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Abstract: Global sea level rise is a major environmental concern for many countries and cities,
particularly for low-lying coastal areas where urban development is threatened by the combined
effects of sea level rise and land subsidence. This study employed an improved two-layer network
Persistent Scatterers Interferometric Synthetic Aperture Radar (PS-InSAR) technology to obtain high-
precision land subsidence in Singapore from 2015 to 2019. Landsat images from 1973 to 2020 were
also utilized to extract changes in Singapore’s coastline. Geological, topographical, and global sea
level rise data were integrated to investigate the causes and impacts of land subsidence in Singapore.
The results indicate that the areas with severe subsidence coincide with land reclamation areas,
where subsidence is mainly due to soil consolidation. Based on WorldDEM, land subsidence, and
sea level rise data, the maximum inundation depth in Singapore by 2050 is estimated to be 1.24 m,
with the Marina Bay area in Singapore’s central business district being the most vulnerable to sea
level rise. This study provides data support and a scientific basis for understanding the impact of
land subsidence on Singapore’s coastal areas under the influence of multiple factors using advanced
InSAR technology.

Keywords: Singapore; land subsidence; PS-InSAR; sea level; land reclamation

1. Introduction

The global mean sea level (GMSL) is predominantly influenced by the thermal expan-
sion of seawater, glacier melting, and variations in land water storage [1]. Examination
of satellite altimeter data indicates that GMSL has been steadily increasing at a rate of
3.2 mm/y from 1993 to 2009 [2–4]. This persistent trend of gradual sea level rise poses a
significant threat to areas with low-lying topography or undergoing subsidence, especially
highly populated and economically developed coastal cities. This phenomenon may result
in intensified occurrences of land submergence, coastal erosion, and saltwater intrusion,
which can potentially lead to severe outcomes. Presently, global sea level alterations are
among the most significant environmental concerns worldwide.

Land subsidence is an environmental occurrence that manifests as the regional decline
of ground elevation. It is a phenomenon caused by natural and anthropogenic factors
resulting in the compression of surface soil [5]. At least 200 areas in 34 countries have
suffered land subsidence in the past century [5]. These countries include but are not limited
to China [6], India [7,8], and Iran [9]. Land reclamation and dike construction are examples
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of human activities that particularly impact coastal cities, leading to lowered elevations
and dike heights, increasing the risk of seawater intrusion. When combined with rising sea
levels, land subsidence exacerbates the relative sea level rise in coastal lowlands, leading
to numerous environmental consequences, such as the destruction of ecosystems, the
submergence of land, and the endangerment of coastal infrastructure and property [10–12].
As observed in Hampton Roads, USA [13], Jakarta [14] and Semarang [15], Indonesia,
Shanghai [16], and Tianjin [17], China, coastal subsidence causes significant challenges in
terms of comprehending and addressing its effects due to varying regional and city-specific
factors that contribute to sea level rise. Thus, effective resolution of coastal subsidence
remains a formidable task.

Singapore, a low-lying island nation with an average elevation of 15 m, is highly
susceptible to the impacts of future sea level rise, with over 30% of its land situated below
5 m [18]. In an effort to better understand and mitigate the impacts of land subsidence,
numerous studies have been conducted utilizing various measurement methods, including
the Global Positioning System (GPS) and Interferometric Synthetic Aperture Radar (InSAR).
Catalao et al. [19] employed InSAR and GPS technology to assess land subsidence in
Singapore between 1995 and 2000, revealing that most reclaimed areas were stable while
only four small subsidence areas were observed. Similarly, Wan et al. [20] utilized PS-InSAR
technology to investigate land subsidence from 2006 to 2011 in Singapore, identifying
significant subsidence in certain local areas with a maximum subsidence rate of −7 mm/y
near the flat coastal area. Furthermore, Catalao et al. [21] employed PS-InSAR technology
to investigate land subsidence in Singapore between 2011 and 2016 and used the results
in conjunction with sea level rise data to produce an inundation risk map. These studies
have highlighted that Singapore is experiencing elevated subsidence rates in some low-
lying coastal areas, while the sea level in the Singapore Strait is rising at an average rate
of 3.2 mm/y, with the average rate increasing annually [22]. Nonetheless, the current
land subsidence map of Singapore has not been updated for the past six years, and the
sensitivity of land subsidence in the region has not been investigated. As such, further
research is necessary to fully understand the impacts of land subsidence and sea level rise
on Singapore’s coastal areas. In addition, this study systematically analyzed Singapore’s
future flooding analysis based on land subsidence and sea level rise. It has reference
significance for other coastal cities.

This study aims to investigate the spatio-temporal evolution of land subsidence in
Singapore over a period of four years. To achieve this goal, a significant archive of synthetic
aperture radar (SAR) data was analyzed, covering the time period from February 2015 to
October 2019. The analysis highlights the effectiveness and significance of an improved
two-layer network PS-InSAR technique in monitoring geological instabilities, specifically
in coastal areas prone to subsidence. Vulnerable areas of coastal subsidence were identified
and subjected to detailed analysis. Moreover, the study examines the combined impacts of
land subsidence and sea level rise on flood inundation in the region.

2. Study Area and Datasets
2.1. Study Area

Singapore is a prominent coastal city situated in Southeast Asia and it is entirely
surrounded by sea. It is located within the geographic coordinates of 103◦38′ to 104◦06′

longitude and 1◦09′ to 1◦28′ latitude [23], comprising Singapore Island and 63 neighboring
isles. The city has low-lying and flat terrain. Singapore experiences a tropical marine climate
that is regulated by the equatorial low-pressure zone all year round and is characterized
by high precipitation levels [21]. The temperature variations throughout the year and
in a day are insignificant, with the average annual temperature ranging between 23 ◦C
and 35 ◦C [24,25]. The geographical information of Singapore is illustrated in Figure 1.
The geological materials of Singapore can be broadly divided into four main types: the
igneous rocks consisting of the Bukit Timah granite and the Gornbak norite in the north and
central-north; the sedimentary rocks of the Jurong Formation in the west and southwest;
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the Quaternary deposits of the Old Alluvium in the east; and recent deposits of the Kallang
Formation of the alluvium member, the transitional member, and marine clay distributed
throughout the island [26].
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2.2. Datasets

This study employed a total of 48 high-resolution TerraSAR-X ascending orbit images
obtained from 18 February 2015 to 31 October 2019 for processing with the PS-InSAR
technique. The spatial resolution of the images is 3 m, and the details of the InSAR
data acquisition are provided in Table 1. In addition, subsidence data from four GPS
monitoring stations was collected from the Nevada Geodetic Laboratory GPS Networks
Map (http://geodesy.unr.edu/NGLStationPages/gpsnetmap/GPSNetMap_MAG.html
(accessed on 25 March 2023)). The locations of the GPS stations are illustrated in Figure 1.
Moreover, Landsat satellite images were utilized to detect any changes in the Singapore
coastline, and the details of the Landsat image acquisition are provided in Table 2. The 30 m
WorldDEM [27] was used as topographic data for flood analysis. The WorldDEM product
is based on the radar satellite data acquired during the TanDEM-X mission, collected from
1 January 2011 to 1 July 2015. The absolute vertical accuracy of WorldDEM is 4 m, and the
relative vertical accuracy is 2 m (slops ≤ 20%).

Table 1. Properties of the TerraSAR-X datasets [28].

Parameters Description

Product Type SLC
Imagine Mode Stripmap

Operating Band X
Wavelength (cm) 3.1

Polarization HH
Orbit direction Ascending

Spatial resolution (m) 3
No. of images 48

Time range 18 February 2015–31 October 2019

http://geodesy.unr.edu/NGLStationPages/gpsnetmap/GPSNetMap_MAG.html
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Table 2. Properties of the Landsat datasets.

Image Number Satellite Acquisition Date Cloudiness (%) Spatial
Resolution

1 Landsat 1 17 October 1973 5.00 60 m
2 Landsat 4 3 July 1989 6.00 60 m
3 Landsat 5 2 April 1999 28.00 30 m
4 Landsat 5 22 February 2008 29.00 30 m
5 Landsat 8 5 November 2020 22.21 30 m

3. Methodology

The study employs a two-step methodology to analyze land subsidence and land
reclamation in Singapore. The first step involves generating a time series deformation map
by processing SAR images through an improved two-layer network PS-InSAR technique to
obtain high-precision land subsidence. The second step involves calculating the Modified
Normalized Difference Water Index (MNDWI) [29] to demarcate the boundary of land
reclamation in Singapore. The changes in land reclamation are quantified by comparing the
statistical data across multiple time series boundaries. Finally, the study analyzes the impact
of land reclamation on land subsidence by integrating high-precision land subsidence with
the spatio-temporal data of land reclamation in Singapore. The methodology is illustrated
in Figure 2.
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3.1. Two-Layer Network PS-InSAR

The PS-InSAR technology utilized in this study relies on identifying stable and strong
PS in a time series of SAR images to overcome the temporal and spatial decorrelation issues
inherent in D-InSAR [30]. The phase information obtained from these points is used to
estimate deformation, elevation residuals, and atmospheric delays through the construction
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of relevant functions. To achieve this, N-1 differential interferograms are generated by
differencing each secondary image with the phase value of the PS in the master image. The
information contained within each differential interferogram:

∆φD−Int = ∆φdisp + ∆φtopo_res + ∆φatmo + ∆φnoise (1)

where ∆φdisp represents the Line of Sight (LOS) deformation phase, ∆φtopo_res represents
the terrain residual phase, ∆φatmo represents the atmospheric delay phase, and ∆φnoise
represents other error components, such as thermal noise [30]. PS exhibit stable scattering
characteristics over a long time period, which make them less sensitive to temporal and
spatial decorrelation and maintain high coherence within their respective radar resolution
cells. We present a new PS-InSAR algorithm with a two-layer network. The proposed
approach involves selecting a small set of PS with stable scattering characteristics and
removing the atmospheric delay phase component during the phase filtering process. The
selected high-quality PS are then used as local reference points to construct a global network
and ensure a consistent starting baseline across the study area. Spatial densification of
the PS is achieved by using a low threshold. Based on the densified PS and the optimized
connection network, the final subsidence rate and residual topographic error are calculated
to obtain a high-density deformation result. The approach is characterized by the following
specific steps: (i) selection of high-quality PS in the first level; (ii) removal of atmospheric
delay phase; (iii) construction of a global network; (iv) densification of PS in the second
level; and (v) calculation of subsidence rate and residual topographic error, as depicted in
Figure 2. The proposed method can provide high-density deformation information with
improved accuracy.

3.2. Coastline Detection

A MNDWI was proposed by replacing the near-infrared band with the mid-infrared
band, which has been found to be more effective in extracting water bodies in urban areas
with high building density [29]. In this study, we adopted the MNDWI method to extract
the coastline boundary of the main island of Singapore from Landsat imagery. The Landsat
images were radiometrically calibrated and processed using the MNDWI formula [29]
to obtain water body information. The MNDWI method offers the advantages of easy,
accurate, and rapid extraction of water body information in urban areas. The MNDWI can
be expressed as follows:

MNDWI =
Green−MIR
Green + MIR

(2)

where Green represents the reflectance of the green band, while MIR represents the re-
flectance of the mid-infrared band. The formula used to calculate the MNDWI value of
each pixel was based on the reflectance of the green and mid-infrared bands, with lower
MNDWI values indicating a higher likelihood of the pixel being a water body. However,
the accuracy of MNDWI for extracting intertidal zones and muddy shorelines is limited,
and the results were carefully examined and edited in areas with clear errors.

4. Results and Accuracy Assessment
4.1. Historical Land Reclamation

The expanding demand for land and the need for increased social development
space have led to the use of land reclamation as a means of obtaining construction land,
particularly for coastal cities [21]. Singapore is a prime example of a country that has
implemented land reclamation to create new land. Over the years, Singapore’s land area
has expanded by 25% from 581.5 km2 to 728.6 km2 due to land reclamation, and the
government aims to further reclaim 100 km2 of land by 2030. While land reclamation
has brought significant economic benefits and promoted the Singaporean economy, the
long-term compaction of reclaimed land can result in land subsidence, thereby posing a
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threat to the safety of people’s lives and property by impacting the stability of both surface
and underground buildings.

A detailed analysis of the changes in the coastline of the island from 1973 to 2020
is shown in Figure 3, which highlights that the reclamation activities were concentrated
mainly in the southern region of the island, encompassing Marina Bay, Jurong, Changi,
and Tuas. The Marina Bay area, which is a contemporary urban district located at the
heart of Singapore, was created through land reclamation and completed in 1992. This
area is characterized by high-rise buildings, shopping centers, cultural centers, and tourist
attractions. In addition, Jurong Island, situated in the eastern part of Singapore, is the
largest of Singapore’s outlying islands. Reclamation works for Jurong Island began in 1995
and were completed in 2009. Similarly, Singapore’s Changi Airport, one of the busiest
airports globally, was also created through land reclamation. The project, which started in
1975, aimed to expand the airport’s area and capacity, supporting the country’s international
trade and tourism industries. Furthermore, the Tuas Port, which is one of the most active
seaports in Southeast Asia, has been developed through land reclamation. The project was
initiated in 2015 to cater to the increasing demand for industrial and port-related activities
in the region. Based on the analysis of Landsat images, the land area of Singapore’s main
island has increased by 24% from 559.7 km2 in 1973 to 692.5 km2 in 2020, as presented in
Figure 4.
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4.2. Land Subsidence

Based on a reference point on the building and assuming its stability, the subsidence
rate was calculated. The reference point coordinates are 1.347139◦N and 103.895854◦E. The
study area was characterized by a high number of artificial structures that acted as natural
persistent scatterers, leading to a high density of PS. A total of 538,158 PS were identified
over an area of approximately 447 km2, resulting in a point density of 1204 PS/km2. The
high density of PS facilitated the provision of detailed information about the study area.
The land subsidence rate was measured between 2015 and 2019, ranging from −39.5 mm/y
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to 10.4 mm/y. The land subsidence rate map in Figure 5 shows that the subsidence
patterns were irregular, resulting from local site effects such as foundation construction
and soil consolidation. Ground stability was observed in the inland areas, while the coastal
areas, particularly Changi and Marina Bay, were characterized by pronounced subsidence
phenomena. The highest subsidence rate observed was 39.5 mm/y, corresponding to a
cumulative subsidence of 193.0 mm. The detailed spatial distribution of the subsidence
area is introduced in Section 5.1.
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4.3. Accuracy Assessment

To verify the accuracy of the PS-InSAR monitoring approach, this study utilized
deformation data obtained from five GPS stations, which were selected based on the
availability and continuity of the observation period using the Nevada Geodetic Laboratory
GPS Networks Map [31]. The locations of the GPS stations are illustrated in Figure 1. The
monitoring period spanned from 15 September 2015 to 17 September 2019. The SG99
station was excluded from the analysis due to the short observation period. To achieve a
more precise comparison, the SLYG station was used as a reference benchmark to compare
the relative subsidence rates of the other three stations. The comparison results in the line
of sight direction are presented in Table 3. The accuracy of the PS-InSAR and GPS results
is a root mean square error of 3.13 mm/y, indicating a good agreement. These findings
validate the reliability of the PS-InSAR results for the study area.

Table 3. Comparison of PS-InSAR and GPS results.

GPS
Station N (mm/y) E (mm/y) U (mm/y) VLOS

GPS
(mm/y)

VLOS
InSAR

(mm/y)
Difference

(mm/y)

SNPT −0.01 −0.94 −0.30 −0.65 0.43 −1.07
SNUS 0.43 0.14 −3.37 −3.06 2.23 −5.29
SRPT −0.21 0.13 −1.59 −1.39 −0.91 −0.48

5. Discussions
5.1. Subsidence Mechanisms

The present study revealed substantial land subsidence in the coastal regions of north-
eastern (Figure 6) and southern (Figure 7) Singapore, necessitating further investigation.
The locations experiencing the highest subsidence rates in Singapore from 2015 to 2019
are closely related to the newly reclaimed areas. An analysis of the spatial distribution of
subsidence and land reclamation together was considered. The most common reclamation
techniques utilized in Singapore are tidal flat reclamation, beach reclamation, and offshore
island reclamation. The soil layers in the reclamation areas include filled sand and recent
deposits of the Kallang Formation. The fill is mostly made up of gravelly sand or clayey
sand, occasionally with hard rock cores, shell fragments, or bricks, with thicknesses ranging
from 5 to 12.5 m. The Kallang Formation consists of marine and delta clay with sand,
with thicknesses ranging from 3 to 37 m. While the old alluvium consists of clayey sand
with higher shear strength and compaction. In addition to these geological layers, some
regions include the Bukit Timah Granite and Jurong Formation [26]. In recent years, solid
waste has replaced traditional materials; consequently, some new geomaterials need to be
found [32]. The primary subsidence areas in Singapore coincide with the land reclamation
areas, involving geological layers of the Kallang Formation. Therefore, we postulate that
soil consolidation, accelerated by the construction of numerous artificial facilities, is likely
the cause of subsidence in this region.

The industrial and airport-related infrastructure in the Changi area, as shown in
Figure 6, experienced an average subsidence rate of−2.0 mm/y with an average cumulative
subsidence of−9.4 mm. In contrast, the Marina Bay area, predominantly Singapore’s central
business district, exhibited an average subsidence rate of −0.8 mm/y with an average
cumulative subsidence of −3.8 mm, as depicted in Figure 7. The combined impact of land
subsidence and sea-level rise suggests that the risk of flooding in the southeastern region
of Singapore is more severe.

A statistical analysis was conducted on land subsidence rates in land reclamation
areas from 1973 to 2020, as presented in Figure 8. Figure 8a illustrates PS extracted from the
land reclamation areas during 1973–1989, when 48.9 km2 of land was added and numerous
facilities were constructed. The monitoring period of this study detected 19,599 PS. Similarly,
Figure 8b depicts PS extracted from the land reclamation areas during 1989–1999, when
30.4 km2 of land was added and 9470 PS were detected during the monitoring period.
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Additionally, Figure 8c,d demonstrates PS extracted from the land reclamation areas during
1999–2008 and 2008–2020, respectively, when 25.4 km2 and 28.1 km2 of land were added,
mostly wasteland areas were reclaimed, and 1381 and 1652 PS were detected during the
monitoring period, respectively. A maximum subsidence rate of−39.5 mm/y was recorded
on the coastal breakwater in Changi from 2008 to 2020, indicating soil compaction and
subsidence in recent years. Further, during the land reclamation period from 1973 to 1989,
significant subsidence was observed in the Marina Bay Golf Course in Marina East, with a
subsidence rate of −38.2 mm/y.
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5.2. Inundation Scenarios

As a coastal country such as Singapore, flood prevention is one of the most important
tasks for sustainable urban development. With the continuous rise in sea level due to
global warming and land subsidence, the risk of flooding in Singapore is increasing. The
assessment of the potential flooding can be evaluated considering the combined effects of
sea level rise and land subsidence. The latest report from the Intergovernmental Panel on
Climate Change indicates an average global sea level rise of 3.7 mm/y over the past few
decades [33]. By integrating this information with the land subsidence rate in Singapore
from 2015 to 2019, the potential submerged land area can be evaluated, as shown in
Figure 9. This analysis revealed that the central business district, particularly the coastal
areas of Marina Bay, faces the highest risk. A subsidence of 1.24 m is predicted for 2020
to 2050. Moreover, it is necessary to consider other vulnerabilities, such as natural and
anthropogenic ones. It is important to note that this is a simplified calculation method,
but more complex models and algorithms could be influenced by several other factors,
including climate change and urban development.
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6. Conclusions

This study employs an improved two-layer network PS-InSAR technology to analyze
land subsidence in Singapore between 2015 and 2019, generating a high spatiotemporal
resolution subsidence map. The Landsat images were employed to detect variations in
Singapore’s coastal boundary over a period spanning from 1973 to 2020. The maximum land
subsidence rate during this period was −39.5 mm/y, with more pronounced subsidence
areas compared to previous research. These areas are concentrated in Singapore’s historical
reclamation sectors, particularly the southeast and northeast coastal regions. The area with
a subsidence rate of more than −5 mm/y is about 3.4 km2, accounting for 0.79% of the
study area. The maximum subsidence rate in the central business district is −38.2 mm/y,
and the maximum subsidence rate in Changi Airport is −39.5 mm/y. The subsidence
seems to be related to the compactation of the Kallang Formation and recent deposits.
The study also considers the combined impact of land subsidence and sea-level rise on
flooding risk, identifying the coastal area of Marina Bay as the most vulnerable. Without
considering other natural, economic, and social vulnerabilities, the maximum relative
subsidence in the Marina Bay coastal area between 2020 and 2050 is estimated to be 1.24 m.
These findings provide a deeper understanding of land subsidence in Singapore. The
method and application described in this paper can be used as a reference for other cities
that are suffering from land subsidence and sea level rise.
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