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Abstract: The scale and severity of forest disturbances across the globe are increasing due to climate
change and human activities. Remote sensing analysis using time series data is a powerful approach
for detecting large-scale forest disturbances and describing detailed forest dynamics. Various large-
scale forest disturbance detection algorithms have been proposed, but most of them are only suitable
for detecting high-magnitude forest disturbances (e.g., fire, harvest). Conversely, more continuous,
subtle, and gradual lower-magnitude forest disturbances (e.g., thinning, pests, and diseases) have
been subject to less focus. Deep learning (DL) can distinguish subtle differences in information within
time series data, offering new opportunities to capture forest disturbances in a complete and detailed
way. This study proposes an approach for analyzing forest dynamics across large areas and long time
periods by combining DL time series classification and prior knowledge constraint. The approach
consists of two stages: (1) an improved self-attention model used for time series classification to
identify sequences with forest disturbance characteristics; (2) developed skip-disturbance recovery
index (S-DRI) characterizing the temporal context, using prior knowledge constraint to identify forest
disturbance years in time series with disturbance characteristics. In this study, the year of forest
disturbances in five study areas located in the United States, Canada, and Poland from 2001 to 2020
was mapped. A total of 3082 manually interpreted test data with different disturbance causal agents
(such as fire, harvest, conversion, hurricane, and pests) were sampled from five research areas for
validation. Our approach was also evaluated against two forest disturbance benchmark datasets
derived from LandTrendr and the Global Forest Change (GFC) dataset. The results demonstrate
that our approach achieved an overall accuracy of 87.8%, surpassing the accuracy of LandTrendr
(84.6%) and the Global Forest Change dataset (81.4%). Furthermore, our approach demonstrated
lower omission rates (ranging from 10.0% to 67.4%) in detecting subtle to severe causal agents of
forest disturbance, in comparison to LandTrendr (with a range of 18.0% to 81.6%) and GFC (with
a range of 15.0% to 88.8%). This study, which involved mapping large-scale and long-term forest
disturbance in multiple regions, revealed that our approach can be applied to new areas without
a requirement for complex parameter adjustments. These results demonstrate the potential of our
approach in generating comprehensive and detailed forest disturbance data, thus providing a new
and effective method in this domain.

Keywords: forest disturbance; remote sensing; time series; deep learning; knowledge constraint

Remote Sens. 2023, 15, 2963. https://doi.org/10.3390/rs15122963 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15122963
https://doi.org/10.3390/rs15122963
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0002-5136-9364
https://doi.org/10.3390/rs15122963
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15122963?type=check_update&version=1


Remote Sens. 2023, 15, 2963 2 of 23

1. Introduction

There is growing evidence that more intense forest disturbance events have become
more frequent in recent decades, posing significant challenges to biological habitats and
ecological sustainability [1–3]. Natural disturbances, such as fire, drought, hurricanes,
etc., alongside human activities, such as deforestation, urbanization, and agricultural land
reclamation, significantly impact the composition, structure, and function of the forest
system. These disturbance events release massive amounts of carbon stored in forest
vegetation into the atmosphere while also disrupting forest oxygen-release functions [4,5].
Forest disturbances can cause permanent alterations in forest functions with considerable
effects on the global forest carbon budget and other vital ecosystem services, including the
water cycle and energy balance [6,7]. There is an urgent need for retrospective analysis
and compilation of basic data on forest disturbance, which will facilitate the development
of sustainable forest conservation policies and mitigate the increase in carbon emissions
generated by the forest disturbance.

Detecting and characterizing change over time is the natural first step toward identify-
ing the driver of the change and understanding the change mechanism [8]. Remote sensing
data have long been used for forest cover research as they capture natural and anthro-
pogenic activities on a broad spatial scale and have natural temporal properties [9–11]. The
Landsat Archives provide a long-term, large-scale collection of satellite images in standard
format that can be used on a large scale to detect changes caused by forest disturbance [12].
In 2008, free and open access to all Landsat archives continued to revolutionize the use of
Landsat data [13]. The use of Landsat time series analysis and extraction of spectral trajec-
tory features is a mainstream method for current systematic forest disturbance monitoring,
with significant progress [8,14–20].

Many forest disturbance detection and Landsat-based change detection algorithms
based on time series remote sensing data have been developed and widely used. Among
them, the threshold method (e.g., VCT), trajectory fitting method (e.g., CCDC), and trajec-
tory segmentation method (e.g., LandTrendr) are the most often used methods for forest
disturbance detection [13,15,16]. These methods have been proven to be effective in detect-
ing forest disturbances, but the reliabilities often depend on the severity of the disturbance
events themselves [21]. Ideally, forest disturbance has significant time series variability
characteristics that are sufficient to pass a fixed threshold for detection [18]. However, data
gaps and noise due to clouds, snow, or satellite system failures still make it challenging to
extract reliable changes from the remote sensing time series [22–24]. The spectral response
to non-stand replacement disturbance is subtle and delayed; therefore, some algorithms
tend not to consider detecting non-stand replacement disturbance or take a conservative
approach to avoid errors due to factors, such as data noise and phenological changes. Most
products or methods used for detecting forest disturbance are sensitive to sudden and rapid
stand replacement disturbances (e.g., harvest, fire) but ineffective for detecting non-stand
replacing disturbances (e.g., insect pests, drought) that persist over many years and change
gradually [21,25,26]. The goal of forest management is to mitigate or adapt to the impacts
of constantly changing disturbance conditions, and subtle long-term disturbances often
lead to more varied stand structures, which also need to be addressed [27]. Therefore, new
methods are needed to comprehensively and accurately detect forest disturbances, not
solely relying on the severity of the disturbance events themselves.

DL is powerful in modeling and learning capabilities and can extract information
about real-world changes from remote sensing data [28]. Current studies using DL for
forest disturbance detection are mainly based on computer vision techniques, which do not
capture long-term forest dynamics information. Most of the studies have been evaluated
with little reference data from a small area and only for single disturbance causal agent
detection, which limits the transferability of the proposed approaches [29,30]. In remote
sensing, the detection of forest disturbances is inherently difficult because low-magnitude
and very small size disturbance image textures are not obvious, similar to other background
noise [31].
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DL is well adapted to complex spatial and temporal patterns and has the ability to
detect and differentiate land cover with very similar spectral characteristics [32,33]. Using
time series remote sensing data can provide dynamic change information of the Earth’s
surface. In recent years, DL-based time series classification models have been used to
obtain periodic information on vegetation dynamics, mowing frequency, land use, and
other land surface change information from remote sensing data, such as convolutional
neural network (CNN), long short-term memory (LSTM), and recurrent neural network
(RNN) [34–37]. The transformer was first proposed for applications in natural language
processing [38]. It has been used in other areas, such as computer vision and sequence
generation, due to its efficient performance, demonstrating its advances [38–40]. In recent
studies, the transformer has been used for time series prediction and classification, showing
superior performance on multiple datasets [41,42]. In contrast to RNN and CNN, the
self-attention mechanism of the transformer allows neural networks to extract features
from observations at specific time steps of the input time series of values [42]. Rußwurm
et al. [43] compared six DL models based on Sentinel-2 raw and pre-processed data for
crop-type classification, showing better performance for self-attention neural networks
than the CNN.

Free open access to data and increased computing power solve the limited availability
of the excessive computational demand for temporal stacks of large-scale satellite im-
ages [44,45]. Numerous studies have shown that the use of time dependence and spectral
change is more suitable for forest disturbance detection [13,31]. However, the inherent
variability, dropouts, and extraneous data present in remote sensing time series data pose
significant challenges in achieving end-to-end forest disturbance detection using DL [46].
If the remote sensing time series can be aligned and trimmed to equivalent lengths, it is
possible to use DL time series classification to distinguish between low-magnitude distur-
bances and spectral changes caused by noise [46]. DL can identify a sequence of forest
disturbance events, and the exact timing of the forest disturbance can be determined by
utilizing simpler statistical methods or relying on prior knowledge of the disturbance
times present within the sequence. Prior knowledge constraints integrate logical rules into
deep learning models, encode human intentions and domain knowledge into the model
to control the output results, and avoid heavy reliance on large amounts of labeled data
for training [47]. Forest disturbance can be considered a time-varying process that can be
effectively monitored through time series analysis and characteristics extraction [48]. Based
on the time-varying characteristics of forest disturbances, integrating prior knowledge
constraints into deep learning time series classification models to detect forest disturbances
can avoid top-down approaches to eliminate noise-induced variation and focus more on
lower-magnitude disturbances.

In this paper, we proposed a forest disturbance detection model that combines DL
classification and prior knowledge constraints to achieve comprehensive and accurate
detection of forest disturbances using time series remote sensing data. The proposed
approach involves a two-phase process for mapping forest disturbance: (1) Use a moving
window algorithm to align and segment remote sensing time series; then, classify time
series based on DL to pinpoint the time window where the disturbance event occurred.
(2) Define and apply the prior knowledge constraints to locate the specific year of the
disturbance event in the identified window. We illustrated the effectiveness of our model
by analyzing time series Landsat images spanning two decades (2001 to 2020) and testing
on forests in study areas located in Oregon, West Virginia, Montana, Alberta, and Poland.
In addition, our approach is compared with results from the LandTrendr and GFC dataset
and explores the omission of the different forest disturbance causal agent classes.
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2. Materials and Methods
2.1. Study Area

Natural disasters, climate change, and land use change are interrelated, and different
regions have different spatial and temporal disturbance patterns and dominant disturbance
causal agents. To comprehensively evaluate the performance of the forest disturbance
detection approach in different environments, five regions located in North America and
Europe were selected as the study areas for this study, as shown in Figure 1. There are
diverse forest types and disturbance causal agents in the selected study areas. Most of the
study areas are covered by forest and vary greatly in elevation, climate, forest populations,
and disturbance causal agents. The area, forest cover, elevation, and major species of trees
and the disturbance causal agents of each study area are summarized in Table 1 [25,49].
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Table 1. Description of area, forest cover, elevation, forest species groups, and disturbance causal
agents in study area.

Study Area Area (ha) Forest (%) Elevation (m) Forest Species Groups Disturbance
Causal Agents

1 Oregon, USA 1,468,571 88.3 −17~1915 Douglas fir, Ponderosa
pine, Western red cedar

Harvest, Fire,
Thinning

2 Montana, USA 526,423 61.1 368~3376 Red pine, Yellow pine,
Chinese pine, Spruce

Pests and
diseases, Harvest

3 West Virginia, USA 2,932,182 90.3 164~1433 Torch pine, Short-leaf pine,
White pine, Spruce

Mining, Harvest,
Thinning

4 Alberta, Canada 2,492,891 92.7 217~866 Aspen poplar, Balsam
poplar, Paper birch

Fire, Mining,
Harvest

5 Poland 2,009,051 35.8 −8~289 Pine, Birch, Poplar Hurricanes,
Harvest

2.2. Data and Pre-Processing
2.2.1. Landsat Imageries and Spectral Indices

In this study, remote sensing time series were created using Landsat imageries from
three sensors, namely Landsat 5 TM, Landsat 7 ETM+, and Landsat 8 OLI. We utilized the
best available pixel (BAP) algorithm to produce continuous, cloud-free, and phenological
consistent image composites [51]. The BAP algorithm uses the Landsat Ecosystem Distur-
bance Adaptive Processing System (LEDAPS) algorithm to generate surface reflectance
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values for the six Landsat optical bands. Clouds and their shadows were detected and
masked using the function of mask (Fmask) algorithm [52–54]. The BAP algorithm cal-
culates four separate scores for each pixel: the sensor score, the acquisition day of year
score, the distance to cloud or cloud shadow score, and the atmospheric opacity score. All
scores were summed to provide a total score for each pixel, and the pixel with the highest
score was used in the image composite. Details on the pixel scoring rules and annual BAP
development can be found in White et al. [51]. In this study, the maximum cloud cover in
the Landsat scenes used was set to be below 70%, the maximum atmospheric opacity was
0.3, and the minimum atmospheric opacity was 0.2. Given that all study areas are situated
in mid-latitudes of the Northern Hemisphere, the annual acquisition day of year score
selects the closest day to August 1 as the first clear pixel, with±30 days from the designated
target day of the year. This study used BAP to produce annual composite images for five
TSAs from 2000 to 2020.

For the forest not being disturbed, the canopy closure is relatively high with low
shortwave-infrared reflectance (SWIR). After the disturbance, the bare soil and low vegeta-
tion increased the reflectance of SWIR in the area [55,56]. Due to the superior performance
of SWIR in indicating vegetation change, spectral indices involving SWIR, such as normal-
ized burn ratio (NBR) and normalized difference vegetation index (NDVI), were widely
used in detecting forest disturbance [7,26,57,58]. Numerous studies have shown that NBR
responds significantly to forest change and is suitable for detecting the occurrence of forest
disturbance [16,23,26,59]. In this study, the NBR spectral index was used to construct time
series for detecting pixel-level forest disturbance.

2.2.2. Reference Data

It is necessary to collect sufficient data for training the DL model. Forest disturbance
is a rare event, with an average frequency of 1 in 1000 years per tree experiencing stand
replacement disturbance, and collecting manually interpreted training data is a labor-
intensive exercise [60]. We designed a method for obtaining reference data. First, a classifier
was trained to distinguish between forest and non-forest areas. Then, sampling points
were randomly generated in the forest areas, with a minimum distance of 3 km between
two points to avoid spatial autocorrelation issues [1]. Manual interpretation based on
high-resolution images and Landsat time series was conducted to determine the forest
disturbance history for all samples and exclude samples that fell outside of forests.

The collected reference data include training datasets for the self-attention model for
training and validation and a test dataset for evaluating the forest disturbance detection
approach. Figure 1 shows a total of 18,240 reference data points (blue points) collected for
training the time series classifier, of which 45% experienced at least one disturbance between
1988 and 2019. The training datasets for North America and Asia were generated using
the aforementioned process, and the European dataset was provided by Senf et al. [61].
The study area in this study does not include the training data. To evaluate the model
performance, 3082 reference samples (red points) were collected from the 5 study areas
as the test dataset. Between 2001 and 2020, 2047 forest pixels remained unchanged and
1035 pixels experienced disturbances. The disturbance time and the disturbance causal
agent classes of the test data were labeled by visually interpreting the time series of Landsat
images and the publicly available medium- to high-resolution images. Figure 2 shows the
distribution of the number of disturbance causal agents for the test data in each study area.
A description of the disturbance causal agent classes is shown in Table A1.
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2.3. Forest Disturbance Detection Model

To detect the annual forest disturbance using Landsat time series data, a two-stage
forest disturbance detection approach, consisting of DL time series classification and prior
knowledge constraint, was proposed in this study (Figure 3). In the first stage, we apply
the moving window algorithm to segment the time series into multiple window sequences,
where each window sequence corresponds to a specific time period for a given pixel.
We then use a trained self-attention model to classify each window sequence, indicating
whether the sequence contains a forest disturbance event. The second stage applies a prior
knowledge constraint to the window sequences containing the disturbance event that was
identified by the self-attention model in the first stage to determine the specific year of the
forest disturbance.
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To facilitate a better understanding of the methods proposed in this study, we defined
several concepts. For a given time series Y = {Y0, . . . , Yt}, it is a sequential order of
spectral values of a pixel during the detection period. The s sample long sub-signal
{Yi}a+s

i=a (0 ≤ a < a + s ≤ t) is a window sequence, where s represents the move window
size. In the remainder of this article, we use the above notation.

2.3.1. Padding and Segmentation

This study involves a time classifier that performs time series classification tasks,
which requires first transforming input remote sensing data of varying lengths into fixed-
length inputs for the classifier to use. We used a moving window algorithm to segment
the remote sensing time series data into a number of window sequences [37]. A key part
of mining time series data is to identify the movements and/or components within them
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by segmenting the time series, which can efficiently discover the critical time segments
via the moving window [62]. The moving window algorithm progressively moves the
window within the time detection period of each pixel, creating a new sequence based on
the values that fall into the window at each step (Figure 4a). This new sequence is called
a window sequence. The number of strides refers to the number of steps by which the
window is shifted. The size of the window sequence, i.e., the number of composite images
containing observations in the sequence, controls the amount of information available in
the trajectory [37]. The window sequence corresponded to a period of time for a given
forest pixel, and a label indicated whether a disturbance event occurred or not during the
period or not is assigned to that window sequence (Figure 4a). In this study, we tested
the window sizes of 7, 9, and 11 progressively to explore the effect of window size on
the recognition of a window sequence. To improve the efficiency of the model operation,
moving window sizes of 7, 9, and 11 use strides of 2, 2, and 4, respectively.

Remote Sens. 2023, 15, x FOR PEER REVIEW 7 of 24 
 

 

of mining time series data is to identify the movements and/or components within them 
by segmenting the time series, which can efficiently discover the critical time segments via 
the moving window [62]. The moving window algorithm progressively moves the win-
dow within the time detection period of each pixel, creating a new sequence based on the 
values that fall into the window at each step (Figure 4a). This new sequence is called a 
window sequence. The number of strides refers to the number of steps by which the win-
dow is shifted. The size of the window sequence, i.e., the number of composite images 
containing observations in the sequence, controls the amount of information available in 
the trajectory [37]. The window sequence corresponded to a period of time for a given 
forest pixel, and a label indicated whether a disturbance event occurred or not during the 
period or not is assigned to that window sequence (Figure 4a). In this study, we tested the 
window sizes of 7, 9, and 11 progressively to explore the effect of window size on the 
recognition of a window sequence. To improve the efficiency of the model operation, mov-
ing window sizes of 7, 9, and 11 use strides of 2, 2, and 4, respectively. 

For forest disturbance detection, an ideal window sequence should contain the pre-
disturbance forest features and the post-disturbance recovery features (as shown in Figure 
4aⅡ). For better detection of early or late disturbance events within the detection period, 
before segmenting time series with a moving window, padding was applied using the 
shifting method to reduce information loss at the edges of the time series, as shown in 
Figure 4b. Specifically, the padding operation simulates forest time series information (for 
example, in Figure 4b, we observed that the window sequence with padding operation 
has trajectories similar to the raw spectral values) and ensures that disturbance events 
within the detection period are included in the created window sequence with sufficient 
information, thereby improving the accuracy of time series classification models [63]. In 
this study, we performed ⌊s/2⌋ times padding on the edges of the time series using 𝑌 
and 𝑌௧, respectively. For example, in Figure 4b, when using the moving window of size 9, 
the edges of the time series were padded four times using the NBR values of 2000 and 
2020, respectively. 

 
Figure 4. Schematic diagram of the moving window and padding operation. (a) Example of moving 
window algorithm application. Forest disturbance occurred in 2008. The red part represents a win-
dow. The window size is 9 and the stride size is 2. (b) An example of padding operation. The win-
dows with the same color represent similar trajectory features. 

  

Figure 4. Schematic diagram of the moving window and padding operation. (a) Example of moving
window algorithm application. Forest disturbance occurred in 2008. The red part represents a
window. The window size is 9 and the stride size is 2. (b) An example of padding operation. The
windows with the same color represent similar trajectory features.

For forest disturbance detection, an ideal window sequence should contain the
pre-disturbance forest features and the post-disturbance recovery features (as shown in
Figure 4aII). For better detection of early or late disturbance events within the detection
period, before segmenting time series with a moving window, padding was applied using
the shifting method to reduce information loss at the edges of the time series, as shown
in Figure 4b. Specifically, the padding operation simulates forest time series information
(for example, in Figure 4b, we observed that the window sequence with padding operation
has trajectories similar to the raw spectral values) and ensures that disturbance events
within the detection period are included in the created window sequence with sufficient
information, thereby improving the accuracy of time series classification models [63]. In
this study, we performed bs/2c times padding on the edges of the time series using Y0
and Yt, respectively. For example, in Figure 4b, when using the moving window of size
9, the edges of the time series were padded four times using the NBR values of 2000 and
2020, respectively.

2.3.2. Self-Attention Model

In this study, a self-attention mechanism in the transformer model is used for time
series classification [38]. Let X = {x1, x2, . . . , xn} be the input sequence of length n; the
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self-attention mechanism computes the key K = WT
k X, query Q = WT

q X, and value
V = WT

v X vectors originate from the input matrix X transformed by linear transformation,
where Wk, Wq, and Wv are the learned weight matrices. Attention scores are computed
between all pairs of positions in the input sequence using the dot product between the
query and key vectors, followed by softmax activation. The output representation for each
position in the input sequence is computed as the weighted sum of the value vectors. This
results in the generic formulation of self-attention, as shown in Equation (1).

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

where dk is the dimensionality of the query and key vectors, and the attention scores are
scaled by

√
dk for better gradient backpropagation.

In this study, the encoder architecture of the transformer network was used [38].
The schematic architecture of the used model is shown in Figure 5. Since the input data
are continuous time series data, the word embedding step was no longer required. For
the transformer, as a feed-forward architecture that was insensitive to the order of the
inputs, position encoding was added in order to make it aware of the sequential nature
of the time series. The time series with location encoding was converted to a higher-
dimensional feature representation by using a 3-layer transformer encoder block. Each block
applies multi-head self-attention and dense layers to each time instance independently and
introduces skip connections and layer normalization for better gradient flow and model
stability. The output of the last transformer block is reduced to a single vector of size by
applying global maximum pooling along the time dimension. This reduced representation
was then projected to the scores of each class using a final fully connected layer with a
softmax activation function.
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The self-attention model takes, as input, a sequence created using a moving window
algorithm and produces a binary classification result indicating whether there is forest
disturbance within the window sequence. Rußwurm et al. [43] developed a self-attention
model to classify land cover types using Sentinel-2 multispectral images. In this study, we
improved the self-attention model proposed by Rußwurm et al. [43] to identify window
sequences containing forest disturbance events [38]. To reduce the risk of overfitting in
model training, we reduced the dimension of its hidden state Dh, the number of self-
attention layers L, and the number of self-attention heads H. The final model parameters
were L = 3, Dh = 128, H = 1.

The model was trained and tested using the training data and the test data from the
reference dataset (Figure 1). For samples that underwent disturbances, we segmented them
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using a moving window, obtained the window sequence that the disturbance event fell into,
and labeled as Disturbance. For undisturbed reference samples, a moving window is used
to segment the time series, and one of the resulting window sequences is randomly selected
and labeled as No change. Only one window sequence was selected for each reference
sample; we then trained the time series classifier using the labeled window sequences. For
model training, we split the input data set into three parts: training, validation, and test
data. The training dataset was used to train the model, while after each training epoch, the
current performance was evaluated on the validation set to monitor the convergence and
trigger learning parameter changes. The test data for the self-attention model come from
five study areas, and the strategy for obtaining window sequences and labels is consistent
with the strategy used to obtain window sequences for training.

The loss function used in the self-attention model is the binary cross-entropy function,
which has been typically used in neural networks for classification tasks [64]. The opti-
mization algorithm used was Adam, and the batch size was 128 [65]. The initial learning
rate was set to 1× 10−3, and the learning rate decay was 1 × 10−2. The maximum number
of training epochs in the model was set to 200. An early stopping mechanism was imple-
mented to prevent overfitting by ending the training when the loss function did not change
for 10 epochs.

2.3.3. Prior Knowledge Constraints

To identify the specific year of a forest disturbance occurring in the windows sequence
that contains disturbance events, the prior knowledge presenting the temporal changes in
the spectral index before and after disturbance events was introduced. Forest disturbances
in time series data usually coincide with sudden drops in NBR values. While spectral
changes caused by noise are temporary and quickly return to normal values, disturbance-
induced spectral changes are more persistent and last for several years, featuring prominent
patterns [16]. Based on this prior knowledge, we proposed S-DRI to constrain forest
disturbances in the window sequence. The S-DRI for a given year (target year refers to a
specific year in the time series that is being analyzed) is the first-order linear regression
slope of the NBR values for the previous and subsequent years. The slope indicates the
direction and magnitude of the spectral index change in the time series and is used to
determine whether a disturbance occurred. The S-DRI for the target year is calculated as
shown in Equation (2). In this study, the S-DRI of the target year used the NBR values for
each of the two previous and subsequent years and the target year.

S−DRI =
∑ i

(
Yi −Y

)
∑ i2

(2)

where Yi denotes the NBR value of the i year distance from the target year, i ∈ {−2,−1, 1, 2}.
Y denotes the mean value of the NBR involved in the calculation.

Based on prior knowledge of the time-varying features of forest disturbance, we use
S-DRI to constrain disturbance events in window sequences labeled as Disturbance by
self-attention models (Figure 6). The strategy is as follows: First, we calculate the first-order
difference (∆Y) of spectral values in window sequences to analyze the change magnitude
between adjacent years (Equation (3)). To prioritize the detection of larger outliers or years
that deviate from the spectral trend in the time series, the S-DRI values for the target years
are sequentially calculated via the ∆Y magnitude of the year. In other words, the S-DRI
values for each target year are calculated starting from the year with the largest difference
in NBR values and then gradually moving towards years with smaller differences, until
all target years have been computed. This approach avoids exploring known invalid or
irrelevant solutions. Next, the S-DRI value of the target year is compared to a predefined
threshold. If the S-DRI value exceeds the threshold, we assume that it is a false disturbance
caused by noise and continue, calculating the S-DRI value of the next target year. If the
S-DRI value is less than or equal to the predefined threshold, the current year is output.
There are two stop criteria in this workflow: (1) the window sequence has a target year



Remote Sens. 2023, 15, 2963 10 of 23

that meets the requirements of the predefined threshold, and (2) the maximum number
of iterations has been reached. If none of the target years met the set threshold after all
iterations, it was considered that there was no change in the forest in the window sequence.
In a window sequence, only the target years that meet the S-DRI calculation criteria are
calculated, such as Y3 to Y7 in Figure 6.

∆Y = Yi −Yi−1 (3)
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2.4. Results Assessment Method

The disturbance detection accuracy was assessed using the binary classification metrics.
In this study, a total of 3082 forest pixels were manually interpreted in five study areas
and collected as test data. The overall accuracy (OA), producer’s accuracy (PA), and user’s
accuracy (UA) were used to assess the accuracy of the forest disturbance detection (as
shown in Table 2 and Equation (4)). The OA measures the proportion of correctly classified
samples among all samples. The PA measures the proportion of truly positive samples
among all samples classified as positive. The UA measures the proportion of truly positive
samples among all samples labeled as positive. It is worth noting that a strict time definition
was used in the evaluation of forest disturbance detection results. The inconsistent output
disturbance times (e.g., if a disturbance occurred in 2007 but the model detected it in 2006
or 2008) were considered as failures of the model in detecting forest disturbances. In Table 2,
output results with inconsistent disturbance time are considered as FP.

Table 2. Confusion matrix for the evaluation of forest disturbance detection results.

Map Class
Reference Data

User’s Accuracy
No Change Disturbance

No change TP FP TP
TP+FP

Disturbance FN TN TN
FN+TN

Producer’s Accuracy TP
TP+FN

TN
FP+TN

The method proposed in this study requires setting two parameters: the size of the
moving window and the predefined S-DRI threshold. Different parameter settings may
result in different model output results. Therefore, we conducted a grid search to test
all possible combinations to find the best parameters for each input set [37]. The grid
search involved 60 (3 × 20) model setups, each defined by a combination of window sizes
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and S-DRI values, in order to determine the optimal configuration. Specifically, we used
window sizes of 7, 9, and 11 and S-DRI values ranging from −0.1 to 0, with an interval of
0.005. This study includes a time series classification model. When searching for window
sizes, we also calculated the overall accuracy of the time series classification models with
different window sizes. The method used to preprocess the testing dataset for evaluating
the classification accuracy of the self-attention model is consistent with the preprocessing
strategy used for the training dataset.

To further evaluate the performance of the proposed forest disturbance detection
method, the results of the forest disturbance detected in this study were compared to
those detected by the LandTrendr and the GFC dataset [16,25,66]. LandTrendr and GFC
use time series of Landsat satellite images to detect changes in forest cover and provide
important data for land management decisions. Utilizing the functions and datasets
provided in Google Earth Engine (GEE, https://earthengine.google.com, accessed on
1 July 2022), we downloaded the forest disturbance maps of LandTrendr (use parameters
as shown in Table A2) and GFC, and we extracted the pixel values of the test dataset for
evaluation. In this study, the performance of the three methods for forest disturbance
detection was evaluated using a confusion matrix. In addition, we also evaluated the
omission (Equation (5)) of different disturbance causal agents of the three methods.

Overall Accuracy =
TP + TN

TP + FP + FN + TN
(4)

Omission(i) = 1− TN(i)
FP(i) + TN(i)

(5)

where i is forest disturbance causal agent class.

3. Results
3.1. Optimal Parameters

The evaluation results of the test dataset using different parameter combinations
obtained through the grid search are shown in Table 3. For each window size, only the best
parameter setup with the highest accuracy for the S-DRI value is shown. The results show
that the OA of the self-attention models with different window sizes is very close, about
95%, with a difference of less than 1%. This difference may be caused by the randomness
of DL or the machine environment. Increasing the window size does not improve the
accuracy of the model, indicating that the change information in the continuous seven-year
remote sensing time series provides sufficient evidence to distinguish whether the forest
has been disturbed.

Table 3. Evaluation results of the test dataset based on different parameter combinations from the
grid search.

Window Size
Self-Attention Model

S-DRI
Disturbance Detection

OA OA PA UA

7 95.5% −0.05 86.9% 66.5~97.4% 87.0~91.6%
9 95.1% −0.05 87.0% 66.5~97.3% 87.1~91.6%

11 95.5% −0.05 87.8% 68.9~97.4% 87.0~91.4%

We also observed that the optimal S-DRI threshold for different window sizes was
−0.05, indicating that this is the best balance between filtering out noise and detecting
disturbance in the window sequence. When the window size was changed with the same
S-DRI, it could be observed that the OA of the test dataset improved with an increase
in the window size. Based on the OA of the self-attention model of different window
sizes, the time series classifier does not improve accuracy as the window size increases,
indicating that a larger window size is beneficial in providing more temporal information

https://earthengine.google.com
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that confirms the disturbance years according to prior knowledge constraints, thus enabling
the model to detect more disturbance events that fall on the edge of the window sequence
due to the moving window. For example, when the window size increases from 9 to 11, the
PA increases from 66.5~97.4% to 68.9~97.4%. However, it does not mean that we should
use a larger window size because a larger window size means a sequence containing more
noise and a greater probability of multiple disturbances. With an increase in window size,
the UA of the model decreased from 87.0~91.6% to 87.0~91.4%. In view of both methods’
efficiency and accuracy, a window size of 11 and S-DRI of −0.05 were, therefore, identified
as the best-performing combination of parameters in this study.

Figure 7 illustrates the distribution of S-DRI values for disturbance and no-change
years in the training dataset and testing dataset of the study areas. The median values
of S-DRI for no-change samples were concentrated around 0, while the S-DRI values
for disturbed samples ranged from −0.07 (Montana) to −0.16 (Oregon). A threshold of
−0.05 could effectively detect forest disturbances within the study area. The widths of
the upper and lower boundaries of the boxplots in different study areas reflect, to some
extent, the abundance of low- and high-magnitude disturbances contained in the area. For
example, Oregon has high forest cover (NBR of about 0.8), and disturbances include more
high-magnitude spectral variation (harvest, fire) and less low-magnitude spectral variation
(thinning), resulting in larger box dispersion and smaller medians. Figure 8 demonstrates
the application of S-DRI in determining disturbance events in window sequences, and
S-DRI can capture disturbance events caused by abrupt spectral changes (conversion and
thinning) as well as changes that persisted over many years, such as forest cover loss due to
pests and diseases. In addition, through regression using multi-year spectral values, S-DRI
can also distinguish noise caused by image composites, phenological changes, or sensor
failures (Figure 8d).
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3.2. Accuracy Assessment

The evaluation results of the three methods on 3082 test data in five study areas are
shown in Table 4. An assessment of the discrimination between no change/disturbance
samples indicated that our approach created reliable maps of forest disturbance. Our
approach has the highest OA at 87.8%, which is higher than LandTrendr’s 84.6% and
GFC’s 81.4%. The forest disturbance detection was the focus of the study. The disturbance
class’s producer accuracy of our approach was relatively high, at 68.9%, indicating that our
approach captures more accurate forest disturbances. LandTrendr evaluated 2049 samples
for the no-change class, out of which only 24 were detected as the disturbance class.
However, the relatively low UA (81.8%) for the no-change class indicates that LandTrendr
identifies some disturbance pixels as no change. GFC had high disturbance time confusion
and disturbance event dropouts; therefore, the disturbance class has a lower UA (88.9%)
and PA (50.9%).

Table 4. Confusion matrix of forest disturbance detection assessment.

Map Class
Reference Data

PA UA OA
No Change Disturbance

Ours
No change 1992 322 97.3% 86.1%

87.8%Disturbance 55 713 68.9% 92.8%

LandTrendr
No change 2023 451 98.8% 81.8%

84.6%Disturbance 24 584 56.4% 96.1%

GFC
No change 1981 508 96.8% 79.6%

81.4%Disturbance 66 527 50.9% 88.9%

Table 5 shows the omission rate of three approaches to detect different disturbance
causal agent classes. The map omission via the test dataset disturbance agent class in-
dicates that the three methods provide lower omission for high-magnitude disturbances
(wind, harvesting, and fire), while disturbances with lower magnitude and longer duration
(thinning, pest, and diseases) have high omission. The omission of low-magnitude distur-
bances affects forest disturbance detection significantly. Our approach is more sensitive to
detecting harvest, conversion, wind, thinning, and pest diseases, with significantly lower
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omission than the other two approaches, especially in detecting complex land use changes
(conversion, 18.0%) and long-term pest diseases (pest and diseases, 32.7%).

Table 5. Omission rate of three approaches to detect different disturbance causal agent classes.

Harvest Conversion Fire Wind Thinning Pest and Diseases Other

Number 361 172 194 60 93 98 57

Ours 16.3% 18.0% 18.6% 10.0% 40.9% 32.7% 67.4%
LandTrendr 27.4% 32.0% 18.0% 20.0% 63.4% 66.4% 81.6%

GFC 25.5% 40.7% 27.3% 15.0% 60.2% 88.8% 69.4%

3.3. Mapping Forest Disturbance

Estimates of the area of forest disturbance in these study areas indicated that approxi-
mately 20% of the forest had experienced at least one disturbance in the period of 2001–2020.
The three approaches provided relatively consistent spatial and temporal distributions of
forest disturbance in Oregon, West Virginia, Alberta, and Poland (Figure 9). Visually, the
different methods provided the spatial extent of continuously active human activities and
severe natural disasters that are temporally consistent with the historical record observed.
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However, three methods mapped significantly different forest disturbance detection
results in Montana. Previous studies indicate that the presence of bark beetles in Montana
State’s pine forests was documented as early as the late 1990s. In 2009, the forests expe-
rienced the largest outbreak of bark beetles on record [67]. Based on the high-resolution
remote sensing imageries in this area, it was found that the forests in the area began to
change from deep green to reddish brown around 2008 and then turned to dark gray
between 2009 and 2010. To further evaluate the spatial and temporal distribution of tree
damage caused by the bark beetle, we cited the bark-beetle-caused tree mortality distur-
bance dataset of Berner et al. [68] as a supplement (Figure 10). The dataset shows that
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the southeastern part of the region was infested with bark beetles in 2007, causing severe
damage to forests in the northern part of the Montana study area in 2008. By 2009, the
infestation had shifted to the southwest, causing damage to forests throughout the study
area. Our approach provides forest disturbance mapping results that are more consistent
with this dataset.
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ments, and high-resolution satellite maps by Berner et al. [68] in the study area of Montana. Tree
mortality is expressed as the amount of AGC stored in trees killed by disturbance (Mg/km2).

Fine-scale differences between the various approaches are highlighted by selecting
an example from each study area, as shown in Figure 11. GFC has a longer detection
period and does not face any composite image limitations (Figure 11b). However, GFC
ignores disturbances occurring in partially mixed pixels (Figure 11a) and may result in the
omission and incorrect detection of low-magnitude disturbances (Figure 11e). LandTrendr
and our approach both utilize composite images during the vegetation growing season
(July–September). Therefore, disturbances occurring after the vegetation growing season
can only be detected in the next year’s growing season. As a result, both LandTrendr and
our method cannot detect the Oregon wildfires in October 2020 (Figure 11b) and fail to
completely detect the harvest of the rapid recovery (Figure 11a). LT-GEE (LandTrendr-
GEE) filters out some small changes based on statistical patterns in spatial and temporal
dimensions in order to filter out noise, which makes it have a high PA of the no-change
class but overlooks some of the real disturbances (Figure 11c,e) [69]. In addition, the LT-
GEE fits the time series and prevents one-year recovery, which may produce omission at
the end of the detection period (Figure 11a,d) [70]. Our approach is more complete and
accurate in mapping the forest disturbance. It is also noteworthy that S-DRI identifies
the disturbance year with the greatest spectral change, while the persistent infestation
of trees by pests and diseases causes our approach to have a temporal delay (1 year)
in detecting some disturbance (Figure 11e). Compared to other methods, our approach
exhibits enhanced regularity and continuity in detecting forest disturbance boundaries
associated with thinning and harvesting activities, with significantly fewer omissions and
fragmented patches (Figure 11f).
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4. Discussion

An accurate understanding of forest dynamics is critical for both effective forest
management and mitigating the effects of climate change. The work presented here demon-
strates a novel approach for detecting forest disturbances using DL time series classification
and prior knowledge constraint. During the detection period, the moving window algo-
rithm processes the time series of pixels as a window sequence and evaluates the window
sequence with an improved self-attention model to obtain an interval estimate of the dis-
turbance time. The a priori knowledge constraints are applied to the resulting window
sequence with disturbance events to determine the exact year of disturbance. The results
demonstrate that the combination of DL time series classification models and prior knowl-
edge constraints can help detect forest disturbances of varying magnitudes, from subtle to
severe. This approach provides comprehensive and detailed insight into forest dynamics
and can support effective forest management and climate change mitigation efforts.

A key innovation of our work lies in the combination of DL time series classification
and prior knowledge constraints to detect the history of forest disturbance. Landsat-
based forest cover and change mapping using supervised expert-driven classification



Remote Sens. 2023, 15, 2963 17 of 23

is a well-established and accepted methodology [71]. Recent studies have shown that
utilizing robust reference data and carefully constructed models results in disturbance
maps with higher accuracy, such as stacked generalization, secondary classification, and
ensemble methods [22,23,26]. However, these methods rely on the foundation of forest
disturbance detection algorithms, such as LandTrendr, to provide evidence. In previous
studies, the main applications of DL in forest disturbance detection have been in semantic
segmentation and time series regression and forecasting [30,72–75]. When used for large-
scale disturbance detection, these methods still have more limitations, such as the need
for labor-intensive manual annotation and higher-quality images. Our study employed a
method based on time series deep learning and prior knowledge constraints, effectively
addressing the challenge of detecting low-amplitude disturbances. In the study, the deep
learning time series classifier differentiated between stable forests and disturbances, while
the application of prior knowledge constraints reduced the learning cost of the model. Our
method is applicable for detecting disturbances of varying magnitudes on a global scale,
as demonstrated by the validation results across multiple study areas worldwide. These
results provide evidence of the reliability of our method.

Ideally, noise due to cloud contamination, smoke obscuration, and sensor failure in
the time series should be completely removed before time series analysis, but complete
elimination of this noise is not possible without human intervention [23]. The differences
in spectral indices based on spectral reflectance ratio between observations before and
after low-magnitude forest disturbances are very similar to the spectral changes caused
by phenological variations and solar angle differences [76,77]. Using high-magnitude
threshold rules can remove these noisy and erroneous spectral changes, but it is difficult to
capture low-magnitude disturbances [26]. Evaluation of the results for different disturbance
causal agents shows that ignoring low-magnitude disturbances (e.g., thinning, pests, and
diseases) is still an important factor affecting the accuracy of the model. The self-attention
model uses multi-year spectral trajectory profiles to track forest disturbances, filtering out
most spectral changes caused by noise, which helps the knowledge constraint (S-DRI) run
in a high-confidence window sequence. By doing so, a lower threshold can be used to detect
the occurrence of forest disturbance, avoiding oversensitivity to spectral changes. When
we attempted to detect forest disturbance using S-DRI alone for each pixel throughout the
detection period without employing a moving window and DL time series classification,
there was a significant decrease in OA of the test dataset. Specifically, the OA decreased to
68.1%, as expected.

The time series classification task is complicated by extraneous, erroneous, and un-
aligned data of variable length [46]. The moving window solves the problem of the fixed
input data dimension of the time series classification model, and the priori knowledge
constraint is used to determine the exact years of disturbance events. The window can be
moved infinitely to process new images after the self-attention model has been trained,
providing more efficient use of the forest detection data.

Optimizing the threshold for S-DRI allows for the detection of lower-magnitude distur-
bances while effectively distinguishing most noise, striking a balance between sensitivity
and specificity. To demonstrate this briefly, the predefined threshold was fine-turned to
evaluate the impact on our approach performance. We sequentially adjusted the thresh-
old of S-DRI from −0.1 to 0 in intervals of 0.005 and evaluated the disturbance class PA
and UA of the test dataset. As shown in Figure 12, when lower thresholds were used,
low-magnitude disturbances and noise were removed, while significantly high-magnitude
disturbances with distinctive features were retained. This resulted in lower UA and higher
PA. With the increased S-DRI threshold, more of the low-magnitude disturbances can be
effectively retained, and the UA correspondingly increases. Meanwhile, high thresholds
allowed some noise to pass through constraints, resulting in lower PA. When the threshold
is adjusted to a certain value (−0.035), most of the disturbance can be detected, and the
UA does not increase, even if the threshold is adjusted again. However, as the threshold
increases, it also allows more false disturbances to pass the detection, resulting in a con-
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tinued decrease in UA. The threshold of S-DRI was the only parameter that needed to be
adjusted when the algorithm was applied in different regions and could be adjusted by
removing low-magnitude disturbances to obtain the required degree of disturbance map.
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The accuracy provided in this study may be slightly underestimated because strict
definitions were used in this study without allowing any leeway for time adjustments [78].
Disturbances that occur after the vegetation growth period are not detected by our approach
and LandTrendr until the following year (e.g., one fire in Oregon is not detectable using both
approaches). In the assessment of the results, temporal inconsistencies were considered
to be omissions in the disturbance detection; therefore, all three approaches have a low
UA for the no-change class. In addition, GFC detection only targets stand replacement
disturbances, and non-stand replacement disturbances included in the test data also involve
accuracy calculation, especially in Montana, where GFC can only correctly detect 31 out of
137 changed pixels, resulting in a lower OA.

When mapping the forest disturbance, our approach still suffers from some limitations.
It is observed from the S-DRI threshold adjustment (Figure 12) that even with a higher S-DRI
threshold, the approach only has about 70~75% PA, which is caused by the omission in the
self-attention model or spectral index application limitations. Due to the low-magnitude
disturbance area being rare with difficult visual interpretation, the forest disturbance
agents in the randomly generated training samples mainly include the harvest, wildfire,
and conversion [79]. Improving data quality and balancing the samples can enhance
the capability of time series classification models to detect low-magnitude disturbances
(thinning, pests, and diseases, etc.), although it requires more effort. Furthermore, the
reduction in forest cover caused by factors, such as pests, diseases, and droughts, persists for
several years. In subsequent studies, it is necessary to develop new conceptual definitions
to describe the entire disturbance process. Cohen et al. [26] showed that the use of multiple
spectral bands/indices is very beneficial for forest disturbance detection and may solve
the problem that some disturbances cannot be monitored using a single band (e.g., due
to the similarity of NBR index values between water and forests, it is difficult to detect
disturbances where forests are converted into water). Multiple DL-based multivariate time
series learning frameworks have been proposed, and using multiple indexes/bands to
detect forest change should be considered in a future study [42]. During the later stages
of our analysis of forest change (2018–2020), we identified an issue where the accuracy
of the results became increasingly incorrect in all three models. This issue arose because
spectral changes over multiple years continued to be an essential criterion for disturbance
determination. However, time series constructed from composite images did not contain
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sufficient data at the end of the detection period, which contributed to decreased accuracy.
The use of multi-source remote sensing data and a near-real-time change monitoring
approach may solve this problem. This will be the focus of further work [58].

5. Conclusions

Detailed access to long time series and large areas of forest disturbances can be
challenging without relying solely on the severity of the disturbance event itself. DL allows
for the capture of subtle land changes and adaptation to complex temporal–spatial patterns.
However, its use for detecting forest disturbances is not widespread. This study presents a
novel approach that combines DL time series classification with prior knowledge constraint
to address this issue. The integration of DL and prior knowledge constraint in window
sequences with disturbance features allows for a reduction in processing changes caused
by noise while enabling the detection of more low-magnitude disturbances. The prior
knowledge constraint uses rules that consider temporal contextual information to accurately
determine the year of the disturbance. The approach can be used for long time series
analysis and is easily transferable to new regions without the need for complex parameter
tuning. This study offers a fresh perspective on how DL can be used to comprehensively
detect forest disturbances on a large scale.
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Appendix A

Table A1. Forest disturbance causal agent classes and descriptions.

Class Description

Harvest Harvesting refers to the removal of trees from a forest for the purpose of
timber production or other uses.

Thinning Thinning is a forestry practice that involves the selective removal of trees
from a forest to improve the growth and health of the remaining trees.

Conversion
Conversion refers to the process of changing the land use of a forested area,
typically to a non-forest use such as agriculture, urban development, or
infrastructure development.

Fire Fires can occur naturally or be intentionally set and can have significant
impacts on forest.

https://hls.gsfc.nasa.gov/
https://doi.org/10.5281/zenodo.4138867
https://daac.ornl.gov/get_data/
https://daac.ornl.gov/get_data/
https://hls.gsfc.nasa.gov/
https://hls.gsfc.nasa.gov/
https://doi.org/10.5281/zenodo.4138867
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Table A1. Cont.

Class Description

Pests and diseases Pests and diseases can impact forests by attacking and killing trees, which
can lead to de-creased tree density and reduced forest productivity.

Wind
Wind events such as storms, hurricanes, and cyclones can have significant
impacts on forests, causing damage to trees and other vegetation through
wind and wind-borne de-bris.

Others Other events that cause tree mortality and canopy cover reduction.

Table A2. Parameters used in the LandTrendr algorithm.

Parameter Configuration

Base index NBR
Max Segments 6
SpikeThreshold 0.9

VertexCountOvershoot 3
PreventOneYearRecovery True

RecoveryThreshold 0.25
PvalThreshold 0.05

BestModelProportion 0.75
MinObservationsNeeded 6
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