
b

S


=

= =


 

(12) 

1

v

v K
v

i

i

K K
u

S


=

= =


 

(13) 

where vS  is the Dirichlet energy. From the formulas, we can see that, as the evidence 

value increases, the total uncertainty mass gradually approaches zero and, conversely, the 

uncertainty mass gradually approaches one. The belief mass and the overall uncertainty 

mass of all the categories are combined as 
1[{ } , ]v v K v

k kM b u== . Assuming that there are V

views in total, several vM are cascaded as 

1 2{ , ,..., }VM M M M=  (14) 

Finally, the results of the different views have to be merged, using the Dempster 

combination rule as described in Equation Error! Reference source not found.. Since only 

two-view inputs are used in our network, 2V = . Then the fusion result of the two views 

is expressed as 

1 2 1 2 2 1 1 2 1 2 2 1

1 21 1

k k k k k k k k

k

i j

i j

b b b u b u b b b u b u
b

b b


+ + + +
= =

− −
 (15) 

1 2 1 2

1 21 1 i j

i j

u u u u
u

b b


= =
− −

 (16) 

where   is used to balance the two confidence sets and the scale factor 1/ (1 )−  is 

used to normalize the output. From Equation (16), it can be seen that, when the 

uncertainties of the classification results from two views are high, the final classification 

result will have low confidence. When the uncertainties of the classification results from 

one view are low, the final classification result will have high confidence. 

2.5. Loss Function and Learning Algorithm 

When the number of categories is K, the support set of a K-dimensional Dirichlet 

distribution is a convex polyhedron containing K nodes in the K-dimensional space. While 

traditional neural networks often use Softmax as a non-linear activation function, the 

output of the network can be considered as a point on the simplex. In contrast, our method 

assigns a probability density to each point on the simplex via the Dirichlet distribution. 

Therefore, unlike the general cross-entropy loss, in our work the loss is calculated by 

integrating over the Dirichlet distribution and the result can be written as 
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1

1 1

1

1
( ) log( )

( )

( ( ) ( ))

ij

KK

ce i ij ij ij i

j ji

K

ij i ij

j

L y p p d
B

y S



  

−

= =

=

 
=  − 

 

= −

 



p


 (17) 

where i is the sample index in the dataset, ip  is the probability of assigning a class on a 

simplex, and ( )   is the logarithmic derivative of the gamma function. To obtain a large 

value at the correct class and a small value on the wrong class in the evidence vector for 

each sample, a KL divergence is added to the loss: 

1

1 1

1

[ ( ) ( )] log ( 1) ( )

( ) ( )

(1 )

K

ij
K K

j

i i i ij ij ikK
j k

ij

j

i i i i

KL D D

K



    



=

= =

=

   
   

     
= + −  −    

     
  

 
 = + −


 


1p p

y y



 

 
(18) 

where i  is the fitting parameter of the Dirichlet distribution to avoid penalizing the 

evidence value at the correct category to 0 and ( )   is the gamma function. Combining 

Equation (17) and Equation (18), the final multilevel fusion loss formula is given by 

1 1

1 1

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

n V
v

i i

i v

n V
v v v v

ce i t i i i ce i t i i i

i v

Loss

L L

L KL D D L KL D D 

= =

= =

 
= + 

 

    = + + +      

 

 1 1p p p p

 

   

 

(19) 

where n denotes the number of samples, V denotes the number of views and t  is the 

balancing factor, which gradually increases with the number of iterations. 

3. Experimental Results and Discussions 

3.1. Datasets and Experimental Condition 

In the experiment, we use two datasets to investigate the performance of the 

proposed MAFN, and the datasets are provided by the “Smart Eye Cup” competition 

(https://www.landinn.cn/project/detail/1629978822137, accessed on 10 February 2022). 

The first dataset is the navigation radar dataset which contains six types of radar emitters. 

The carrier frequency of the radar emitter signal is 100 MHz and the sampling frequency 

is 400 MSps. The second dataset contains twelve types of radar emitters. The carrier 

frequency of the radar emitter signals is 50 MHz and the sampling frequency is 200 MSps. 

Each radar radiation emitter contains 1000 sample files and the sequence length of each 

sample file is 420, so the dimensionality of dataset 1 is (6×000, 420) and the dimensionality 

of dataset 2 is (12×1000, 420). The modulation type of these radar emitters is QPSK. Three 

commonly used multi-classification metrics are used to evaluate the performance of REI 

methods: overall accuracy (OA), average accuracy (AA), and kappa coefficient (kappa). 

In the network training, we use the Adam [29] optimizer with an initial learning rate of 1 

× 10−5 and the batch size is set to 32. The maximum number of epochs is set to 100. In all 

subsequent tests, 60% of the instances in each class are randomly sampled from the dataset 

used for the training, 10% of the instances in each class are randomly sampled from the 

dataset used for the validation, and the remaining 30% of the samples in each class are 

used for testing. To avoid randomness in the training, 30 experiments are run 

independently and the average results are calculated. All the experiments are run on a 

64GB RAM HP Z840 workstation with two E5-2630v CPUs and an NVIDIA GeForce 3090 

GPU.  
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3.2. Investigation on the Multi-View Representation 

In this section we first validate the effectiveness of multi-view by comparing the 

proposed MAFN with two DNNs that deal with only one view, i.e., only the waveforms 

and only the AF. The two DNNs are denoted as View1-NF (View1—no fusion) and View2-

NF, respectively. The one-view DNNs use the same network architecture as the algorithm 

proposed in this paper for a fair comparison, and the hyperparameters and network 

parameters are tuned to present the best classification results. The identification results of 

View1-NF, View2-NF, and MAFN on the two datasets are shown in Table 2.  

Table 2. The identification results of View1-NF, View2-NF, and MAFN on the two datasets. 

Dataset Algorithms OA (%) AA (%) Kappa (%) 

1 

View1-NF 97.00 97.08 96.40 

View2-NF 96.61 96.67 95.93 

MAFN 98.50 98.52 98.20 

2 

View1-NF 99.50 99.50 99.45 

View2-NF 98.33 98.35 98.18 

MAFN 99.86 99.86 99.85 

The results show that all three networks achieve high classification accuracy for the 

designed multi-scale layers. It is well known that a single-scale convolution kernel can 

only extract local features within a certain receptive field. In the multi-scale fusion 

module, by using different scales of convolutional kernels in the same view, local and 

global information in signals can be extracted separately and then fused more 

comprehensively for the final decision. By adaptively adjusting the weights for the fusion 

of different views, MAFN can provide more reliable results at the evidence level. 

Compared with the single-view networks without fusion strategy (View1-NF and View2-

NF), the performance of MAFN with feature fusion is better in OA, AA, and kappa 

coefficients, which confirms the effectiveness of fusing multi-view information. The 

confusion matrixes of the classification results on the two datasets by MAFN are shown 

in Figure 5a,b, respectively. 

The robustness of REI is important in real applications because the assumptions of 

deep learning are so ideal that the model trained on the training set could not adapt well 

to the changing test set. To investigate the robustness of the proposed MAFN when the 

quality of the test data changes, dataset 1 is used as an example to add noise to the test. 

Gaussian noise is added to the signal to test the classification accuracy of the model. 

Signals with different SNRs are considered, ranging from −10 dB to 10 dB, and, in order 

to test the performance of our model in extreme scenarios, the lowest SNR is set to −25 dB. 

The quantitative results of the classification by MAFN are calculated. In addition, several 

related methods are compared with MAFN, including CFF [30] (feature-level stacked 

fusion method), adaptive weights decision fusion (AWDF) [31] (decision-level fusion 

method using adaptive weights), TCN [32], and CNN-LSTM [33] methods for REI. The 

experimental results of different networks are shown in Figure 6, where Figure 6a shows 

the variation of classification accuracy of our proposed algorithm MAFN with the SNR 

and Figure 6b shows the comparison results with other methods. By synthesizing multi-

view information in the feature extraction for classification, MAFN is robust to signal 

degradation. From the results, we can observe a remarkable improvement of MAFN over 

other methods as the SNR decreases. 
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       (b)(a)
 

Figure 5. Confusion matrix of MAFN. (a) Result on dataset 1. (b) Result on dataset 2. The column of the 

matrix represents the predicted class of samples, while the row represents the true class of samples. The 

numbers in the non diagonal element represent the incorrect recognition ratio. The numbers in the black 

background along the diagonal represent the correct recognition ratio of each class. 

It should be noted that a slight fluctuation of the accuracy can be observed when the 

SNR takes the range of −5~5 dB when the results are amplified in Figure 6a. This 

phenomenon can be attributed to the random nature of the added noise, together with the 

intrinsic shortcoming of the gradient-based optimization algorithm. It is well known that, 

when training a DNN, the gradient-based algorithms can only guarantee to converge to a 

local optimum within a limited number of iterations. Therefore, for signals with random 

noise, there will be some small fluctuation in the classification results, especially when the 

energy of the signal and noise are comparable. Thus, in the range of [−5dB 5dB], we can 

observe some fluctuation within 1%. However, we can observe from Figure 6b that our 

proposed method has an improvement in recognition accuracy over other methods.  

(a) (b)  

Figure 6. The classification accuracy curves of MAFN and its counterparts under different SNRs. (a) 

Accuracy curve of MAFN with different SNRs. (b) Accuracy curve of comparison methods. 

3.3. Investigation on the Multi-Scale and Fusion Module 

3.3.1. Multi-Scale Module  

In this section, we analyze the role of the multi-scale fusion module and the decision-

level fusion module separately. First, the multi-scale feature fusion part is removed, and 

the results of different views go through the feature extraction backbone, the classification 

layer, and the decision-level fusion layer, which is denoted as MAFN-no M. The 
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experimental results on dataset 1 and dataset 2 are shown in Table 3, from which we can 

observe that, on both datasets, the performance of the fusion network without the multi-

scale feature fusion degrades. 

Table 3. Comparison of methods with/without multi-scale module on the two datasets. 

Dataset Algorithm OA (%) AA (%) Kappa (%) 

1 
MAFN-no M 98.17 98.16 97.80 

MAFN 98.50 98.52 98.20 

2 
MAFN-no M 99.78 99.78 99.77 

MAFN 99.86 99.86 99.85 

We also analyze the single-view network without the multi-scale feature fusion part. 

The no-fusion algorithm with only waveform as input (view1-no F), the no-fusion 

algorithm with only AF as input (view2-no F), and the multi-view algorithm without 

multi-scale feature fusion part, are compared with our proposed MAFN. The results on 

the two datasets are shown in Figure 1a and Figure 7b respectively. Figure 7a shows the 

OA, AA, and kappa coefficients of the four methods for dataset 1, and Figure 7b shows 

the OA, AA, and Kappa coefficients of the four methods for dataset 2. From the results, 

we can easily observe the performance improvement of decision-level fusion over the no-

fusion algorithms, which confirms the effectiveness of multiple-views fusion.  

(a) (b)  

Figure 7. Analysis of the multi-scale module. (a) Results on dataset 1. (b) Results on dataset 2. 

3.3.2. Decision-Level Fusion Module 

To validate the effectiveness of the decision-level fusion module, another fusion 

strategy, AWDF, is used to replace the evidence-level fusion strategy proposed in this 

paper for comparison. The multi-scale feature fusion part is the same as that of MAFN 

and, in this section, it is denoted as MAFN-no D. From the results we can observe that the 

adaptive weight decision-level fusion strategy is effective on both the datasets. 

Meanwhile, we compare the multi-view methods with the single-view methods. Here the 

method with only waveform and multi-scale feature fusion, denoted as View1-M, the 

method with only AF and multi-scale feature fusion, denoted as View2-M, and MAFN-no 

D are compared with our proposed MAFN. The experimental results on dataset 1 and 

dataset 2 are shown in Table 4. From this, we can observe the gain of both multi-scale 

feature fusion and decision-level fusion in REI. 
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Table 4. Results of the strategies without decision-level fusion on the two datasets. 

Dataset Algorithm OA (%) AA (%) Kappa (%) 

1 

View1-M 98.22 98.22 97.87 

View2-M 96.94 97.02 96.33 

MAFN-no D 98.33 98.33 98.00 

MAFN 98.50 98.52 98.20 

2 

View1-M 99.66 99.67 99.64 

View2-M 98.72 98.74 98.61 

MAFN-no D 99.72 99.72 99.69 

MAFN 99.86 99.86 99.85 

By a joint analysis of the experimental results in Table 2, we can observe that the 

multi-scale fusion strategy of the same view can also improve the recognition accuracy of 

single-view methods. By further introducing the adaptive weight fusion strategy, better 

results can be obtained from MAFN. 

3.4. Comparison with Other Related Methods 

In this section, we compare our method with some fusion-based REI methods, 

including the TWFF [34], a mean decision fusion (MDF) method [35], a simple cascade 

feature fusion (CFF) method, an adaptive weight decision fusion (AWDF) method, and 

the DSDF method [36]. CFF extracts the permutation entropy and sample entropy 

components of different eigenfunctions and fuses them in a cascade. TWFF dynamically 

adjusts the contribution of different views to the result during training by tuning the 

network parameters. The features of different views are fed separately to the 

convolutional neural network to compute the category probability of instances. MDF 

calculates the average of the outputs between different views to obtain the fusion output. 

AWDF trains a probabilistic support vector machine with different features separately 

and the recognition results are fused by adaptive weights to obtain the final results. DSDF 

inputs different views into a convolutional neural network and then the fusion results are 

obtained via the D-S evidence theory. We also compare the training and testing time of 

different methods. For DNNs, if the change of the loss function within 50 iterations is less 

than a given threshold, the network is considered to converge and the training time is 

calculated. We also test the inference speed of each method, by calculating the average 

inference time of 10,000 samples.  

The comparison results on the two datasets are shown in Table 5. MAFN can extract 

different scale features of the same view and adaptively fuse the results of different views 

from a distributional perspective, thus avoiding incompatibility in fusing multi-view 

features. The results also show that the performance of the comparison methods is inferior 

to our proposed MAFN, including the feature-level fusion method, the fixed view weight 

method, the learnable weights method, and the voting method. As for the running time 

of the algorithms, CFF and AWDF have relatively high speed for using the SVM classifier. 

Compared with other DNNs, MAFN has medium speed for using multi-view inputs. 

Table 5. Comparison results of MAFN with other fusion algorithms (%). 

Dataset Algorithm OA (%) AA (%) Kappa (%) Train (s) Test (ms) 

1 

CFF [30] 97.22 97.27 96.67 8149 0.62 

TWFF [34] 97.39 97.39 96.87 20082 12.5 

MDF [35] 98.00 97.99 97.60 12613 7.94 

AWDF [31] 98.11 98.11 97.73 9194 0.72 

DSDF [36] 98.15 98.15 97.77 14005 6.62 

MAFN 98.50 98.52 98.20 15238 6.99 

2 

CFF [30] 99.67 99.67 99.63 14206 1.23 

TWFF [34] 99.75 99.75 99.73 41138 12.7 

MDF [35] 99.68 99.68 99.65 24065 8.55 
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AWDF [31] 99.70 99.70 99.67 36213 0.70 

DSDF [36] 99.75 99.74 99.73 28326 6.95 

MAFN 99.86 99.86 99.85 31393 7.13 

4. Conclusions 

In this paper, a multi-view adaptive fusion network (MAFN) is proposed by 

simultaneously exploring the signal waveform and the ambiguity function (AF). 

Experimental results show that the combination of multi-view features can provide 

spatially complementary information that improves the identification accuracy of radar 

emitters. Our experiments on two radar emitter datasets show that the proposed MAFN 

has some improvements over single-view networks, by synthesizing the signal waveform 

and AF. In addition, compared to single-view networks, MAFN is more robust to the 

distribution shift of the real radar emitter signals from the predefined training emitter 

signals, which also benefits from the fusion of multi-view features. Moreover, both the 

multi-scale feature extraction module and the decision-level fusion module are proven to 

extract more discriminative features of the signal, by exploring the Atrous Spatial 

Pyramid Pooling (ASPP) structure and the D-S evidence theory respectively. Compared 

with other related works, our proposed algorithm has a moderate computational 

complexity. However, when MAFN is used to recognize radar emitters in the case of very low 

SNR, its performance also degrades significantly. In addition, the network also requires a large 

number of labeled signal samples. In future work, we plan to design a self-supervised 

algorithm for REI with a very limited number of labeled signals [37] and improve the 

recognition accuracy when the SNR is extremely low. 
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