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Abstract: The automatic detection and analysis of ocean eddies in the marginal ice zone via remote
sensing is a very challenging task but of critical importance for scientific applications and anthro-
pogenic activities. Therefore, as one of the first steps toward the automation of the eddy detection
process, we investigated the potential of applying YOLOVS5, a deep convolutional neural network
architecture, to specifically collected and labeled high-resolution synthetic aperture radar data for a
very dynamic area over the Fram Strait. Our approach involved fine-tuning pre-trained YOLOv5
models on a sparse dataset and achieved accurate results with minimal training data. The perfor-
mances of the models were evaluated using several metrics, and the best model was selected by visual
examination. The experimental results obtained from the validation and test datasets consistently
demonstrated the robustness and effectiveness of the chosen model to identify submesoscale and
mesoscale eddies with different structures. Moreover, our work provides a foundation for automated
eddy detection in the marginal ice zone using synthetic aperture radar imagery and contributes to
advancing oceanography research.

Keywords: mesoscale eddies; submesoscale eddies; eddy detection; marginal ice zone; deep learning;
YOLOvV5; CNNs

1. Introduction

Eddies play a key role in ocean dynamics by encapsulating and transporting large
amounts of water and their associated physical and biochemical properties over long
distances. This has a significant impact on ocean circulation, heat uptake, gas exchange,
carbon sequestration, and nutrient transport [1,2]. As one of the most important elements
of the climate system, a single eddy may transport trillions of tons of water and tens
of terajoules of heat from their generation regions to the dissipation site, thus having a
significant influence on climate variability and predictability [1]. Eddies dominate the
kinetic energy of the ocean over horizontal distances of tens to hundreds of kilometers and
play a major role in vertical and horizontal mixing, such as cross-frontal exchange [3]. The
detailed study of mesoscale eddies is crucial for better understanding dynamic, climatic,
and biological ocean processes.

A marginal ice zone (MIZ) is a transition region from the open sea to dense drift ice.
The MIZ is characterized by strong lateral buoyancy gradients, energetic atmosphere—ice—
ocean interactions, and enhanced biological productivity [4]. The formation of eddies at
the MIZ is a common dynamic feature that plays an important role in the various exchange
processes of mass, heat, and momentum. These eddies can affect the position of the ice
edge and biological productivity within the MIZ [5,6].
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To this day, the data from altimetry missions are the main sources of information about
mesoscale variability in the World Ocean. The accumulation of decades-long global altime-
try time series, the development of gridded altimetry products from multiple missions,
and the implementation of various automated eddy identification algorithms have enabled
oceanographers to obtain an unprecedented amount of statistical information on various
eddy properties and their propagation characteristics, such as the number of generated
eddies, their geometric and physical properties, and translation velocities [1,7]. However,
the altimetry data have significant limitations in the polar regions. Arctic eddies are several
times smaller in size than low-latitude eddies, and the gridded altimetry AVISO fields
resolve only a small fraction of eddies in the polar regions with typical radii of 30-50 km [8].
Consequently, spatial scales under 30 km are essentially unobserved. Moreover, the con-
ventional way of using the altimetry data for eddy observation is complicated in the polar
regions by the presence of sea ice, which makes this data type almost inapplicable for eddy
detection in the MIZ.

Eddy-resolving models with a resolution of 1 km or finer are important sources of data
on the mesoscale/submesoscale dynamics in the polar regions. Models such as FESOM
make it possible to study the dynamics of small eddies near the sea ice edges [8,9]. However,
eddy-resolving Arctic Ocean simulations are computationally demanding and require actual
data as part of an observational basis for model improvement and validation [9]. For MIZ
regions, this information is still very limited due to the scarcity of in situ observations, spatial
and temporal limitations of altimetry data, and weather restrictions of optical satellite data.

Currently, the most universal source of information about eddy dynamics in polar re-
gions is remote sensing data obtained from synthetic aperture radar (SAR). High-resolution
SAR images can resolve ocean dynamics at scales of 0.1-1 km, and they are weather and
cloud independent. SAR signatures of sea ice are well sustained under any weather condi-
tions, making them nearly perfect for monitoring eddy dynamics in MIZ regions. Eddies
manifest themselves on SAR images via three main mechanisms: wave-current interactions
that modulate short-scale surface roughness patterns, near-surface wind variations across
oceanic fronts, and the accumulation of slicks and ice floes in the MIZ [10,11]. Since our
work considers eddies in the MIZ region, the presence of sea ice is an underlying condition
for the efficiency of the developed method of eddy detection.

It should be emphasized that other sensors can potentially be used for eddy mon-
itoring, such as optical sensors that provide images in visible and infrared channels of
the electromagnetic spectrum [12]. The main advantage of optical images is easier visual
interpretability, especially in comparison to SAR data. Additionally, similar to SAR, optical
data are usually provided in high spatial resolution, allowing for the identification of
smaller eddies and sea ice formations and structures on the underlying surface. However,
the most crucial limitation of such data is their high sensitivity to atmospheric and light
conditions, which is a significant problem for the Arctic region where cloud cover and long
periods of darkness prevail for several months of the year [13]. Therefore, optical sensors
can only be partially used depending on the data availability and final application [14].

Numerous studies have used SAR images for eddy detection in MIZ [4,8,10,15]. How-
ever, the underlying methodology for all these studies is based on visual inspection of satellite
images, which is time-consuming, strongly relies on expert knowledge, and is prone to vari-
ous biases and errors. Based on decades of experience in eddy identification from satellite
data, it is clear that for the accumulation of a significant amount of statistical data on eddy
properties in MIZ regions, it is necessary to develop a robust methodology for automated
eddy identification from SAR images. It should also be noted that in recent years, several
studies have implemented various machine learning algorithms for eddy detection from SAR
images [16-19]. However, all of these studies were focused on identifying eddies in ice-free
zones. In contrast, our study is focused on the MIZ region where the main eddy tracers are
different types of sea ice, which require a completely new approach for eddy detection.

The study area is located over the Fram Strait, which is a 600 km wide passage between
the Svalbard archipelago and Greenland, representing a unique deep-water connection
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between the Arctic and the rest of the world. The water mass exchange is controlled by two
main currents: West Spitsbergen Current (WSC) and the East Greenland Current (EGC). Fram
Strait is an ideal place to study eddies in the MIZ, due to the fact that this is one of the most
dynamic regions and it is the main gateway through which sea ice leaves the Arctic Ocean.
The rest of this paper is organized as follows. Section 2 demonstrates the dataset
description. Section 3 shows the method used in this study. Section 4 presents an analysis
and experimental results. Finally, the discussion and conclusions are presented in Section 5.

2. Dataset Description

The following section describes the dataset used in this study. The dataset was
generated from Sentinel-1 imagery in an extra-wide (EW) swath mode at dual-polarization
(HH and HYV). Sentinel-1 operates at the C-band with a central frequency of 5.404 GHz
and includes two polar-orbit Sentinel-1A and Sentinel-1B missions that are able to work at
multiple sensing modes. There are several crucial things that motivated us to specifically
use Sentinel-1. First and foremost is the complete independence of atmospheric and light
conditions, which is particularly significant when operating in polar regions. The second
major benefit is that Sentinel-1 can provide high-resolution imagery with a pixel size of
40 m, which allows us to visually identify eddies with different sizes and distinguish
smaller structures on the surface. Moreover, it is worth emphasizing that Sentinel-1 data
are publicly available through Copernicus Open Access Hub, the European Union’s Earth
observation program. Accordingly, the Sentinel-1 data were corrected for thermal noise
and calibrated to sigma nought in dB using the ESA Sentinel-1 Toolbox.

The collected dataset includes 25 scenes, from June to November 2022, which cover the
melting and ice formation season over the area of the Greenland Sea, East Greenland. The
aforementioned scenes were partitioned into two distinct sets: a training set consisting of 20
scenes, and a validation set consisting of 5 scenes, for the purpose of training and evaluating
the neural network. It should be noted that the validation dataset includes four scenes with
eddies in the MIZ that will be further demonstrated. The 5th one is the open ocean image
with various ocean signatures, which was employed to make sure that the detection algorithm
will not fail in the scenario with no eddies in the MIZ. Moreover, we collected a few additional
scenes, which were not labeled in order to test the proposed architecture. Figure 1 illustrates
the study area along with the false-color composites that were used for training.
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Figure 1. Study area over the Greenland Sea, East Greenland, as well as false-color composite
representations of SAR images (HV, HH, and HH-HYV, as RGB) illustrating the total coverage of all
the images used in this study.

Figure 2 illustrates a few eddy signature examples that were used for training. It is
evident that eddies in the MIZ, especially on SAR images, can look very different depending
on many parameters. In this paper, we are focusing on detecting all of the eddy signatures.
However, in future studies, we will plan to distinguish and detect different types of eddies
in terms of their size, shape, and rotation direction.

Figure 2. Example of different eddies in the MIZ that were used for the training part of this study.

3. Method Description

In this study, we trained different YOLOv5 [20] models for the purpose of eddy
detection in the MIZ. YOLOVS is a state-of-the-art object detection algorithm that can detect
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and locate objects in an image or video in real time with high accuracy. It is the latest
version of the YOLO (You Only Look Once) family of object detection models, and it was
introduced in 2020 by Ultralytics. YOLOvV5 uses a deep convolutional neural network
architecture that is trained on the common objects in context (COCO) dataset [21], an
extensive dataset of labeled images to identify various objects, such as people, animals,
vehicles, etc.

The YOLOV5 network uses a combination of convolutional, upsampling, and special-
ized layers to identify objects with varying scales and aspect ratios [20]. The network is
composed of a backbone feature extractor, a neck, and a head. The backbone is a pre-trained
network that extracts rich feature representations from images, reducing spatial resolution
and increasing channel resolution. YOLOv5 uses CSP-Darknet53 as its backbone, which
combines CSPNet [22] and Darknet-53 [23]. Darknet-53 is a 53-layer convolutional neural
network used for feature extraction, while CSPNet solves the issue of redundant gradients
in large-scale backbones, such as Darknet, by truncating gradient flow. This reduces the
number of parameters and computation required, improving inference speed, which is cru-
cial for real-time object detection [22]. The neck module includes a spatial pyramid pooling
(SPP) [24] module that maximizes input pooling and group features of different scales. This
allows the model to generalize well to objects of different sizes and scales. The model head
is a convolutional neural network that performs final operations, applying anchor boxes on
feature maps to render the final output: classes, scores, and bounding boxes.

There are several various sizes of YOLOVS5 that cater to different use cases and re-
quirements. YOLOv5 nano (YOLOv5n) and YOLOV5 small (YOLOV5s) are the smallest
and fastest variants of YOLOV5, with smaller model sizes and fewer layers. They are
suitable for applications that require real-time object detection on low-powered devices.
YOLOV5 medium (YOLOv5m) has a medium-sized model with more layers and higher
accuracy than YOLOvb5s. It is suitable for applications that require higher accuracy while
still maintaining real-time performance. YOLOV5 large (YOLOVS5I) has a larger model size
and more layers than YOLOv5m, which results in even higher accuracy but at the cost
of slower inference speed. It is suitable for applications that require the highest possible
accuracy. YOLOVS x-large (YOLOvV5Xx) has the largest model size and the most layers of
all YOLOVS5 variants. It achieves the highest accuracy among all YOLOv5 models but at
the cost of a slower inference speed and higher memory requirements. It is suitable for
applications that require the highest possible accuracy and have access to high-performance
computing resources.

In order to select the best-performing YOLOv5 model, the five different models were
trained using the specified training set and evaluated using the validation set for up to
500 epochs each. It is worth noting that our dataset for eddy detection is substantially small,
which presents a challenge for training accurate object detection models. In order to address
this challenge, we chose to fine-tune pre-trained YOLOv5 models for eddy detection.

During training, the model learns to predict bounding boxes around eddies and
calculates a confidence score for each predicted box. To evaluate the accuracy of the models,
the mean average precision (mAP) metric was used, with a confidence threshold range of
50% to 95%. The mAP is a commonly used metric in object detection [25] that measures the
accuracy of the model in detecting objects at different levels of confidence. Specifically, it
calculates the average precision (AP) for each class of object detected and then takes the
mean across all classes to arrive at an overall mAP score.

In the present case, the model with the highest mAP score was selected for each
architecture.

4. Experimental Results & Discussion

The following section demonstrates the comparison of different YOLOv5 models
along with a performance of fine-tuned YOLOv5s on the validation and test datasets for
the detection of eddies in the MIZ.



Remote Sens. 2023, 15, 2244

6 of 10

4.1. Comparison

To optimize training efficiency, the false-color composites were resized to 1500 x 1500 pixels.
This allowed the models to be trained faster without sacrificing accuracy. To compute
the models, NVIDIA T4 Tensor Core GPUs were used, which were available through
Google Colab.

In Table 1, we present the metrics of the best models for each architecture. The detection
results of these models on the validation set were compared, revealing that YOLOv5x had
superior overall metrics. Figure 3 displays the output of the YOLOvS5 small, large, and
x-large deep-learning algorithms, featuring the detected eddy signatures in the MIZ. The
green boxes indicate the correctly detected eddies, while the red boxes represent missed
eddies. Cyan boxes denote eddies that were not initially labeled but were subsequently
detected by the algorithm. This validation image serves as a suitable example of why we
prefer YOLOvS5s for eddy detection. Although larger architectures have higher metrics
due to their superior performance in detecting more difficult eddies, YOLOv5s is an
efficient and lightweight model that excels in detecting the most obvious eddies. Moreover,
YOLOV5s outperformed YOLOv5x in detecting more prominent eddies. Therefore, we
selected YOLOvb5s for our specific application of eddy detection.

Table 1. Comparison of different YOLOv5 models on the validation dataset.

YOLOV5 Precision Recall mAP50 mAP50-95
nano 0.769 0.500 0.512 0.235
small 0.867 0.500 0.622 0.255

medium 0.685 0.556 0.594 0.284
large 0.862 0.556 0.638 0.289

x-large 0.872 0.611 0.653 0.290

yolov5 small yolov5 large yolov5 xlarge

@ (b) ©
Figure 3. Comparison of the best YOLOv5 models according to Table 1, namely YOLOV5 small (a),
large (b), and x-large (c) for the scene acquired on 8 September 2022. Green boxes display the correctly
detected eddies, red boxes show eddies that were missed by the architecture, and the cyan boxes
illustrate eddies that were not initially labeled but were detected by the algorithm.

4.2. Validation Dataset

Figure 4 illustrates the output of the YOLOvV5s deep-learning model, which was used
to detect eddy signatures in the MIZ from SAR false-color composites. The algorithm was
evaluated using a validation dataset, which consisted of labeled eddies. Green boxes show
the correctly detected eddies, while the missed eddies are demonstrated with red boxes.
Additionally, the cyan boxes illustrate the eddies that were not initially labeled but were
detected. It is evident from the images that we were able to highly minimize the false
alarm detections by choosing the right deep-learning architecture. Even though the eddy
signatures on the SAR false-color composites vary significantly in terms of shape and size,
especially in the MIZ, almost all of the labeled eddies were properly detected. While the
individual small submesoscale eddies were missed by the chosen model in Figure 4a,d, in
Figure 4b, the algorithm missed a lower part of the dipole eddy. Moreover, some of the
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eddy signatures were not initially labeled, however, they were detected by the algorithm,
which is especially clear in Figure 4c.

Sea ice acts as Lagrangian particles, and in the vast majority of cases, the algorithm
was able to perfectly capture the eddy shape spiraling signatures and identify the core and
most of the peripheral areas of the vortex structure. Based on the data from the validation
dataset, the algorithm detects eddies in the spatial scale range from 1 to 100 km, thus
covering both the mesoscale and submesoscale ranges.

The ocean eddies manifest themselves on the ocean surface via different geometrical
forms. They can be very close to the circular shape, which poses no problem for the
algorithm. However, in certain cases, the eddies take elongated shapes and even stretch
into filaments due to interactions with background currents that are inhomogeneous in
space [26]. In some cases, the algorithm detects such filament structures, which cannot
be fully avoided since most of the filaments have a high value of vorticity and are even
visually almost inseparable from the main eddy field. Additionally, the elongated shapes
of the eddies lead to the impossibility of detection of the peripheral part of the eddies.

Figure 4. The outputs of the algorithm with detected eddies in the MIZ for (a) 28 June, (b) 27 July,
(c) 30 July, and (d) 8 September 2022. Green boxes illustrate the correctly detected eddies, red boxes
demonstrate eddies that were labeled but were missed by the architecture, and the cyan boxes show
the eddies that were detected by the algorithm but were not initially labeled.

The eddy boundary in the high turbulent areas, such as MIZ, is diffusive and cannot
be correctly identified with the approach used in our work. There are different methods for
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eddy boundary detection [1,7] and it usually demands the implementation of the physical
or geometrical criteria, which is out of the scope of this study.

While identifying eddies is a complex task due to their intricate geometric configura-
tions, recent advancements in machine learning offer exciting opportunities to overcome
these challenges. Although labeling eddies demands specialized expertise, resulting in a
limited dataset and uncertainties in labels, we are confident that we can obtain high-quality
labeled data with modern techniques. Furthermore, integrating other sensors with a coarser
spatial resolution can expand the dataset and improve the accuracy of our model. Although
there may be some misdetections in our current approach, they can be resolved through
further investigation and improvement in future studies. We believe that our approach
will provide valuable insights and contribute to the advancement of eddy detection using
machine learning.

4.3. Test Dataset

Here, we present the outputs of the YOLOVS5s algorithm for detecting eddies in the
MIZ over the East Greenland Coast. The test data used for this analysis were acquired
on (a) 27 November and (b) 9 December 2022. The detected eddies are highlighted in
green boxes in Figure 5, demonstrating the ability of the algorithm to robustly detect eddy
signatures with different structures.

Figure 5. The example of the YOLOv5 outputs with the detected eddies in the MIZ for test data
acquired on (a) 11 November and (b) 9 December 2022 over the East Greenland Coast. Green boxes
demonstrate eddies that were detected by the algorithm.

One of the major advantages of using YOLOVS5 for eddy detection is its ability to per-
form real-time processing of the image data. This allows for the timely detection of eddies,
which is critical in various applications, such as polar navigation, offshore operations, and
oceanographic observations. The results of our experiments using YOLOv5s consistently
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demonstrate the robust detection of eddies in the MIZ, which is a crucial first step toward
automating the eddy detection process.

5. Conclusions

In this paper, we demonstrate the first step towards the automatization of eddy
detection in the MIZ. Specifically, we focused on the MIZ areas where the main tracers of
eddies are different types of sea ice, mainly brash ice. This is a narrow field that has not
been extensively studied, requiring a new approach to eddy detection. The experimental
results obtained from both the validation and test datasets consistently demonstrated
the effectiveness and robustness of the chosen deep learning architecture in identifying
submesoscale and mesoscale eddies with various shapes. This reveals the huge potential of
deep-learning algorithms for such a challenging task as eddy detection in the MIZ.

SAR data were utilized in this work for eddy detection in the MIZ for several crucial
reasons, such as independence of light and weather conditions, high spatial resolution, and
public availability. The eddies on the SAR imagery can be detected due to the difference
in surface roughness between the sea ice and open water boundary. Nevertheless, other
instruments can be used, namely sea surface temperature sensors, satellites equipped
with altimeters, and optical sensors. Each of these sensors has its own advantages and
limitations. As a future step, we will consider integrating various sources of data since
combining data from different instruments can potentially improve the understanding of
the interactions between the ocean and the sea ice as well as the formation of eddies for a
particular region.

While the primary goal of this study is to select and optimize the appropriate ar-
chitecture for detecting all eddy signatures without further discrimination based on size
(submesoscale or mesoscale), shape, or rotation direction (anticyclonic or cyclonic), future
research will mainly focus on distinguishing and detecting various eddy types in the MIZ.

Overall, the results presented in this study illustrate the effectiveness and robustness
of YOLOVS in detecting eddies in the MIZ, providing a promising foundation for future
research in automating the detection of eddies in various marine environments.
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Abbreviations

The following abbreviations are used in this manuscript:

SAR synthetic aperture radar

EW extra-wide

MIZ marginal ice zone

EGC East Greenland Current
WSC West Spitsbergen Current
YOLOvV5  you only look once version 5
COCO common objects in context
AP average precision

mAP mean average precision
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