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Abstract: An enhancement generator model with a progressive Wasserstein generative adversarial
network and gradient penalized (PWGAN-GP) is proposed to solve the problem of low recognition
accuracy caused by the lack of rice disease image samples in training CNNs. First, the generator
model uses the progressive training method to improve the resolution of the generated samples step
by step to reduce the difficulty of training. Second, to measure the similarity distance accurately
between samples, a loss function is added to the discriminator that makes the generated samples
more stable and realistic. Finally, the enhanced image datasets of three rice diseases are used for
the training and testing of typical CNN models. The experimental results show that the proposed
PWGAN-GP has the lowest FID score of 67.12 compared with WGAN, DCGAN, and WGAN-GP.
In training VGG-16, GoogLeNet, and ResNet-50 with PWGAN-GP using generated samples, the
accuracy increased by 10.44%, 12.38%, and 13.19%, respectively. PWGAN-GP increased by 4.29%,
4.61%, and 3.96%, respectively, for three CNN models over the traditional image data augmentation
(TIDA) method. Through comparative analysis, the best model for identifying rice disease is ResNet-
50 with PWGAN-GP in X2 enhancement intensity, and the average accuracy achieved was 98.14%.
These results proved that the PWGAN-GP method could effectively improve the classification ability
of CNNs.

Keywords: image data augmentation; small sample; progressive WGAN-GP; rice disease; CNN

1. Introduction

Rice is one of the most important food crops worldwide, especially in Asian countries,
where it plays a crucial role in diets. According to statistics, more than 3 billion people
rely on rice as their primary source of food, and rice production accounts for nearly 20% of
the world’s total grain output. Additionally, rice is a major export commodity for many
countries and regions and has significant impacts on local economies and trade [1]. Rice
disease is one of the main factors affecting the high quality, efficiency, and yield of rice, so
the recognition of rice diseases is an important method to protect food security.

The traditional method of rice disease recognition relies on visual observation and
monitoring by plant protection specialists. However, this method requires experienced
rice specialists, and long periods of monitoring are costly on large farms. The shortage
of rice specialists, especially in developing countries, prevents effective and timely rice
disease control.

With the development of artificial intelligence technology, researchers at home and
abroad have successfully applied machine learning methods to the automatic recognition
and identification of crop diseases. For example, image processing-based techniques have
been used for rice disease detection and recognition with high recognition accuracy [2,3]
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involving support vectors [4,5], k-Nearest Neighbor [6], and decision trees [7]. Nevertheless,
these methods have disadvantages, such as difficulties in implementation for large-scale
training samples and solving multiple classification issues and sensitivity to the selection
of parameters, which hinder the further improvement of the recognition effect. Significant
breakthroughs in deep learning have been achieved with better results in recent years,
which include convolutional neural (CNNs) networks [8,9] and migration learning [4,10]
for image recognition.

Recently, deep learning has become a key technology for big data intelligence [11]
and has been successfully applied to tasks of plant disease identification and classification.
Compared with classical machine learning methods, deep learning has a more complex
model structure with more powerful feature extraction capabilities. In [12], depthwise
separable convolution was proposed for crop disease detection. Experimentally tested on a
subset of the PlantVillage dataset, Reduced MobileNet achieved a classification accuracy of
98.34%, with a lower number of parameters than VGG and MobileNet. In [13], aiming at
low power consumption and low performance of small devices, a depth-wise separable
convolution (DSC)-based PLD (DSCPLD) recognition framework was proposed, which
was tested on rice disease datasets, and the accuracy of using S-modified MobileNet and
F-modified MobilNet reached 98.53% and 95.53%, respectively. In [4], the model for the
classification of rice leaf disease images by ResNet-50 combined with the SVM method
achieved an F1 score of 98.38%. In [14], to improve the accuracy of existing rice disease
diagnosis, VGG-16 and GooLeNet models were used to train on a dataset of three painless
species of diseases, and the experimental results showed that the average classification
accuracies of VGG-16 and GoogLeNet were 92.24% and 91.28%, respectively. In [15], the
authors constructed a novel rice blast recognition method based on CNN to identify 90%
of diseased leaves and 86% of healthy leaves, respectively. Although the above methods
achieve accurate recognition of rice diseases, deep learning techniques need to include large
datasets that satisfy various criteria to obtain better recognition results. Note that using
limited image datasets for training can lead to the overfitting of model training [16]. That is
to say, training dataset size has a large impact on deep learning-based disease recognition
methods, and their performance will be severely degraded in the case of small samples,
uneven data distribution, etc. [17,18].

A strategy to solve the data shortage is to convert the original data to generate artifi-
cial data, which is usually called data augmentation. Data augmentation is achieved by
executing geometric transformations, noise addition, interpolation, color transformation,
and other operations on the original data. Common structures in convolutional neural
networks include pooling layers, strided convolutions, and downsampling layers. When
the position of the input image changes, the output tensor may change drastically. There-
fore, convolutional neural networks may misclassify images that have undergone image
processing transformations. This type of transformation can be used to enhance small
sample image datasets. However, this data augmentation method does not increase the
diversity of image features in the original dataset but only exploits the design flaw of
convolutional neural networks [19]. Methods based on deep learning provide an effective
and powerful way to learn the implicit representation of data distribution. Inspired by the
zero-sum game in game theory, the Generative Adversarial Networks (GAN) model has
been proposed in [20], which can learn how to approach the true distribution of data and
has powerful capabilities in image generation. The original GAN suffers from the problems
of difficult convergence, training, and control of the model. To deal with these problems, the
Wasserstein Generative Adversarial Network (WGAN) has been proposed in [21] to solve
the difficulty of training the original GAN. WGAN training is more stable and theoretically
solves the pattern collapse and the gradient disappearance. Whereas WGAN causes issues
such as gradient explosion when generating data due to direct weight cropping, which
makes the model training unstable. Wasserstein Generative Adversarial Network with
Gradient Penalized (WGAN-GP) was developed in [22], a generative adversarial network
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that controls the gradient by gradient penalty to settle the matters of gradient explosion
and pattern collapse.

At present, GAN has been employed effectively in the field of data enhancement. A
method has been put forward in [23] based on deep learning for tomato disease diagnostics
that uses the conditional generative adversarial network (CGAN) to produce synthetic
images of tomato plant leaves. The recognition accuracy of this method in the classification
of tomato leaf images into 5, 7, and 10 categories is 99.51%, 98.65%, and 97.11%, respectively.
An infrared image-generation approach was designed in [24] depending on CGAN. This
method can generate high-quality and reliable infrared image data. In [25], a model
combining CycleGAN and U-net has been constructed and applied to a small dataset of
tomato plant disease images. The results show that the model is better than the original
CycleGAN. A fault recognition mechanism was presented in [26] for bearing small samples
based on InfoGAN and CNN. The extracted time-frequency image features are input into
InfoGAN for training to expand the data. Tested on the CWRU dataset, the results show
that this method is better than other algorithms and models. In [27] a strategy was raised
relying on a WGAN combined with a DNN. The cancer image is expanded by GAN to
improve the classification accuracy and generalization of DNN. The results show that
the classification accuracy of DNN using WGAN is the highest in comparison with other
methods. CycleGAN has been put to use in [28] to retreat the CT segmentation task domain
dataset for enhancement. The results display that the Dice score on the kidney increases
from 0.09 to 0.66, and the effect is significant, while the improvement is small on the
liver and spleen. However, WGAN-GP is still not effective at generating high-resolution
images. Therefore, Tero Karras proposed Progressive GAN (ProGAN) in [29], a growing
GAN-derived model, which generates very low-resolution images first, and then gradually
increases the generated resolution during training to generate high-resolution images stably.
In [30], a Dual GAN was proposed for generating high-resolution images of rice disease,
which is used in the field of data enhancement. Dual GAN uses WGAN-GP to generate
rice disease images, and Optimized-Real-ESRGAN is used to improve image resolution.
The experimental results show that the accuracy of ResNet-18 and VGG-11 is improved by
4.57% and 4.1%, respectively. In [31], a novel neural network-based hybrid model (GCL)
is proposed. CGL includes GAN for data enhancement, CNN for feature extraction, and
LSTM for rice disease image classification. The experimental results show that the proposed
method can achieve 97% accuracy for disease classification. In [32], a new convolutional
neural network was proposed for the identification of three rice leaf diseases, using a
GAN-based technique to augment the dataset. The experimental results showed that the
proposed method achieved an accuracy of 98.23%. The above studies can show that GAN
application is effective for data enhancement in small sample datasets, but the resolution
and stability of the current generation are yet to be improved.

To alleviate the lack of image data on rice diseases, we introduce a Progressive WGAN-
GP, which is based on the WGAN-GP model and combines a progressive training method.
This model is applied to rice disease image data augmentation to increase the accuracy
of the recognition model in small-sample datasets. By analyzing the three diseases in the
collected dataset as well as the open-source dataset, the experimental results show that the
method has good robustness and generalization ability and has a fine recognition effect
under small sample conditions. The main contributions of this paper are twofold. (1) The
progressive training method is introduced into the WGAN-GP model. In the field of rice
disease image generation, the generation performs better than WGAN-GP, WGAN, and
Deep convolutional GAN (DCGAN). (2) The experimental results show that the PWGAN-
GP method can not only generate high-quality images of rice diseases but also apply the
generated images to the CNNs training by blending the dataset with real images, which
can improve the performance of CNNs, and obtain a higher recognition accuracy than
other methods.

The remainder of this paper is organized as follows. In Section 2, we describe the
source and the pre-processing of the data. Section 3 presents the theory related to PWGAN-
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GP. Section 4 describes the experimental setup of the PWGAN-GP for the application
problem of rice disease image generation as well as recognition. Section 5 analyzes the ex-
perimental data of image generation and the comparison with other methods. Conclusions
are given in Section 6.

2. Dataset

The image dataset used in this paper is shown in Figure 1. The rice disease image (I)
is obtained from an experimental farm field at Heilongjiang Bayi Agricultural University.
The device used to capture these rice images is a Redmi K30 Pro phone. The image dataset
includes rice leaf blast, rice leaf blight, rice leaf brown spot, and healthy rice leaf to increase
the diversity of rice disease image samples that are captured separately under different
cycles of rice growth, weather conditions, and lighting conditions. The rice disease image
datasets (II) [33], (III) [34], and (IV) [35] are from open-source databases available on the
web. Database (II) contains 3355 images with 4 categories and an image resolution of
2798 × 2798 pixels; database (III) contains 120 images with 3 categories and an image
resolution of 3081 × 897 pixels, and database (IV) contains 2800 images with 5 categories
and an image resolution of 256 × 256 pixels. Since the open-source database contains a
variety of categories of images, this experiment eliminates the images whose categories are
not consistent with the research direction of this paper.

Figure 1. Images of rice diseases collected.

The dataset for this experiment consists of four sources, each with a high resolution
from different sources, and in addition, there are differences in the methods of acquisition,
which result in a non-uniform style of the dataset. Therefore, data pre-processing of the
dataset is required. Duplicate, blurred, and images with insignificant disease characteristics
are removed from the dataset. The number of categories in the pre-processed image dataset
is shown in Table 1.
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Table 1. Details of the rice leaf disease dataset.

Categories Numbers

Blast 1654
Brown Spot 1570

Blight 1396
Healthy 2563

The workflow of the process of data segmentation and augmentation is shown in
Figure 2. We randomly shuffled the order of the original dataset and split 80% of the
image samples as the training set for data augmentation and image recognition, while the
remaining 20% of the image samples served as the test set for an independent performance
evaluation of the data-augmented image recognition. It is important to note that the data in
the test set do not participate in the data augmentation phase in order to ensure the fairness
of the test. The detailed numbers of training and test sets are shown in Table 2.

Figure 2. Dataset split strategy.

Table 2. Details of the rice leaf disease train and test dataset.

Categories Train Dataset Test Dataset

Blast 1323 331
Brown Spot 1256 314

Blight 1116 280
Healthy 2050 513

3. Methodology
3.1. GAN

GANs can be trained to generate high-quality images by learning the data distribution
from the training set. GANs consist of two parts, one is the generator (G), and the other is
the discriminator (D). The generator accepts the noise vector and generates samples. Then
generates samples and real samples together to input into the discriminator, which needs
to distinguish the real samples from the generated samples accurately. In the process of
confrontation between the two models, the generated samples will be more realistic. At the
same time, the discriminator’s discriminatory ability will be enhanced. The generator and
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discriminator will eventually game each other to reach the state of Nash equilibrium [20].
Because the samples generated by the GAN belong to the same labeled class as the original
samples, they can be used for image dataset expansion. The objective function of the GAN
is shown in Equation (1).

min
G

max
D

V(D, G) = Ex∼pdata(x) [log(D(x))] + (1)

Ez∼pθ(z)[log(1− D(G(z)))]

where pdata(x) is the probability distribution of the real image and θ(z) is the input noise
distribution of G. G and D fight against each other, with G continuously improving its
ability to capture the true sample distribution and generate higher-quality images, and D
improving its ability to discriminate the generated images. The original GAN has been
shown to provide a more realistic output compared to other generative image algorithms.

However, there are three major problems with the original GAN as follows: (1) the loss
function values of the generative and discriminant models are unstable during training,
which indirectly leads to the instability of the generated images; (2) the original GAN
architecture is prone to pattern collapse, where the generative model finds a limited range
of samples from the original data that may result in the discriminator not being able to
continue being effectively trained. In addition, the images generated by the generator lack
diversity; and (3) adjusting the hyperparameters of the traditional GAN makes it very
difficult to make the model converge.

3.2. WGAN

In [21], the theory related to Jensen-Shannon has been analyzed, which concludes that
it is not reasonable to use Jensen-Shannon to measure the distance of disjoint parts between
distributions. To improve the quality of the images generated by GAN, instead of using
Jensen-Shannon, it is pointed out to use the Wasserstein distance measure as the distance
between the generated data and the real data distribution. The definition of the Wasserstein
distance is shown in Equation (2).

W(Pr, Pg) = in f
γ∈∏(Pr ,Pg)

E(x,y)∼γ[‖x− y‖] (2)

where Pr is the distribution of the real data, Pg is the distribution of the generated data, and
γ ∈ ∏(Pr, Pg) is the joint distribution of Pr and Pg. The loss function of WGAN is shown in
Equation (3).

L(D) = Ez∼Pz [ fw(G(z))]− Ex∼Px [ fw(x)] (3)

where z is the input noise and x is the real input image. G(z) is the image generated by
the received noise as the input of the generator. Ez∼Pz describes the probability distribu-
tion of the noise, Ex∼Pr denotes the probability distribution of the real image. fw is the
discriminator neural network containing parameter w in WGAN. The discriminator uses
gradient clipping (weight clipping) so that the discriminator satisfies the condition of the
Lipschitz constraint and restricts parameters w of the neural network fw to be in a certain
range [−c, c].

The discriminator of WGAN does not directly distinguish between the generated
sample and the real sample but measures the difference by calculating the Wasserstein
distance. Therefore, as the value of the loss function decreases, the Wasserstein distance
between the real sample and the generated sample approaches zero, meaning that the
generated sample is closer to the real sample distribution. However, the use of gradient
clipping in the WGAN may cause the weights to converge to the two extremes of the
clipping range, leading to gradient explosion, gradient disappearance, an unreasonable
generation along with the samples, and other side effects, as shown in Figure 3 [22].
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Figure 3. Weight clipping.

3.3. WGAN-GP

The WGAN-GP model has been proposed to solve this problem by allowing the
discriminator to learn smoother decision boundaries through gradient penalty [22], as
shown in Figure 4, and the gradient penalty implemented by WGAN-GP can satisfy the
Lipschitz constraint. The loss function of WGAN-GP is shown in Equation (4).

Figure 4. Gradient penalty.

L(D) = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] + (4)

λ E
x̂∼Px̂

[(‖5x̂D(x̂)‖2 − 1)2]

where E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)] is the loss function of WGAN, x̃ ∼ Pg is the sampling of the

generated data, and x ∼ Pr is the sampling of the real data. λ E
x̂∼Px̂

[(‖5x̂D(x̂)‖2 − 1)2] is

the gradient penalty term, x̂ is the random noise therein, x̂ ← εx + (1− ε)x̃ with random
numbers ε ∼ U[0, 1].

3.4. Progressive Training

In the traditional training GAN model, the structure of the generative and discrimi-
native models is kept constant, and the resolution of the target images generated by the
model is fixed. Due to the ’zero-sum game’ characteristic of GAN, it is very difficult to
train the model, and increasing the resolution of the generated images will further increase
the training difficulty. In [29], a progressive training approach was proposed the key is
to gradually increase the structure of the generative and discriminative models, starting
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from low resolution, and after the training is stable, adding new layers to the generative
and discriminative models, these layers will gradually model the details of the image. This
both speeds up the training and stabilizes it greatly, resulting in clear and high-quality
generated images.

3.5. Residual Block

The depth of a neural network has a large impact on the performance of the model,
and as the depth increases, the model usually has better performance. However, as the
network deepens, it is prone to the accuracy rising to a peak and then falling, a problem
often called gradient degradation. In [36], the ResNet was proposed, and the key structure
of the model is the residual block. The residual block makes features passing features,
allowing subsequent network layers to pass less influence and uses all-equal mapping
to pass inputs directly to outputs, ensuring the stable performance of the network. The
structure of the residual module is shown in Figure 5.

Figure 5. Residual block.

3.6. Progressive WGAN-GP

The Progressive WGAN-GP (PWGAN-GP) model consists of two parts: the generator
and the discriminator. The generator consists of a residual block, an upsampling layer, and
a LeakyReLU activation layer. The residual block of the generation model is responsible
for generating image features, and the upsampling layer is responsible for scaling up the
image size. The discriminant model consists of a residual module and a downsampling
module. The residual module of the discriminator is responsible for extracting the image
features, and the downsampling layer is responsible for reducing the image size. The loss
function of WGAN-GP is used. In the training of the model, the residual block layer in the
generator and discriminator increases step by step, and the size of the generated samples
also increases. The training starts by generating a low-resolution 4 × 4 of the target image,
and when the value of the loss function decreases to a stable state, it indicates that the
training is completed at that stage. Next, the structure of the production model and the
discriminant model is increased by one layer to continue the training. This is repeated to
reach the preset target image resolution of 256 × 256. The training process is shown in
Figure 6. A detailed description of this model is shown in Tables 3 and 4.
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Table 3. Generator-related parameters of PWGAN-GP.

Layer Name Activation Function Output Tensor

Latent vector - 512 × 1 × 1
Residual block LeakyReLu 512 × 4 × 4

Upsample - 512 × 8 × 8
Residual block LeakyReLu 512 × 8 × 8

Upsample - 512 × 16 × 16
Residual block LeakyReLu 512 × 16 × 16

Upsample - 128 × 32 × 32
Residual block LeakyReLu 128 × 32 × 32

Upsample - 64 × 64 × 64
Residual block LeakyReLu 64 × 64 × 64

Upsample - 32 × 128 × 128
Residual block LeakyReLu 32 × 128 × 128

Upsample - 16 × 256 × 256
Residual block LeakyReLu 16 × 256 × 256

Conv 1 × 1 - 3 × 256 × 256

Table 4. Discriminator-related parameters of PWGAN-GP.

Layer Name Activation Function Output Tensor

Intput image - 3 × 256 × 256
Conv 1 × 1 LeakyReLU 16 × 256 × 256

Residual block LeakyReLU 32 × 256 × 256
Downsample - 32 × 128 × 128

Residual block LeakyReLU 64 × 128 × 128
Downsample - 64 × 64 × 64

Residual block LeakyReLU 128 × 64 × 64
Downsample - 128 × 32 × 32

Residual block LeakyReLU 256 × 32 × 32
Downsample - 256 × 16 × 16

Residual block LeakyReLU 512 × 16 × 16
Downsample - 512 × 8 × 8

Residual block LeakyReLU 512 × 8 × 8
Downsample - 512 × 4 × 4

Avg pool, fc 1, softmax - 1 × 1 × 1

Figure 6. PWGAN-GP model.
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Since a new layer is added at the end of each training phase, the new layer is still in
the initialization state and cannot be directly added to the training; otherwise, it will affect
the well-trained parameters as well. In this paper, the parameters of the old layer are fused
into the parameter parameters of the new layer by a fusion mechanism. The formula is
shown in (5).

Output = α× Lnew + (1− α)× Lold (5)

Output is the output of the new layer, α is the fusion coefficient factor, Lnew is the parameter
of the new layer, and Lold is the parameter of the old layer. The model multiplies the
parameters of the old layer by (α− 1) plus the parameters of the new layer by α. The value
increases from 0 to 1 one by one as the number of training increases. α takes values in the
range [0, 1]. The structure is shown in Figure 7.

Figure 7. New layer fusion.

3.6.1. Residual Block

The residual block needs a convolutional layer to extract features of the input and
differentiate the generated image and the real image. The convolutional layer applies
the convolutional kernel and the activation function to calculate the feature map. The
mathematical definition is shown in Equations (6) and (7).

yl
j = f (zl

j) (6)

zl
j = ∑

i∈Mj

xl−1
i × kl

ij + bl
j (7)

where zi
j is the output of the feature map in the l-th layer, f (·) is the LeakyRelu activation

function, zl
j is the weight value of the j-th channel in the l-th layer, xl−1

i is the feature map

of the (l − 1)-th layer, Mj is the subset of the input feature map, and kl
ij is the convolution

kernel matrix in layer l, ∗means the Convolution operation, bi
j means the bias term[37].

This paper uses a residual block with two layers of the same design. It includes a
convolutional layer with a 4 × 4 convolutional kernel, the batch normalization layer, and
the LeakyReLU activation layer. The structure is shown in Figure 8.
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Figure 8. Two-layer residual block.

3.6.2. Upsampling

In this model, the Upsampling layer uses Transposed Convolution represented in deep
learning as an inverse process of convolution. This approach can recover the image size
and project the feature mapping to a higher dimensional space instead of recovering the
original values. Transposed Convolution depends on the size of the convolution kernel
and the size of the output. The formula for calculating the tensor size of outputs is shown
in Equation (8).

o′ = i′ + (k− 1)− 2p (8)

where o′ represents the output size of the Transposed Convolution, i′ denotes the size of
the input Transposed Convolution, k depicts the size of the Transposed Convolution kernel,
and p means the padding size when operating the tensor [38].

3.6.3. Batch Normalization Layer

Batch Normalization is a technique used in deep learning to improve the performance
and stability of neural networks. The goal of Batch Normalization is to address the problem
of internal covariate shift, which occurs when the distribution of the inputs to a layer
changes during training. This can lead to slow convergence or even failure to converge.
By normalizing the inputs to each layer, Batch Normalization can reduce the internal
covariate shift and accelerate the training process [39]. The calculation formula of Batch
Normalization is shown in Equations (9)–(12).

µB ←
1
m

m

∑
i=1

xi (9)

σ2
B ←

1
m
(

m

∑
i=1

xi − µB)
2 (10)

x̂i ←
xi − µB√

σ2
B + ε

(11)

yi ← γx̂i + β (12)

where m is the set batch size, xi stands for the data of each batch, and µB represents the
mini-batch mean. σ2

B means mini-batch variance. x̂i indicates normalized. yi reflects the
output of Batch Normalizing Transform, γ is the equation coefficient, and β is the bias
term [40].
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3.6.4. LeakyReLU

The activation function is essentially the introduction of nonlinear factors into the
neural network, through which the neural network can fit various curves. If the activation
function is not used, the output of each layer will be a linear function of the input of the
previous layer. By introducing a nonlinear function as the activation function, the output
will be able to approximate any function. LeakyReLU is an activation function specifically
designed to solve the Dead ReLU problem [41]. The mathematical description is shown in
Equation (13).

LeakyReLU =

{
x, x > 0

αx, x ≤ 0
(13)

The LeakyReLU function adjusts the zero-gradient problem for negative values by giving a
very small linear component of x to the negative input multiplied by 0.01, usually with a
value of α of about 0.01. Its function range is negative infinity to positive infinity.

3.7. Traditional Image Data Augmentation

CNN is a powerful model for abstracting features from unstructured data, but they
do not have image invariance because of the down-sampling operation that changes the
image [42]. Then, the performance of neural networks can be improved by performing
some transformations on the dataset to generate a large number of diverse samples to
make the neural networks have good robustness. This is realized using data expansion
and increasing the number of training sessions is necessary. For the network to obtain
invariance to the affine transformation of the samples, the network is usually trained using
the Traditional image data augmentation (TIDA) approach. We use rotation, translation,
scaling, brightness adjustment, contrast adjustment, and adding noise to transform the
images. The transformed images are used to perform data augmentation on the original
dataset and are compared with GAN data augmentation methods, as shown in Figure 9.

Figure 9. TIDA approach, where (a) is the original image, (b) rotation, (c) panning, (d) scaling,
(e) brightness adjustment, (f) contrast adjustment, and (g) adding noise.

4. Experiment

In this paper, we validate the effectiveness of the generated data in two aspects as
follows: (1) evaluating the quality of the generated data; and (2) assessing the impact of the
generated data on the performance of the deep learning model.
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4.1. Experimental Setup

The experimental environment is 15 vCPU Intel(R) Xeon(R) Platinum 8358P CPU @
2.60 GHz processor, 32 G memory, RTX A5000 (24 GB) dual graphics card, Ubuntu 20.04,
PyTorch 1.10.0, CUDA 11.3 deep learning platform. The proposed experimental framework
is shown in Figure 10.

Figure 10. Flow chart of the experimental framework.

4.2. Evaluation Metrics

To verify that the PWGAN-GP network designed in this paper can perform the task of
generating rice leaf disease images well, an experiment is set up to compare three classical
generative adversarial models, i.e., WGAN, WGAN-GP, and DCGAN. The hyperparame-
ters of the generative adversarial model are set to 20,000 epochs, the number of batches per
batch is 128, and the learning rate is set to 0.0002. The Fréchet Inception Distance (FID) [43]
metric is used to measure the similarity between the rice leaf disease images generated by
the above models and the real images, and the lower the FID score means the two datasets
have more similar distributions. The FID score is defined as shown in Equation (14).

FID =
∥∥µx + µg

∥∥+ Tr(∑x +∑g − 2
√

∑x ×∑g) (14)

where µx and Σx are the mean and covariance matrices of the 2048-dimensional feature
vector set output by the real image collection in Inception-v3, respectively. µg and Σg are
the mean and covariance matrices of the 2048-dimensional feature vector set output by
the generated image collection in Inception Net-v3, respectively. Tr denotes the trace of
the matrix.

4.3. Training Process

A random noise z is used as the input of the PWGAN-GP network, and the network is
set to train for 20,000 epochs. To be able to monitor the training of the WGAN-GP network
in a prompt manner and to evaluate the generation capability, the generated data are
stored once every 200 epochs during the training process. Then, the FID score is used to
measure the generated samples. The generator of PWGAN-GP generates a large number
of high-quality generation samples, which are merged with the original samples for data
augmentation. To verify the effectiveness of the data samples generated by the proposed
framework, we test the data-augmented samples with the classical classification model.
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To verify the effectiveness of PWGAN-GP for rice disease image data augmentation,
the original data are randomly divided into a training set and a test set at a ratio of 8:2. The
training set is used to train the WGAN-GP model and measure the generation quality of
the model by the FID score. The generator of PWGAN-GP is applied to generate an image
dataset with a similar distribution to the real image sample. Then, the generated image
samples and original training set are mixed to enhance the performance of the CNN model.

4.4. Performance of the Data Augmentation Model

To verify the effectiveness of the rice leaf disease images generated by GANs on
the original image dataset enhancement, classical CNN models such as VGG-16 [44],
GoogLeNet [45], and ResNet-50 [46] are selected to test the enhanced dataset with accuracy
as the main evaluation index of the test. In addition, three enhancement levels (i.e., X1, X2,
and X3) are set to analyze the effect on the ratio of the original data to the generated data,
where X0 is the original data, X1, X2, and X3 (1:10, 1:20, and 1:30) indicate 10-fold, 20-fold,
30-fold augmentations based on the original data, respectively.

5. Results and Discussion

In this section, experimental results on the quality of the generated data shown can
demonstrate the difference between the samples generated by PWGAN-GP and other
generative adversarial models and the impact of the enhancement ratio on the original data
samples on the absorption of the neural network classification. Finally, the advantages of
PWGAN-GP compared to TIDA methods are also discussed, and validation of the CNN
model after data augmentation is tested.

5.1. Generating Image Quality

As the data in Table 5 show, the average FID score of the WGAN is the highest, which
indicates that the WGAN has the worst effect on the quality of the generated rice disease
image dataset. The FID score of DCGAN decreases by 31.69 compared to the WGAN and
is 20.66 higher compared to WGAN-GP, so the image generation effect of DCGAN is better
than the WGAN and weaker than WGAN-GP. Dual GAN’s FID score is close to that of
WGAN-GP. The FID score of PWGAN-GP is the smallest among the comparison models,
so the generation effect is also the best.

Table 5. Generation Result Evaluation of GANs by FID score.

Method Blast Brown Spot Blight Healthy FID Score
Average

WGAN 118.42 133.71 137.51 131.84 130.37
DCGAN 95.37 107.26 101.68 90.39 98.68

Dual GAN 70.13 86.78 92.24 64.20 78.34
WGAN-GP 75.18 84.96 79.33 72.61 78.02

PWGAN-GP 62.11 71.24 74.38 60.73 67.12

The details of the rice leaf disease-generated image are shown in Figure 11. It can be
seen that the image generated by the original GAN has artifacts, the overall image is blurred,
the edges of the leaf in the complex background are not clear, and, most importantly, the
detail characteristics of the disease spots are seriously lost. Although the image clarity of
the samples generated by Dual GAN is better than that of WGAN-GP, excessive processing
of leaf and disease textures leads to excessive detail loss, so the generation effect is not
improved. The details of the leaf and disease spots of PWGAN-GP-generated images are
substantially improved and close to the real sample, but there are problems of distortions
and local blurring. The training results of PWGAN-GP are shown in Figure 12. The image
generated by PWGAN-GP has a stable structure with clear edges, most of the details of
the lesions are preserved, and the overall sharpness of the image is further improved.
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Therefore, the PWGAN-GP-generated rice leaf disease images are the best among the
selected GAN models.

Figure 11. Comparison of generated samples.

Figure 12. The images generated by PWGAN-GP.

Although the GAN model has strong feature-learning capabilities, it requires a lot
of computational power and a longer training time. The training time for PWGAN-GP,
WGAN-GP, DCGAN, and WGAN is shown in Table 6.

Table 6. Time spent on model training.

Method Training Time (h)

WGAN 45
DCGAN 52

WGAN-GP 59
PWGAN-GP 88
Dual GAN 97

PWGAN-GP training requires a certain number of samples, and when the training
set is too small, PWGAN-GP training will be affected, and it cannot produce effective
images. The training dataset is reduced to 20%, 40%, 60%, and 80% for testing, and the
experimental results are shown in Figure 13. As the dataset is reduced, the generated
samples are distorted, blurred, and color confused.
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Figure 13. Effect of reducing the number of training sets on PWGAN-GP.

5.2. Performance of the Data Enhancement Model

The results of the tests using the VGG-16, GoogLeNet, and ResNet-50 models with
different levels of enhancements to the original data are shown in Tables 7–9. The first row
of each table shows the performance of the baseline model, and the next rows represent
the accuracy values for enhancement levels X1, X2, and X3. The bolded numbers show the
highest accuracy values for a single category in the test results. The last row of the table
shows the maximum accuracy improvement compared with the benchmark model. The
numerical units in the table are expressed using percentages. The experimental results
display that the VGG-16, GoogLeNet, and ResNet-50 models show a significant increase
in classification accuracy for different disease categories, including healthy leaves, after
data augmentation. The data visualization is shown in Figure 14. Among them, ResNet-50
has the highest increased accuracy of 14.04%, 13.13%, 12.41%, and 12.18%, respectively,
compared to the original data. In addition, the best enhancement intensity is X2 (1:20) for
the three models, which has the best effect on the accuracy increase for the deep learning
classification model.

Table 7. The effect of the strength of data enhancement on the accuracy of the VGG-16 model (%).

Level Blast Brown Spot Blight Healthy

X0 83.21 79.76 80.11 82.62
X1 88.48 85.81 87.83 91.97
X2 93.77 89.28 91.35 90.31
X3 90.52 88.31 89.7 88.27

Max. Improve 10.56 9.52 11.24 9.35

Table 8. The effect of the strength of data enhancement on the accuracy of the GoogLeNet model (%).

Level Blast Brown Spot Blight Healthy

X0 83.62 82.53 82.73 84.17
X1 94.84 94.03 93.84 94.16
X2 96.26 94.85 94.91 95.37
X3 95.53 95.01 94.69 95.21

Max. Improve 12.64 12.48 12.18 11.20

Table 9. The effect of the strength of data enhancement on the accuracy of the ResNet-50 model (%).

Level Blast Brown Spot Blight Healthy

X0 84.21 82.09 83.53 85.07
X1 96.77 94.74 95.48 96.81
X2 98.25 95.22 95.94 97.19
X3 97.63 94.44 94.23 96.98

Max. Improve 14.04 13.13 12.41 12.18
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Figure 14. The effect of the level of data enhancement on the accuracy of neural network models.

The experimental results of the effects of different data enhancement methods on the
training accuracy of neural networks are shown in Tables 10–12. The experiments of training
neural network classification models using the original data directly with the enhanced
dataset are compared between adopting the TIDA method and adopting the PWGAN-GP
data enhancement method. The experimental results show that the TIDA method and the
PWGAN-GP data augmentation method have a significant increase in the classification
accuracy of VGG-16, GoogLeNet, and ResNet-50. The TIDA method increased by 7.24%,
8.52%, and 10.08%, respectively, over the situation without data augmentation in the
average accuracy metrics of the three models. It can be shown that the data augmentation
of the TIDA method can improve the recognition accuracy and generalization ability of
the classical CNN models to some extent. PWGAN-GP increased by 10.44%, 12.38%, and
13.19%, respectively, over the situation without data augmentation. PWGAN-GP increased
by 3.2%, 3.86%, and 3.11%, respectively, over the TIDA method. It can be seen that PWGAN-
GP can significantly increase the accuracy and improve the generalization ability of the
classical CNN model compared with the TIDA method. A visual analysis of the impact of
data augmentation is shown in Figure 15 on the accuracy of the neural network model.

Table 10. Impact of data augmentation on the accuracy of the VGG-16 model (%).

Method Blast Brown Spot Blight Healthy Avg.

Actual data 83.21 79.76 80.11 82.62 81.03
TIDA 88.15 88.04 88.71 89.16 88.27

PWGAN-GP 93.77 89.28 91.35 90.31 91.47

Table 11. Impact of data enhancement on the accuracy of the GoogLeNet model (%).

Method Blast Brown Spot Blight Healthy Avg.

Actual data 83.62 82.53 82.73 84.17 82.96
TIDA 91.44 90.57 91.43 92.46 91.48

PWGAN-GP 96.26 94.85 94.91 95.37 95.34

Table 12. Impact of data enhancement on the accuracy of the ResNet-50 model (%).

Method Blast Brown Spot Blight Healthy Avg.

Actual data 84.21 82.09 83.53 85.07 83.28
TIDA 93.12 93.31 93.18 93.83 93.36

PWGAN-GP 98.25 95.22 95.94 97.19 96.47
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Figure 15. Impact of data enhancement on the accuracy of neural networks.

To obtain the best hyperparameters for ResNet-50 on rice disease identification, rele-
vant validation experiments were conducted on learning rate, batch size, and optimizer.
The hyperparameters of the experiment are shown in Table 13. The test results of hyper-
parameter selection experiments are shown in Figure 16. It can be seen that ResNet-50
performs best when the learning rate is 0.005, the batch size is 128, and the optimizer is
RMSProp. The training under the optimal hyperparameter condition is shown in Figure 17.
The accuracy of Resnet-50 is improved to 98.14%.

Table 13. Hyper-parameter details of ResNet-50.

Hyperparameter Condition

learning rate 0.001, 0.005, 0.01, 0.05, 0.1
batch size 16, 32, 64, 128, 256
optimizer SGD, Adam, RMSProp

Figure 16. Hyperparameter optimization of ResNet-50.

Figure 17. ResNet-50 training chart under optimal hyperparameter.

From Table 2, it can be seen that the test set is also imbalanced due to imbalanced
datasets. An imbalanced test dataset may affect the test results of the model. Therefore,
we adjusted the number of all categories in the test set to 280, manually simulated a
balanced test set, and used the ResNet-50 with PWGAN-GP data augmentation to test. The
experiment was repeated five times to find the average; its performance on balanced and
imbalanced datasets is shown in Table 14 and Figure 18. The experimental results show that
the performance of the enhanced ResNet-50 model on balanced and imbalanced datasets is
close. Therefore, imbalanced test sets have little impact on test results.
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Table 14. The influence of the imbalanced datasets on ResNet-50 testing.

Dataset Type Average Accuracy (%)

Balanced dataset 98.04
Imbalanced dataset 98.33

Figure 18. Confusion matrix for the effect of imbalanced test set on ResNet-50 test results.

Complex situations, such as overlapping disease features, exist in natural environ-
ments [47]. In order to test the recognition effect of the data augmentation model under
complex disease feature conditions, we selected samples with complex backgrounds from
the field-collected rice dataset as the test set, as shown in Figure 19. The number of test sets
is shown in Table 15.

Figure 19. Datasets in complex environments.

Table 15. Details of the datasets in complex environments.

Categories Numbers

Blast 56
Brown Spot 62

Blight 60
Healthy 60

From Table 16, ResNet-50 without data augmentation had a minimum accuracy of
81.55% in a complex background, indicating weak generalization of the model with insuffi-
cient data. The accuracy of ResNet-50 with TIDA is 94.84%, and the accuracy of ResNet-50
with PWGAN-GP is the highest, reaching 97.03%. The model is shown to have good gener-
alization. Under the condition of overlapping features, the main convolutional outputs and
feature maps of each layer during the inference of ResNet-50 are shown in Figure 20.

Table 16. ResNet-50 testing in the dataset of complex environments.

Model Average Accuracy (%)

ResNet-50 81.55
TIDA+ResNet-50 94.84

PWGAN-GP+ResNet-50 97.03
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Figure 20. ResNet-50 forward propagation feature map.

6. Conclusions

To solve the problem of low accuracy caused by the lack of rice disease image datasets
in training CNNs, PWGAN-GP is proposed to generate rice leaf disease images in this
paper. First, we use the progressing training method to train the generator model and
discriminator model, and a loss function is added to the discriminator model. It has been
concluded that the PWGAN-GP network is the best to generate rice leaf disease images
compared with WGAN, DCGAN, and WGAN-GP. Second, the experimental results show
that the accuracy of VGG-16, GoogLeNet, and ResNet-50 using PWGAN-GP is 10.44%,
12.38%, and 13.19% higher than those without PWGAN-GP. Compared with a traditional
image data augmentation method, the accuracy is increased by 3.2%, 3.86%, and 3.11%,
respectively. The accuracy of CNNs can be maximized under the condition of X2 (1:20)
enhancement intensity. Finally, under hyperparameter optimization, the ResNet-50 with
PWGAN-GP achieved 98.14% for identifying three rice diseases. In addition, we also tested
the performance of ResNet-50 in some scenarios, and the results were good. Therefore, it
has been shown that PWGAN-GP has better image generation ability and improves the
classification ability of CNNs.

At present, the model proposed in this paper also has the problem of long training time
and slow convergence. In future work, we will solve these two problems by optimizing
model parameters and combining deep learning with control theory [48–52].
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