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Abstract: The image decomposition strategy that extracts salient features from the source image is
crucial for image fusion. To this end, we proposed a novel saliency-based decomposition strategy
for infrared and visible image fusion. In particular, the latent low-rank representation (LatLRR)
and rolling guidance filter (RGF) are together employed to process source images, which is called
DLatLRR_RGF. In this method, the source images are first decomposed to salient components and
base components based on LatLRR, and the salient components are filtered by RGF. Then, the final
base components can be calculated by the difference between the source image and the processed
salient components. The fusion rule based on the nuclear-norm and modified spatial frequency is
used to fuse the salient components. The base components are fused by the l2-energy minimization
model. Finally, the fused image can be obtained by the fused base components and saliency detail
components. Multiple groups of experiments on different pairs of infrared and visible images
demonstrate that, compared with other state-of-the-art fusion algorithms, our proposed method
possesses superior fusion performance from subjective and objective perspectives.

Keywords: image fusion; latent low-rank representation; rolling guidance filter; visible image;
infrared image

1. Introduction

Image fusion is an effective means of image enhancement which is committed to
reintegrating an image with more comprehensive information and significant features from
multi-sensor images [1]. In this field, the fusion of infrared and visible images is the most
representative and widely applied, such as target detection [2], object recognition [3] and
surveillance [4].

Visible imaging captures the reflected intensity information, whereas infrared imaging
captures the thermal radiation information. The images obtained by two imaging types
can provide scene information from complementary aspects [5]. The primary prerequisite
of image fusion is that the information conveyed by various sensors is complementary.
The chief objective of image fusion is to reintegrate the complementary information from
different images of the same scene [6]. In addition, the main challenge is how to extract
salient features from the source images and convey them to the fused image as much as
possible to improve the visual effects. Some scholars have proposed relevant algorithms
to solve this problem, such as the multiscale transform method [7] and the compressive
sensing transform method [8].

For the multiscale transform methods, some traditional tools are adopted to decom-
pose source images into one base layer and several detail layers of different scales. Com-
mon methods include the discrete wavelet transform (DWT) [9], contourlet transform
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(CT) [10], non-subsampled shearlet transform (NSST) [11], rolling guidance shearlet trans-
form (RGST) [12], co-occurrence analysis shearlet transform (CAST) [13], etc. The base layer
components that control the global contrast of images can be fused by the averaging fusion
rule; nevertheless, the components of detail layers that represent the detail information
usually fused by the max-absolute rule. However, the computation complexity of these
methods is a little higher because the source images need to be projected to the frequency
domain. Henceforth, some methods without the transform are adopted as the processing
methods, such as compressive sensing (CS) [14].

Moreover, some scholars utilized pattern spectra and a characteristic scale-saliency-
level (CSL) model based on differential area profiles to deliver crisp details of salient
features in a strictly edge-preserving manner. In [15], the authors propose a segmentation
method by the residuals of morphological opening and closing transforms based on a
geodesic metric for the segmentation of complex image scenes. In [16], a CSL model is used
to converge to an approximate building footprint representation layer, and its result is a
medium abstraction semantic layer used for visual exploration, image information mining
and pattern classification.

CS is applied for image fusion, which uses the smaller number of linear data with
sparse and compressible attributes to reintegrate and represent image information. The
most universal methods mainly include dictionary learning (DL) [17] and sparse representa-
tion (SR) [18]. For instance, Ahmed et al. [19] proposed an improved approach for medical
image fusion based on sparse representation and the Siamese convolutional neural network.
Zhang [20] proposed a visible and infrared image fusion method based on convolution
dictionary learning. Moreover, this kind of method does not need any a priori value of
the input image during the whole process of representation and can improve the fusion
efficiency. However, these methods are still complex and take up more time, especially
dictionary learning.

Recently, deep learning-based image fusion algorithms have been researched by more
and more scholars, which can be divided into non-end-to-end and end-to-end training
ways [21]. Non-end-to-end methods are achieved by deep learning and conventional
methods together without training for the first time, such as CNN [22], ResNet-ZCA [23]
and VggML [24]. The pre-trained model, as the part of the methods, is used to extract deep
features and generate weighted maps. The pre-trained network of the current fusion task
cannot be efficient for the others directly. The feature extraction process needs complex pre-
processing and post-processing, which results in the increase in computation complexity.
Therefore, the end-to-end methods are designed to obtain the salient features via training
the network with a lot of images, such as DenseFuse [25], U2Fusion [26], FusionGAN [5]
and SwinFusion [27]. The end-to-end fusion methods can learn appropriate parameters
adaptively because the framework avoids the complexity of feature extraction in conven-
tional methods. However, most methods cannot design refined fusion rules to extract the
deep features due to the simpler network structure. Then, such methods for image fusion
tasks can still be improved greatly.

Latent low-rank representation (LatLRR) [28], based on the low-rank representation
(LRR), can be used as a clustering analysis tool. Meng et al. [26] proposed a medical image
fusion method in which LatLRR is used as the means to extract the salient features of
input images. It is robust enough for outliers and noise. Liu et al. [29] adopted LatLRR
as the fusion method of visible and infrared images. However, this method lacks spatial
consistency and results in artifact effects around the edges. Then, some simple fusion
strategies can no longer meet the higher fusion requirements. As a result, the fusion rules
are crucial, on which the effect of the fused image depends. Especially for infrared and
visible, they are very different in some characteristics with various weather or illumination
conditions. It is very important for image fusion to choose an adaptive fusion rule.

Li et al. [30] proposed a fusion method based on the guided filter (GF) transform tool
to make up for spatial consistency, which can solve the questions of data distortions and
redundancy. However, the performances of the noise removing and edge preservation are
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not optimal because only the spatial weights are considered. Then, the rolling guidance
filter (RGF) is proposed to solve these defects, which can consider the spatial and range
weights together, and the rapid convergence can be achieved through rolling iteration.
In [31], Jian et al. realized the image fusion by RGF, and the results are superior to those of
the other current edge-preserving filters.

In this paper, we use DLatLRR_RGF as the fusion framework for infrared and visible
image fusion, which mainly solves the problem that the salient detail layers decomposed
by LatLRR still have some small structure components, and the edges of the base layer also
become a bit unclear.

The main contributions of this paper can be briefly summarized as follows:

• The image decomposition method (DLatLRR_RGF) based on LatLRR and RGF is
proposed for infrared and visible image fusion. Compared with the fusion framework
based on MDLatLRR in [32], which only decomposes the input images to a series of
salient layers and one base layer, in this paper, given that the salient detail layers still
have a lot of small structural components, RGF is adopted as the processing means to
remove the small structural components and recover the edge information. By the way,
the base layer has a preponderance of contour information. Finally, the different types
of components can be extracted to different layers more delicately, which is conducive
to subsequent image fusion processing.

• The projection matrix L of DLatLRR can be calculated in advance during the training
phase. Once the projection matrix L is obtained, it can be used to calculate the low-rank
coefficients for each image. The size of the image patch needs to be in line with the
size of the project matrix L; thus, the decomposition means can be adaptive to the
image of the arbitrary size.

• The fusion strategies are designed for base components and detail components, re-
spectively. On the one hand, the `2 energy minimization model based on the energy
information of the base images is adopted to guide the fusion of base components.
On the other hand, the nuclear-norm and space frequency are used to calculate the
weighted coefficients for every pair of image patches.

The subsequent sections of this paper are organized as follows. In Section 2, we
introduce related work. In Section 3, the proposed algorithm is presented in detail. Section 4
shows the experimental settings, results and analysis. Finally, the conclusions are drawn in
Section 5.

2. Related Works

In this section, for a comprehensive review of some algorithms most relevant to this
study, we focus on reviewing the latent low-rank representation and rolling guidance filter.

2.1. Latent Low-Rank Representation

LatLRR, as a compressed sensing method, is applied to more and more fields, and
image fusion is no exception. In 2010, Liu et al. presented an exploration method based on
LRR for the spatial structure of data [28]. However, it is not widely applied because of its
two defects:

1. The observed data matrix itself is adopted as the learning dictionary. Therefore, the
performance of this method is vulnerable to the observed data, such as insufficient or
corrupted [33,34].

2. It considers only the global structure (low-rank representation) information of the
observed data, so it cannot retain the local structure (salient features) information as
well as possible [34,35].

Subsequently, the authors [29] proposed the LatLRR to address these problems.
LatLRR can construct the dictionary based on unobserved latent image data, and the
richness and stability of the raw data can ensure the reliability of the dictionary. In other
words, even if the input image data are insufficient or damaged, it will not affect the
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extraction of salient components. Moreover, LatLRR can comprehensively consider the
aspects of the global structure, local structure and sparse noise of input data [28]. LatLRR
has better efficiency in extracting the salient features from the corrupted data and strong
robustness against the noise and outliers.

Generally, LatLRR is a convex optimization question which can be solved with kernel
norm minimization [29], and it can be formulated as

min
Z,L,E
‖Z‖∗ + ‖L‖∗ + λ‖E‖1 s.t. X = XZ + LX + E, (1)

where X is the observed matrix of the input data; Z, L and E denote the low-rank coeffi-
cient matrix, projection matrix of salient coefficients and sparse noise matrix, respectively.
‖·‖∗ represents the nuclear norm, and ‖·‖1 is the `1 norm. λ(λ > 0) is the balance pa-
rameter. The question can be solved by the inexact augmented LaGrangian multiplier
(IALM) [29] algorithm.

LatLRR can effectively decompose the input image data to low-rank components (XZ),
the salient components (LX) and the sparse noise components (E). However, the noise may
seriously affect the fusion process and eventually introduce visual artifacts. The noise
components can be separated from input images by LatLRR and directly discarded in
the proposed algorithm, which is equivalent to the noise removal process and helpful to
improving the quality of image fusion [6]. An example of the image decomposition based
on LatLRR is shown in Figure 1.

Figure 1. The decomposition operation based on LatLRR. (a) Input image; (b) Base part; (c) Salient
part; (d) Sparse noise.

2.2. Rolling Guidance Filter

The rolling guidance filter has been one of the most important image smoothing tools
since it was proposed. Compared with the other edge-preserving filters, RGF [36], which
can achieve the small structure removal and edge information recovery, applies iteration to
the filtering process in order to obtain faster convergence. The diagram of image processing
based on RGF is shown in Figure 2. RGF consists of two steps: small structure elimination
and edge recovery.

Figure 2. Rolling guidance filtering.
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2.2.1. Small Structure Elimination

In this process, a Gaussian filter (GF) is applied as the tool for removing the small
structure, such as the texture, noise, small target information and so on. The Gaussian filter
is defined as follows:

G(p) =
1

Kp
∑

q∈N(p)
exp

(
−‖p− q‖2

2σ2
s

)
· I(q), (2)

Kp = ∑
q∈N(p)

exp

(
−‖p− q‖2

2σ2
s

)
, (3)

where I and G represent the input image and initial guided image, respectively. The
parameters p and q are the pixel position index of the image, and σs denotes the smallest
standard deviation of the Gaussian kernel. Kp is used as the normalization, and the
neighborhood pixel set at p is defined as N(p). Provided the scales of some components are
smaller than σs, GF can remove them completely from the source image during this phase.

2.2.2. Edge Recovery

This step is able to recover the edges of the blurred image G and consists of the
joint filter and iteration process. Considering the guided filter with higher computational
efficiency and better edge-recovering performance, take it as the joint filtering. The output
result of the Gaussian filter is set as the initial guided images J1, and Jt+1 represents the
output of the t-th iteration. The process is expressed as follows:

Jt+1 =
1

Kp
∑

q∈N(p)
exp

(
−‖p− q‖2

2σ2
s
−
∥∥Jt(p)− Jt(q)

∥∥
2σ2

r

)
· I(q), (4)

Kp = ∑
q∈N(p)

exp

(
−‖p− q‖2

2σ2
s
−
∥∥Jt(p)− Jt(q)

∥∥
2σ2

r

)
, (5)

where Kp is defined as Equation (5), which is also used for normalization. The parameter
σr can control the range weights. I is the input image, as in Equation (2).

3. Proposed Algorithm

In this section, the image decomposition method based on LatLRR nested with RGF is
first proposed. Two kinds of fusion rules are designed for different layers, respectively.

3.1. Pretraining of Projection Matrix L

Based on the introduction in Section 2.2.1, the projection matrix L can be obtained by
calculating Equation (1). First, we select five groups of infrared and visible gray images
to build a training set, as shown in Figure 3. Second, these images are divided into image
patches, whose size is n× n, by the sliding window technique, and the stride of the training
window is to achieve the best fusion performance. Moreover, the size of image patches has
a certain impact on the fusion results due to the fact that the larger the image size is, the
more useful the information it contains. However, the size is so large that the calculation
of the projection matrix takes more time. Hence, in our experiments, n is set to sixteen.
Third, these image patches are divided into two categories (smooth, detail). The matrix
X consists of the two categories according to a certain proportion which depends on the
parameter e, and each column of X contains all the pixels of one image patch. The size of X
is M × N, where M is the number of image patches, and N = n × n. The size of matrix L
only depends on the image patch size, so it can be used to extract the salient features from
the input image with an arbitrary size. The setting of parameters n and the stride will be
discussed in Section 4.
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Figure 3. Pretraining dataset of five infrared and visible images. The first row presents the infrared
images, and the second row is the visible images.

3.2. Image Decomposition Based on LatLRR-RGF

Once the projection matrix L is calculated by the LatLRR, we can utilize it to extract
the salient detail components, the process of which is illustrated in Figure 4. We can see
that the input image is divided into a lot of image patches by means of the sliding window,
with some overlap. The size of the sliding window is n × n, which indicates the number of
image pixels covered by the window. Then, the window can be moved horizontally and
vertically in the stride s at a time.

Figure 4. The process of salient feature extraction.

These images patches are integrated into a new matrix, each column of which cor-
responds to some image patch. The salient components can be calculated by the follow-
ing equations:

Vs = L× P(I), (6)

Is = R(Vs), (7)

where I and Is denote the input image and saliency image, respectively. Vs signifies the
salient detail components calculated by the projection matrix L. R() is the operation of
reconstruction from the salient detail components, and the overlapping pixel can be pro-
cessed by the averaging strategy, namely, calculating the average value of the overlapping
pixels in each position. P(I) represents the matrix that consists of the reshuffled patches.

Is_rg f = RGF(Is), (8)

Ib = I − Is_rg f , (9)

where Ib denotes the base image, and Is_rg f is the result processed by RGF. The base image
Ib can be acquired by subtracting between the input image I and the salient detail image
Is_rg f smoothed by the RGF.

As shown in Figure 5, the decomposition method can also be applied to every base
sub-image. Supposing r represents the highest decomposition level, the value range of the
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variable i is defined as [1, r]. As a result, r salient detail images and one final base image
can be obtained. This framework for multi-level decomposition can be expressed as

Vi = L× P
(

Ii−1
b

)
, (10)

Ii
s = R(Vi), (11)

Ii
s_rg f = RGF

(
Ii
s

)
, (12)

Ii
b = Ii−1

b − Ii
s_rg f . (13)

Figure 5. The decomposition based on LatLRR nested with RGF.

Finally, the fused image can be reconstructed by the salient detail and base components.

3.3. Fusion Method

In this section, the fusion rule for sub-images in different layers is discussed in detail,
and the main fusion framework is shown in Figure 6, from which we can know the whole
procedures about the image decomposition, image fusion and image reconstruction:

• First of all, the visible images and infrared images can be decomposed by the method
based on LatLRR and RGF, which decomposes the input images to a series of salient
layers and one base layer. However, given that there are still many small structural
components in the salient detail layers, RGF is adopted as a processing tool to remove
these small structural components and recover more edge information. By the way,
the base layer has a preponderance of contour information. Finally, the different
components can be extracted to different layers more delicately, which is conducive to
subsequent image fusion processing.

• For the base layer components, the `2 energy minimization model based on the energy
information of the base images is adopted to guide the fusion. The energy information
can reflect the main component mapping, and the weighting map can fuse the infrared
and visible base layer components finely.

• For the detail layer components, the nuclear-norm and space frequency are used
to calculate the weighted coefficients for every pair of image patches. The space
frequency can show the pixel activity of the different detail layers, which can transfer
more information to the fused images.
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Figure 6. The framework of the proposed fusion method.

3.3.1. Fusion of Base Components

The base components of the image primarily consist of common features and bright-
ness information. In order to combine the brightness advantages of the infrared image and
the information richness of the visible image, the `2 energy minimization model based on
the energy information of the base images is used to integrate the approximate components
of the source images [37]. To implement fusion tasks flexibly, the fusion strategy can
adaptively adjust the fusion coefficients according to the local region’s energy.

The expression of the fusion model is shown as follows:

argmin
{∥∥∥Ib(i, j)− I IR

b (i, j)
∥∥∥2

2
+ λ

∥∥∥Ib(i, j)− IVI
b (i, j)

∥∥∥2

2

}
, (14)

where I IR
b (i, j), IVI

b (i, j) and Ib(i, j) represent the base layer components of the infrared
image, visible image and fused image, respectively. ‖·‖2 denotes the `2-norm, and λ is
the regularization parameter. The data fidelity of this model is

∥∥Ib(i, j)− I IR
b (i, j)

∥∥2
2, which

ensures that the base components of the infrared image can be transferred into the fused
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image as much as possible. In addition,
∥∥Ib(i, j)− IVI

b (i, j)
∥∥2

2 is the regularization term
in which the base components of the visible image are introduced, and it is beneficial
to improve the sensitive observation range of human eye vision. The Euler–LaGrange
function of Equation (14) can be calculated, and the result is shown as follows:(

Ib(i, j)− I IR
b (i, j)

)
+ λ

(
Ib(i, j)− IVI

b (i, j)
)
= 0, (15)

In order to express the contribution from the source image to the fused image, we
introduce the weighted parameters ω1 and ω2. Thus, the solution to Equation (14) is that

Ib(i, j) = ω1 I IR
b (i, j) + ω2 IVI

b (i, j)

s.t. ω1 =
1

1 + λ
, ω2 =

λ

1 + λ
, (16)

where the weighted parameters mainly depend on the regularization parameter λ that
can influence the final fusion effect. Given λ with a fixed constant, the information in two
different types of spectra images cannot be fully extracted. Thus, the value of λ should be a
variable that can vary with the gray features of the input images. Moreover, the parameter
λ is not only a correction parameter but can also express the local details of the visible
image. In order to improve the image contrast, we adopt the local standard deviation
(LSD) [38] as the adaptive regularization parameter, which can be defined as follows:

λ(i, j) =

√
1

MN ∑
m∈M

∑
n∈N

[
IVI
b (i + m, j + n)− IVI

b (i, j)
]2

, (17)

IVI
b (i, j) =

1
MN ∑

m∈M
∑

n∈N

∣∣∣IVI
b (i + m, j + n)

∣∣∣, (18)

where M and N represent the number of the pixels in the region, the size of which can be
3 × 3 or 5 × 5. IVI

b (i, j) denotes the average gray of all pixels in the local area, and it can be
calculated by Equation (18).

As a result, the variable λ can compensate well for the data fidelity term in `2 energy
minimization and retain the region in the images that is the main one or sensitive for
human vision.

3.3.2. Fusion of Detail Components

The salient detail components of the source image mainly consist of saliency features
and structural information [39]. Thus, the fusion strategy for detail components needs to
be designed more carefully. The fusion rule in this paper is shown in Figure 7.

The nuclear-norm can represent the structural information of each image patch well,
and the spatial frequency (SF) can sensitively indicate the pixel activity levels. Based on
the analysis above, in our method, we combine the nuclear-norm and SF to describe the
structural information and salient information of the detail images, respectively. Both of
them are used to calculate the weighted coefficients for every pair of image patches.

In Figure 7, i represents the decomposition level. Vi,j
sk (k = 1, 2) and Vi,j

s f denote the j-th

column of each detail component matrix Vi
sk and fused detail component matrix Vi

s f .
The nuclear-norm for each column is calculated as follows:

ŵi,j
sk =

∥∥∥R
(

Vi,j
sk

)∥∥∥
∗
, (19)

where ‖·‖∗ denotes the nuclear-norm.
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Figure 7. Process of fusing the salient detail components.

Based on the traditional SF, our method introduces the main diagonal SF and the
secondary diagonal SF, which can acquire more direction and detail information. The
modified SF (MSF) is defined as

MSF =

√
(RF)2 + (CF)2 + (MDF)2 + (SDF)2, (20)

RF =

√√√√ 1
n× n

n

∑
x=1

n

∑
y=2

[d(x, y)− d(x, y− 1)]2, (21)

CF =

√√√√ 1
n× n

n

∑
x=2

n

∑
y=1

[d(x, y)− d(x− 1, y)]2, (22)

MDF =

√√√√ 1
n× n

n

∑
x=2

n

∑
y=2

[d(x, y)− d(x− 1, y− 1)]2, (23)

SDF =

√√√√ 1
n× n

n

∑
x=2

n−1

∑
y=1

[d(x, y)− d(x− 1, y + 1)]2, (24)

where MSF is the modified SF, and RF, CF, MDF and SDF represent the row, column, main
diagonal and secondary diagonal SF, respectively. We calculate the MSF of every patch,
and the size of the statistic area is n × n.

Based on the above analysis, we can obtain the final fusion coefficients wi
sk by Equation (25).

wi,j
sk =

MSF
Vi,j

sk
· ŵi,j

sk

2
∑

k=1
MSF

Vi,j
sk
· ŵi,j

sk

, (25)

where MSF
Vi,j

sk
is the modified SF for each patch obtained by Equation (20), and ŵi,j

sk can

be calculated by Equation (19). Then, the fused detail components Vi,j
s f are calculated by

weighted detail components Vi,j
sk , as shown in Equation (26):

Vi,j
s f =

2

∑
k=1

wi,j
sk ·V

i,j
sk . (26)
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Equation (26) is applied to every pair of detail component matrices Vi
sk. (i = 1, 2, . . . , r).

Finally, the fused image patches can be reshaped by Equation (27):

Ii
s f = R

(
Vi

s f

)
. (27)

3.4. Reconstruction

The fused base components and fused salient components are together used to recon-
struct the fused image by adding the operation, which is shown as

I f (x, y) = Ib f (x, y) +
r

∑
i=1

Ii
s f (x, y), (28)

where I f (x, y) denotes the fused image. Ib f (x, y) and Ii
s f (x, y) are the fused base compo-

nents and salient components, respectively.

4. Experimental Results and Analysis

In the following, the fusion performance of the proposed algorithm is discussed and
compared with the other state-of-the-art methods from subjective and objective perspectives.

4.1. Experimental Setting

To demonstrate the superiority of the proposed algorithm, 10 pairs of infrared and
visible images in different scenes are used as the test data in Figure 8 from TNO (Available
online: https://figshare.com/articles/TN_Image_Fusion_Dataset/1008029, accessed on
1 May 2021). The testing set consists of 10 pairs of source images, where the first four pairs
of images are used to test the fusion performance in the case of target hiding. The light
difference between the infrared and visible images is big enough in the fifth and sixth pairs
of images, which can also be utilized as a testing input to verify the fusion effect. The last
three pairs of images are taken under the low illumination that is also very demanding for
the fusion method with higher adaptability. The ten pair consists of remote sensing images.

Figure 8. Ten pairs of source images. The top row shows the visible images, and the second row
contains the infrared images.

To test the superiority and feasibility of the algorithms, we chose the comparison
methods from the various aspects, such as the methods focused on the image transforma-
tion, the methods based on sparse representation or filtering methods, the deep learning
methods and so on. The comparison methods in this paper mainly include curvelet trans-
form (CVT) [40], complex wavelet transform (CWT) [41], guided filtering fusion (GFF) [38],
gradient transform (GTF) [42], hybrid multi-scale decomposition fusion (HMSD) [43],
Laplacian pyramid with sparse representation (LP_SR) [44], ratio pyramid (RP) [45], fusion
based on median filtering (TSF) [46], the weighted least square optimization-based method
(WLS) [47], anisotropic diffusion fusion (ADF) [48], U2fusion [26] and Densefuse [25]. The
implementation of these compared methods is publicly available, the parameters of which
are strictly in accord with the original papers. The experiments were conducted on a
desktop with 3.6 GHz Intel CPU i7-6850K, GeForce GTX 1070 Ti and 32 GB memory.

As for the objective metrics, to facilitate a comparison with other existing algorithms,
eight performance metrics are chosen to compare the proposed method and the other

https://figshare.com/articles/TN_Image_Fusion_Dataset/1008029
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existing fusion methods, such as the average gradient (AVG) [49], entropy (EN) [50], mutual
information (MI) [17], quality of visual information (Qabf) [51], spatial frequency (SF) [39],
standard deviation (SD) [43], structural similarity (SSIM) [52] and sum of the correlations
of differences (SCD) [53]. The fusion performance is proportional to the increase in these
metric values. Moreover, the running time of different methods is also regarded as a
metric reference.

4.2. Comparison of the Fusion Effect with and without RGF

In order to prove the recovery effect of the algorithm RGF, we select the image “Butter-
fly” to confirm the decomposition performance and the image pair “Kayak” to test the final
fusion effect with and without the RGF algorithm, respectively. The results are shown in
Figures 9 and 10 and Table 1 from subjective and objective perspectives. In Figure 9, the
edges of picture (c) are clearer and sharper than those of picture (b). Of course, the pictures
(d) and (e) of L2 are the same. It is obvious that RGF can effectively recover the damaged
edges in the process of the salient component extraction.

Figure 9. The comparison of the decomposition effect of the LatLRR method with and without RGF.
(a) is the original image. (b,c) are the base layers of L1 without and with RGF. (d,e) are the base layers
of L2 without and with RGF.

Figure 10. The comparison of the fusion effect of the LatLRR method with and without RGF for
the “Kayak” image pair. (a,b) are the decomposition of L1 without and with RGF. (c,d) are the
decomposition of L2 without and with RGF.

Table 1. The quality metrics of the fused image for the “Kayak” image pair.

Metrics AVG EN MI Qabf SCD SF SD

L1 (without RGF) 1.87330 5.94780 11.89561 0.61660 1.74054 4.06320 19.69617
L1 (with RGF) 2.49603 6.01317 12.02634 0.68572 1.75062 5.34973 20.18842

L2 (without RGF) 3.05346 6.13420 12.26839 0.72052 1.76770 6.62708 21.94118
L2 (with RGF) 4.43871 6.24749 12.49498 0.63024 1.76299 9.41302 23.37920

In Figure 10, when the decomposition level is set at 1, (a) and (b) are the results of
LatLRR without RGF and with RGF recovery. There is much more detail information in
(b) than in (a), and the figure is clearer, especially the contour of the steamboat. Of course,
the conclusion can be delivered from the first two rows of Table 1. Moreover, (c) and (d) are
the results of decomposition level 2, in which the effect of the recovery of the RGF method
is also very distinct. However, for the metric Qabf, the value decreases slightly when the



Remote Sens. 2023, 15, 2624 13 of 25

decomposition level increases to 2. The SCD of decomposition level 2 with RGF recovery is
lower than that without RGF recovery.

Based on the above analysis, the recovery method based on RGF is beneficial to
improving the visual effect of the fused images, and the images have higher contrast and
clearer edge information.

4.3. Projection Matrix L

There are two key parameters for the calculation of the projection matrix L: the patch
size n and the threshold e for classification, which will be discussed in detail.

4.3.1. The Patch Size n

In order to understand the impact of different patch sizes on the fusion efficiency
and results, the patches with sizes of 4, 8 and 16 are used for comparison experiments.
Figures 11 and 12 show the fusion results and performance of different projection matrices
L with various sizes on the image pair “Steamboat”, among which the stride is set to 1, and
the decomposition level is 2.

Figure 11. The fusion results of different projection matrices L on the image pair “Steamboat”.

Figure 12. The fusion performance of different projection matrices L.

In Figure 11, the fusion image with an image block size of 16 has significantly better
visual effects than those with other smaller sizes, and there is more detail information in
the figure (c). Moreover, the eight metrics in Figure 12 are chosen to further evaluate the
fusion images. Except for the two metrics SCD and SSIM, the other metrics of the projection
L_16 are the highest. Thus, from an objective perspective, the fused image based on the
projection L_16 retains much more edge information and is clearer. However, SCD and
SSIM are also very close to the optimal values. As a result, with the increase in the patch
size n, the fusion effects have been gradually improved, but the computation cost greatly
increases. In summary, this paper selects the patch size of 16 to obtain a better fusion effect.
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4.3.2. The Threshold e

The threshold e is used to balance the number of smooth patches and detail patches,
and the classification based on the metric EN is defined as

EN = −
L−1

∑
l=0

Pl ln(Pl), (29)

where L denotes the maximum gray level of the image, and the statistical probability of
pixels in the image patches at the grayscale level l is represented by Pl. The larger EN
indicates that there is more detail information in the image patch. The classification strategy
is defined as

C(P) =
{

smooth EN(P) ≤ e
detail others

, (30)

where P denotes the image patch, and e represents the threshold value for dividing the
patches into smooth or detail segments.

These image patches are divided into two categories: the smooth and the detail. Then,
randomly choose the smooth and detail patches from the two categories to generate the
input matrix X. Thus, the number of smooth and detail patches in the training matrix X is
important enough for the projection matrix L. The ratio of detail and smooth is set at 0.5.

In order to objectively reflect the influence with the change in the threshold e and
obtain the optimal value, we also carried out the comparative experiments on five image
pairs. The size of the image patches is set to 16, and the decomposition level is 2. The
results of the image pair of “Steamboat” are shown in Figure 13.

Figure 13. Average fusion results of the different threshold e.

The experiment results in Figure 13 indicate that with the increase in the threshold
e, the metrics also fluctuate. When e = 0.4, the fusion metrics are the best, other than the
Qabf, but Qabf is very close to the optimal value. Thus, we choose the threshold e = 0.4 in
this paper.

4.4. Decomposition Methods Compared

The performance of the image decomposition based on the LatLRR_RGF method
can be proved by the following experiments. RGST is adopted as the compared method.
In Figure 14, the base layer components decomposed by the proposed method are more
abundant, such as (e) and (f). Moreover, (e) and (f) have clearer edges than (a) and (b)
obtained by RGST, and the ability of edge recovery is better than that of RGST. Especially,
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the second level base image (b) has become a little blurry. Comparing the picture (c)
with (g), we can know that the salient components extracted by the projection L are also
subtler and richer, and the intensity information is extracted together. However, (c) and
(d) obtained by RGST contain more edge information, and the contour is also clearer. The
green box in figures (c) and (d) lacks flower information.

Figure 14. The image decomposition experiments. The first row is based on the RGST method, and
the second row denotes the LatLRR_RGF method.

Generally, the difference between LatLRR_RGF and RGST is due to their own de-
composition principle. The LatLRR_RGF method is usually used to extract the salient
components. Thus, the pictures (g) and (h) have more information, including the edge
and intensity information. As for the RGST method, it can perform the corresponding
decomposition according to the edge scale information of the source image. So, the main
energy information is kept in the base layer, and the edge information is shown in the detail
layer. However, the more abundant the sub-layer images are, the better the fusion effect is.
The proposed decomposition method is competent for this work.

4.5. Fusion Rules Compared

The fusion effect mainly depends on the fusion rules, except for image decomposition
methods. An appropriate fusion rule is useful to improving the visual effect. In addition,
some classic fusion rules have not adapted to all the different scenes. We choose the average
method as the base component fusion rule and the absolute-max method as the detail
component fusion rule to compare with our fusion methods, respectively. The experiment
results are shown in Figures 15 and 16. Figure 15 is the subjective fusion effect comparison
experiment for base and detail components. For the base layer fusion rule comparison, the
l2 energy minimization rule can process the base components more intelligently instead
of the unified averaging operation for all pixels. For example, comparing picture (a)
with (b), the image in the box is zoomed in, in which the lamplight fused by the l2 energy
minimization rule is more in line with the human visual effect due to the brighter light.
Moreover, the proposed method takes the intensity difference of the two kinds of images
fully into account, and the final fused effect is better than the average fusion rule. It is more
apparent that the metric values of the fused image are larger than the other classic fusion
rules in Figure 16 from the objective perspective, especially the AVG, SF, SD and SCD.
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Figure 15. Performance comparison of different fusion rules on the image pair “Airplane”.

Figure 16. Metrics comparison of different fusion rules on the image pair “Airplane”.

For the detail layer components, the paper adopted the nuclear-norm and modified the
spatial frequency together to guide these image blocks to fuse. In Figure 15, the pictures (c)
and (d) are detail images obtained by the absolute-max rule and the proposed rule. We can
know that the fusion components based on the proposed method are finer. For example, the
gap between the two legs and the contour of the lamp in the light is clearer in picture (d).
However, they are integrated into a mass in picture (c). The fusion metrics in Figure 16
show that the proposed fusion rule has a better performance than the absolute-max rule.

The fusion rules proposed in this paper can improve the fusion effect availably, which
has been proven from objective and subjective perspectives.

4.6. Subjective Evaluation

The subjective evaluation for the fusion of infrared and visible images mainly depends
on the visual effect of fused images. The representative image pair “Kaptein” is selected for
detail analysis, and the results are shown in Figure 17. The results are obtained by 12 exist-
ing methods, in which the parameters take default values and our proposed algorithm that
uses the projection matrix L16, and the decomposition levels are r (1 to 2).
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Figure 17. Performance comparison of different fusion methods on the image pair “Kaptein”. And
images in the squares are the localized magnification.

Three parts in the images are enlarged for detail comparison, namely, the trees, the
bushes and the ground. It can be seen from the enlarged pictures of the fusion results
obtained by various methods that the proposed method with decomposition level 2 owns
the more stable fusion performance. The contrast of (p) is high enough, and the quantity of
information is adequate. Furthermore, there is no noise, as in the RP and WLS methods.
The GFF, GTF, WLS and ADF methods cannot ensure the clarity of fused images, such
as bushes in the green boxes. The fused images by the CVT and CWT methods have an
outline around some big smooth region such as the left and right sides of the tree at the
top of the images. The HMSD, LP_SR and TSF methods have a relatively better fusion
effect, but the image contrast is not as good as that of Our_L2. The performance of the deep
learning methods, U2Fusion and Densefuse, is at a moderate level, and U2Fusion is a bit
better than Densefuse in terms of the image contrast, such as the texture of the ground.
Then, the proposed method with two decomposition levels can integrate more information
into the final results than only one decomposition level. In summary, our method with
decomposition level 2 can retain more detail information and has a great advantage in
terms of contrast and clarity.

Figure 18 shows the fusion results of different methods for the remote sensing images.
For this experiment, both infrared and visible images contain plenty of useful information.
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All the methods can finish the fusion task well. However, the letters in the bottom left
corner of the “f”, “j”, “m”, “n” and “o” are not as clear as others. The contrast of “h”, “i”
and “l” is a little lower than that of “g” and Our_L2. The proposed method can also obtain
a good effect on the human vision.

Figure 18. Performance comparison of different fusion methods on the image pair “Remote Sensing”.

To verify the above analysis further, Figure 19 shows the results of nine group experi-
ments on infrared and visible images in different scenes. Among these, the first two rows
represent source visible image and infrared images, and (c)–(p) represent the results of
CVT, CWT, GFF, GTF, HMSD, LP_SR, RP, TSF, WLS, ADF, U2Fusion, Densefuse and the
proposed method of the decomposition level 1 (L1) and level 2 (L2), respectively. Whether
it is the selected comparison method or the proposed method, the basic fusion task of
infrared and visible images can be completed, except for method (e). In the second and
sixth experiments, the infrared targets are very unclear in the fused images obtained by
method (e), and even the hot targets of the men are lost in the fourth experiment. The rest
of results obtained by method (e) are acceptable. Thus, method (e) cannot be suitable for
every scene.



Remote Sens. 2023, 15, 2624 19 of 25

Figure 19. Performance comparison of different fusion methods on nine image pairs. (a,b) are
the source images of visible and infrared. (c–p) are the results of CVT, CWT, GFF, GTF, HMSD,
LP_SR, RP, TSF, WLS, ADF, U2Fusion, DenseFuse, Our_L1 and Our_L2. And (1–9) are experimental
group numbers.
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The contrast of the fused images from methods (k) and (l) is low, and they are relatively
blurred so that the visual effect is not very good. The fused image of method (i) is closer
to the corresponding visible image—for example, in the eighth experiment, the detail
information of the visible image is more sufficient, but the infrared information cannot be
fully transmitted to the fused image, as in experiment (5). In addition, there is a lot of noise
in the seventh experiment image based on method (i).

Although the infrared targets of the fusion images from the methods (f), (g), (h) and
(k) are salient, some visible detail information is lost—for instance, in the fifth experiment,
the texture information of the bushes in the fused image from the methods (f), (g) and (k)
is insufficient, and in the sixth group of the experiment, the man’s eyes are missing. The
soldiers in methods (f) and (k) have been sheltered from the smoke.

According to the fusion results in Figure 19, the schematic diagram of the fusion effect
can be summarized by Figure 20 from the perspectives of the image clarity, contrast, visual
effect and algorithm stability.

Figure 20. The schematic diagram of the fusion effect based on subjective evaluation.

The overall brightness of the images based on methods (c) and (d) are low, resulting in
the poor visual effect. The fusion performance of method (e) is unstable for balancing the
weights in the fused images between visible and infrared images, such as the ninth and the
second group experiments. Moreover, the fusion effect of method (g) is outstanding besides
the seventh experiment because the grid texture information of the ground is missing.
The fused image based on method (h) exists as an artifact in the third group. The results
obtained by method (i) have some noise, especially in the seventh and eighth experiments.
The method (j) is relatively stable, although the results also lost some detail information,
such as the man’s eyes in sixth group. The method (m) integrated more visible information
into the results, but for the third and ninth group images, it lost the target information of
the infrared images because the visible images have big and bright regions. The fusion
performance of the Densefuse method is a little better than that of U2Fusion.

For our method, there is more salient information in the fusion results of the decompo-
sition level 2 than in those of level 1. The fusion images in the last row in Figure 19 show
that the contrast and clarity are optimal, and the visual quality of the proposed method
is better. From Figure 20, we can know that the fused images by our method contain the
more complete infrared targets and integrate more visible detail information.
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4.7. Objective Evaluation

Since the visual sensitivity varies from person to person, subjective comparison anal-
ysis inevitably involves bias. Therefore, eight metrics and runtime are selected as the
objective evaluation methods for evaluating the quality of fused images more convincingly
and comprehensively. The proposed method and the other compared methods are analyzed
quantitatively, and the results are shown in Figure 21.

Figure 21. Quantitative comparison of eight objective evaluation metrics using the different fusion
methods on the nine infrared and visible image pairs.

The quality of the fused images is in line with the values of the eight metrics. As
seen from the summary of the various metrics in Figure 19, the proposed method with
decomposition level 2 (L2) occupies a leading position on the metrics of AVG, SF and EN,
which means that the proposed method L2 can retain more gradient information and has
better performance in terms of the contrast and clarity of the images. The metric values of
MI, SD, Qabf, SCD and SSIM in the proposed method L2 are optimal or suboptimal for the
nine groups of experiments.

In order to analyze these values comprehensively and directly, the average values
of eight metrics in the nine groups of experiments are shown in Table 2. Each objective
evaluation metric corresponding to a column and the best average value of every metric
are marked in bold. From Table 2, the proposed method with decomposition level 2 shows
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excellent performance in the cases of AVG, EN, MI, SF and SD. The other metrics infinitely
approach the optimal value, such as SSIM, Qabf and SCD.

Generally speaking, the noises of images are prone to be calculated by Qabf and EN,
which may lead to the higher and incorrect values. The metric EN is seriously affected
by noises; for example, the results fused by the method RP have a lot of noises, especially
in the i-th row of the seventh group experiment of Figure 19. Thus, the value of EN is
the highest of all the methods. Moreover, the absolute-max rule is also able to choose the
noise components as the final fusion coefficients. For instance, the GTF method adopts
the absolute-max rule to guide the detail components to fuse, and Qabf is a bit higher. The
more abundant the texture information is, the lower the Qabf is. The results of Our_L2
have more texture details than Our_L1, and the value of the metric Qabf was lower. The SD
value of ADF is relatively the lowest, and the fusion results obtained by the methods are
the most blurred from the subjective perspective. It can be seen from the last two rows that
the fusion performance is improved with the increase in the decomposition level.

Table 2. The average values of the quality metrics for all source images.

Metrics AVG EN MI Qabf SCD SSIM SF SD Runtime/s

CVT 5.93150 6.71624 13.43248 0.50564 1.54137 0.99696 12.71199 31.07864 2.56935
CWT 5.90104 6.69444 13.38888 0.54181 1.54074 0.99696 12.78876 30.91403 3.06967
GFF 5.64820 7.02521 14.05042 0.47950 1.30318 0.99573 12.42413 38.69633 3.76592
GTF 5.30221 7.01295 14.02590 0.54415 1.64860 0.99505 11.73354 40.60941 1.62658

HMSD 6.47369 6.87112 13.74224 0.52323 1.57335 0.99625 13.91654 34.09468 18.9567
LP_SR 6.15730 7.17781 14.35563 0.51370 1.47744 0.99530 13.21347 42.19765 0.76576

RP 6.49347 6.73163 13.46327 0.45079 1.53093 0.99679 14.28131 32.47274 0.58621
TSF 5.51254 6.82671 13.65343 0.51599 1.63624 0.99688 12.36487 33.97755 0.10834
WLS 6.30668 6.86250 13.72499 0.44229 1.67990 0.99660 12.70711 37.36021 4.77940
ADF 5.11189 6.55777 13.11554 0.48563 1.49885 0.99704 10.10662 27.60857 1.66422

U2Fusion 3.50888 6.67918 13.35836 0.33821 1.56602 0.97833 7.524127 36.39723 0.60190
DenseFusion 3.38556 6.48795 12.97590 0.33790 1.50824 0.99705 7.116488 26.79117 0.29560

Our_L1 6.02180 6.61190 13.22379 0.50908 1.57302 0.99703 12.95345 34.19755 3.21583
Our_L2 9.65432 7.20059 14.47895 0.49473 1.66344 0.99683 20.97932 43.56282 6.56182

From the results of the last column in Table 2, we can see that the runtime of various
fusion methods is greatly different. Compared with the traditional methods, the deep
learning methods have a significant advantage in terms of runtime due to the acceleration
function of GPU. Moreover, the runtime based on the TSF method is the lowest because of
the simple decomposition method and fusion strategy. Although the runtime of our pro-
posed methods is a bit higher than that of the deep learning methods and some traditional
methods, these are acceptable because of the better fusion effect. Of course, the promotion
of the fusion efficiency will become our primary research aspect in the future.

In summary, the objective evaluation results are basically consistent with the subjective
evaluation results. The proposed method (Our_L2) can fuse infrared and visible images
in various scenes well. The fusion performance is the most stable and can integrate much
more detail information into the final fused images. As a result, the fused images based on
the proposed method have a better visual effect than the other compared methods.

5. Conclusions

In this paper, the proposed method based on LatLRR nested with RGF outperforms
the other existing methods in terms of the fusion of infrared and visible images. The
method first uses the LatLRR to extract the salient components from source images, and
the detail components are processed further by RGF. Thus, the final base components can
be obtained by the difference operator. Furthermore, the extracted detail components and
the base components obtained by the difference are fused by the joint model between
the nuclear-norm and modified spatial frequency and the l2-energy minimization model,
respectively. Finally, the fused images can be obtained by linear summation operation.
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The fusion performance of the proposed method is outstanding enough compared
with the others, especially in terms of the image contrast and clarity, and so on. Moreover,
the proposed method can adapt to various imaging scenes. In addition, nine pairs of
infrared and visible images are selected to compare the fusion effect of our method and
the other twelve methods. All the results are evaluated both objectively and subjectively,
which demonstrates that the proposed method is superior to the existing methods in terms
of the fusion performance.
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