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Abstract: Coastal wetland soil organic carbon (CW-SOC) is crucial for wetland ecosystem conserva-
tion and carbon cycling. The accurate prediction of CW-SOC content is significant for soil carbon
sequestration. This study, which employed three machine learning (ML) methods, including random
forest (RF), gradient boosting machine (GBM), and extreme gradient boosting (XGBoost), aimed
to estimate CW-SOC content using 98 soil samples, SAR images, optical images, and climate and
topographic data. Three statistical metrics and leave-one-out cross-validation were used to evaluate
model performance. Optimal models using different ML methods were applied to predict the spatial
distribution of CW-SOC content. The results showed the following: (1) The models built using
optical images had higher predictive accuracy than models built using synthetic aperture radar (SAR)
images. The model that combined SAR images, optical images, and climate data demonstrated the
highest prediction accuracy. Compared to the model using only optical images and SAR images, the
prediction accuracy was improved by 0.063 and 0.115, respectively. (2) Regardless of the combination
of predictive variables, the XGBoost method achieved higher prediction accuracy than the RF and
GBM methods. (3) Optical images were the main explanatory variables for predicting CW-SOC
content, explaining more than 65% of the variability. (4) The CW-SOC content predicted by the
three ML methods showed similar spatial distribution characteristics. The central part of the study
area had higher CW-SOC content, while the southern and northern regions had lower levels. This
study accurately predicted the spatial distribution of CW-SOC content, providing data support for
ecological environmental protection and carbon neutrality of coastal wetlands.

Keywords: random forest; gradient boosting machine; extreme gradient boosting; Sentinel-1A;
Sentinel-2A; CW-SOC content inversion

1. Introduction

The soil organic carbon (SOC) pool contains twice as much organic carbon as the
atmosphere and three times as much as vegetation [1]. It plays a critical role in mitigating
global warming [2,3]. Wetlands are referred to as “the kidneys of earth”; despite covering
only 6–8% of the global land surface [4], wetlands store 20–30% of terrestrial SOC and
play a major role in the global carbon cycle [5,6]. Coastal wetlands are an essential type of
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wetlands. They have a strong carbon sink capacity due to the periodic tidal inundation of
seawater they experience [7]. However, because coastal wetlands are located at the junction
of land and sea and are affected by various factors from both the land and sea, the changes
in the soil environment are relatively complex, increasing the difficulty of predicting coastal
wetland soil organic carbon (CW-SOC) content. Therefore, an accurate estimation of CW-
SOC content is crucial for assessing coastal wetlands’ carbon sequestration capacity and
promoting the implementation of China’s carbon-neutral strategy [8].

Traditional methods for predicting the spatial distribution of SOC require a great deal
of field sampling data [9]. These methods are relatively time-consuming, costly, and highly
destructive to wetlands. It is difficult to predict the SOC content in large areas. Remote
sensing technology has the advantages of short update cycles, large monitoring ranges,
and fewer restrictions by environmental factors, playing an important role in predicting
the spatial distribution of SOC content [10,11]. Optical images, as the main source of
remote sensing data, are widely used in the inversion of soil characteristics by providing
information such as spectral reflectance and remote sensing indices [12–14]. However, it is
often cloudy and rainy in coastal areas; optical images are easily affected by cloud cover
and cannot obtain effective information in these conditions, which can lead to a decrease in
the accuracy of predicting CW-SOC content. Synthetic aperture radar (SAR) images are not
constrained by weather and lighting conditions; SAR possesses strong cloud-penetration
capabilities, which can effectively overcome the issue of optical images being unable to
obtain information under cloud coverage [15]. Some studies conducted by Yang et al.
indicated that SAR images contribute to the prediction of soil properties [16,17]. However,
SAR images contain a lot of noise, require complex processing, and are not conducive to
wide application [18]. Could the combination of both optical and SAR imagery be employed
for soil property prediction? Zhou and Azizi conducted research in the Heihe River Basin in
China and in western Iran, discovering that the combination of the two yielded promising
results in predicting soil properties [19,20]. Currently, research on this method is primarily
focused on inland wetlands, with limited studies concerning coastal wetlands. Taking into
account the complex environment of coastal wetlands, we incorporate terrain and climatic
variables in addition to combining optical and SAR images to predict CW-SOC content.

The use of appropriate models to accurately predict the spatial distribution of CW-
SOC content based on SAR images, optical images, climate data, and topographic data
has been a subject of concern among scholars. Currently, methods for predicting SOC
mainly include linear and nonlinear models. Linear models can intuitively describe the
relationship between independent and dependent variables. However, remote sensing data
and SOC content mostly have a nonlinear relationship. Nonlinear models better identify
the nonlinear relationship between predictor variables and CW-SOC content, solve the
problem of spatial autocorrelation [14,21], and have good generalization performance. This
is especially the case for machine learning methods based on decision tree models, such
as random forest (RF), gradient boosting machine (GBM), and extreme gradient boosting
(XGBoost) [22]. They show good performance in predicting SOC content, especially when
dealing with complex and high-dimensional data. Related studies have found that ML
methods have higher reliability and better robustness in predicting soil properties [23].

The coastal wetlands of western Bohai Bay are affected by factors such as vegetation,
climate, and hydro-geographical conditions, making the environment complex and change-
able. Therefore, accurately predicting CW-SOC content is of paramount importance. To
ensure the effective acquisition of CW-SOC content, we constructed four CW-SOC content
prediction models using RF, GBM, and XGBoost methods based on SAR images, optical
images, and climate and topographic data. Therefore, the purpose of this paper is to
(1) compare the prediction performances of four CW-SOC content models constructed
using three different ML methods; (2) explore the relative importance of the predictor
variables in the RF, GBM, and XGBoost methods; and (3) utilize the optimal model from
each method to predict the spatial distribution of CW-SOC content. This provides data
support for wetlands conservation and carbon cycling in coastal areas.
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2. Materials and Methods
2.1. Study Area

The coastal area of western Bohai Bay includes Tianjin Binhai New District, Huanghua, and
Haixing (Figure 1). The geographical coordinates of the study area are 117◦27′29′′–118◦03′33′′E
and 38◦22′22′′–39◦19′33′′N, and the total area is 5475.5 km2. It is an integral component of
the Bohai Sea Economic Circle and has abundant wetland resources, including Nandagang
wetlands reserve and Beidagang wetlands reserve. The region has a warm temperate
semi-humid and semiarid monsoonal continental climate with marine climatic features.
The mean annual precipitation (MAP) ranges from 567.8 to 782.6 mm, with the majority
of precipitation concisely concentrated in the summer, accounting for more than 60%
of the annual precipitation. Referring to the Bohai Rim coastal wetland map and the
comprehensive classification system of Chinese coastal wetlands proposed by Liu [24,25],
we defined the coastal wetlands in this study as the wetlands in the coastal area of the
western Bohai Bay, including natural coastal wetlands (tidal flats, marshes, and water
bodies) and artificial coastal wetlands (salt fields and mariculture ponds).
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(b) Huanghua; (c) Haixing.

2.2. Soil Sampling and Analysis

In October 2021, the low tide period and mariculture ponds drainage period were
selected for soil sample collection (0–30 cm) in the coastal area of western Bohai Bay
(Figure 1). The sampling points covered various land use types. Three soil samples were
collected from each sampling point and thoroughly mixed to form a composite sample [26].
Considering accessibility and flood discharge, the straight-line interval between design
sampling points is about 3 km, with a total of 98 soil samples collected. The collected
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soil samples were air-dried in the laboratory, ground, and purified to remove impurities.
Subsequently, the samples were filtered using a 100-mesh sieve with an aperture of 0.15 mm,
and their SOC content was measured using the potassium dichromate capacity.

The variation range of CW-SOC content was 2.198–18.835 g·kg−1, and the mean and
SD values of CW-SOC content were 6.116 g·kg−1 and 3.614 g·kg−1, respectively. The CV
value is 59.091%, which belongs to the medium degree of variation (Table 1) [27].

Table 1. Description statistics of CW-SOC content.

Max/(g·kg−1) Min/(g·kg−1) Mean/(g·kg−1) SD/(g·kg−1) CV/(%)

CW-SOC 18.835 2.198 6.116 3.614 59.091
Notes: Max, maximum; Min, minimum; SD, standard deviation; CV, coefficient of variation.

2.3. Predictor Variables
2.3.1. Remote Sensing Variables and Processing

The remote sensing data includes SAR images (Sentinel-1A) and optical images (Sentinel-
2A) obtained from Google Earth Engine (GEE). In order to extract remote sensing data
values corresponding to soil samples, the time filtering function of GEE, sentinel-1A, and
Sentinel-2A images close to the sampling period were selected (October 2021). Sentinel-1A is
a satellite equipped with C-band SAR and is widely used in soil property research [28]. We
chose interferometric wide swath mode ground range detected data with VV and VH dual
polarization modes. The images have a spatial resolution of 10 m × 10 m [28]. We selected
the VV polarization backscattering coefficient (VV) and VH polarization backscattering
coefficient (VH) to calculate the SAR indices associated with different polarization modes:
difference of VV and VH (D), sum of VV and VH (S), quotient of VV and VH (Q) and
difference sum ratio of VV and VH (DSR) were used as remote sensing variables for
predicting CW-SOC content (Table 2).

Sentinel-2A contains 13 optical harmonic bands and is the only optical satellite with
three bands in the red-edge range [29]. The images used in this study were obtained
from the zenith reflectance dataset on the GEE and underwent radiometric calibration
and topographic correction. All images underwent a de-cloud process through quality
assessment to obtain images with less than 5% cloud cover and then were cropped to fit
the study area. Reflectance information of the Sentinel-2A image bands was extracted,
and remote sensing indices were constructed through mathematical calculation. The con-
struction of remote sensing indices helps to overcome the influence of illumination and
atmosphere, and is conducive to the prediction of CW-SOC content. Additionally, the
red-edge band of Sentinel-2A and the corresponding remote sensing indices are highly
sensitive to vegetation growth and can provide valuable information on soil properties [30].
Therefore, they are frequently employed as evaluation indices to assist in the predic-
tion of soil characteristics [31]. Based on previous research [32–43], this study selected
10 spectral bands and 16 remote sensing indices from Sentinel-2A images as predictor
variables (Table 2).

Table 2. Remote sensing variables for modeling.

Sources Category Variables Calculation Formula Literature

SAR
images

Polarization
backscattering

coefficient

VV, VH - [32]
D VV − VH [32]
S VV + VH [32]
Q VV/VH [32]

DSR (VV − VH)/(VV + VH)
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Table 2. Cont.

Sources Category Variables Calculation Formula Literature

optical
images

Band
reflectance

B2 (490 nm), B3 (560 nm)
B4 (665 nm), B5 (705 nm)
B6 (740 nm), B7 (783 nm)

B8 (842 nm), B8A (865 nm)
B11 (1610 nm), B12 (2190 nm)

− [32]

NDVI (B8 − B4)/(B8 + B4) [33]
NDWI (B3 − B8)/(B3 + B8) [34]

Remote
sensing
indices

NDBI (B11 − B8)/(B11 + B8) [35]

SAVI 1.5 × (B8 − B4)/(B8 + B4 +
0.5) [36]

RVI B8/B4 [37]
DVI B8 − B4 [38]

EVI 2.5 × (B8 − B4)/(B8 + 6 × B4
− 7.5 × B2 + 1) [39]

BSI 1 + ((B4 + B11) − (B8 +
B2))/((B4 + B11) + (B8 + B2)) [40]

NDRE1 (B6 − B5)/(B6 + B5) [41]
NDRE2 (B7 − B5)/(B7 + B5) [41]
CIRE1 (B8/B5) − 1 [42]
CIRE2 (B8/B6) − 1 [42]
CIRE3 (B8/B7) − 1 [42]

NDVIRE1 (B8 − B5)/(B8 + B5) [43]
NDVIRE2 (B8 − B6)/(B8 + B6) [43]
NDVIRE3 (B8 − B7)/(B8 + B7) [43]

Notes: B2, B3, B4, B5, B6, B7, B8, B8A, B11, and B12 represent the bands reflectance values of Sentinel-2A images.

2.3.2. Environmental Variables

The MAP, mean annual temperature (MAT), and mean annual relative humidity
(MARH), which are climate variables, were obtained by collating and calculating observa-
tional data from 26 meteorological stations in Tianjin and Cangzhou. These variables are
interpolated using the inverse distance weighting methods and have a spatial resolution
of 10 m. This is a useful and commonly used method for obtaining continuous soil and
climate variables in space [44].

For this study, elevation (H), slope (i), and aspect (α) were chosen as the topographic
variables in order to ensure that the DEM data takes into account both full coverage and
high resolution. Therefore, the shuttle radar topographic mapping version 3.0 (SRTM
V3) data product with a resolution of 30 m was obtained on the GEE. To reduce the
impact caused by different resolutions, the SRTM V3 data product was resampled to 10 m
resolution. Slope and aspect were calculated from the elevation data using the topography
analysis command available on the GEE.

2.4. Boruta

Some predictor variables may exhibit redundancy and high autocorrelation, failing to
provide effective information for predicting CW-SOC content [26]. Therefore, it is necessary
to perform variable selection to enhance model accuracy [45]. Boruta, as a commonly used
variable selection method, has been widely employed [46–48]. Its main principle involves
randomly shuffling the original variables to create shadow variables, inputting the shadow
and original variables into the random forest classifier to calculate Z-scores. The maximum
Z-score among the shadow variables is denoted as Zmax, and variables with Z-scores higher
than Zmax are retained, while those with Z-scores lower than Zmax are removed, this process
is repeated until all variables are screened [48–51]. In this study, variable selection was
implemented using the ‘Boruta’ package in the R environment.
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We applied the Boruta method for variable selection on Model A, Model B, Model
C, and Model D, using the selected variables to predict CW-SOC content. The results of
variable selection are presented in Table 3.

Table 3. Variables screening results.

No Model Variables Screening Variables

I Model A SAR images VV, VH, D, S, Q, and DSR

II Model B Optical images B2, B3, B4, CIRE1, NDVI, NDEI, RVI, DVI, NDVIRE1,
NDRE1, NDRE2, EVI, SAVI

III Model C SAR and optical images VH, D, B2, B3, B4, CIRE1, NDVI, NDEI, RVI, DVI,
NDVIRE1, NDRE1, NDRE2, EVI, SAVI

IV Model D SAR images, optical images,
topographic, and climate variables

VH, D, B2, B3, B4, CIRE1, NDVI, NDEI, RVI, DVI, NDRE1,
NDRE2, EVI, SAVI, MARH

2.5. Modeling Methods
2.5.1. Random Forest

The random forest (RF) is an ML method based on decision trees, which is suitable
for classification and regression tasks [52]. The algorithm constructs a large number of
uncorrelated decision trees, each tree corresponds to independent original sample data and
models each sample data using decision tree methods [9]. Then, these decision trees are
combined into a prediction model of multiple decision trees, providing a single prediction
target for data prediction [53]. Finally, the prediction result is the average value of all
single-tree predictions [54]. Because of its advantages in processing multi-variate nonlinear
data, this method has become the preferred choice for soil property research [55].

2.5.2. Gradient Boosting Machine

The gradient boosting machine (GBM) is a typical algorithm for boosting. The core of
the GBM is to construct a more powerful model by iteratively combining multiple weak
models. The loss function of the previous model is reduced through each iteration so that
the overall loss function of the model decreases and the model improves continuously [56].
The loss function describes the degree of the unreliability of the model. If the model’s loss
function continues declining, it indicates that it is continuously optimized. When the loss
of the model continues to decline in its gradient direction, the speed of model optimization
is increased [57].

2.5.3. Extreme Gradient Boosting

The extreme gradient boosting (XGBoost) is a decision-tree-based model, which
achieves high accuracy in practical applications. The fundamental idea behind the XGBoost
method is to use an additive learning approach and iteratively combine multiple models
with lower accuracy into a higher-accuracy model [58,59]. By minimizing uncertainty,
overfitting is controlled, and the model’s generalization ability is improved. Compared to
the traditional GBM, the extreme gradient boosting model has improved and optimized
running speed and accuracy [60].

The above three ML methods are implemented using the “train” function of the “caret”
package in the R environment. The main parameters in the ML method were optimized
using grid search to reduce model errors and improve model performance.

2.6. Model Performance Evaluation

Four predictor models were constructed using three ML methods, RF, GBM, and
XGBoost, based on 98 soil samples and multi-source data (Figure 2). Model A and Model
B consisted of SAR images and optical images predictor variables, respectively; Model
C consisted of both SAR images and optical images predictor variables; and Model D
consisted of all predictor variables (Figure 2). The model performance was validated by
using a leave-one-out cross-validation method [9]. The method divides the original data
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into n subsets, where n is 98 in this study. It selects n− subsets for training and 1 subset for
testing, repeating this process n times [9]. This approach effectively avoids overfitting and
underfitting, ensuring the accuracy of predictions. The coefficient of determination (R2),
mean absolute error (MAE), and root mean square error (RMSE) were used to evaluate
the model prediction accuracy. The closer the R2 value is to 1 and the lower the MAE
and RMSE values, the better the model performance [61]. These evaluation metrics are
calculated using the following formula:

R2 =

n
∑

i=1
(ŷi − y)2

n
∑

i=1
(yi − y)2

, y =

n
∑

i=1
yi

n
(1)

MAE =

n
∑

i=1
| ŷi − yi|

n
(2)

RMSE =

√√√√√ n
∑

i=1
(ŷi − yi)

2

n
(3)

where yi denotes the measured values of CW-SOC, ŷi denotes the predicted values of
CW-SOC, y denotes the measured mean value of SOC, n denotes the number of samples,
and i = 1, 2, 3. . ., n.
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3. Results
3.1. Model Performance Comparison

The model performance of RF, GBM, and XGBoost methods in predicting the CW-SOC
content was evaluated through R2, MAE, and RMSE values. When using the RF, GBM,
and XGBoost methods to establish a CW-SOC model based on multi-source data, it was
found that the combination of multi-source data can effectively improve the prediction
accuracy of the model and minimize its variability (Figure 3). Model D, based on the
combination of multi-source data, can achieve the best prediction performance using the
RF, GBM, and XGBoost methods. Compared to Model A, Model D improves the model
performance by 22.9% (RF), 34.9% (GBM), and 18.7% (XGBoost). Model D’s performance
has been improved by 10.7% (RF), 11.4% (GBM), and 7.8% (XGBoost) compared to Model
B. Compared to model C, model D shows a smaller degree of performance improvement,
with improvements of 7% (RF), 6% (GBM), and 2.2% (XGBoost).
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The R2 value of the CW-SOC content prediction model constructed by the RF method
exceeds 0.4, with the highest being 0.505. The R2 value of Model C based on the RF method
is 14.8% and 3.5% higher than Model A and Model B, respectively. Furthermore, the
MAE/RMSE value of Model C is 0.125/0.216 g·kg−1 and 0.048/0.078 g·kg−1 lower than
Model A and Model B, respectively. After adding environmental variables, the R2 value of
Model D reached 0.505. While the MAE and RMSE values decrease to 1.092 g·kg−1 and
1.479 g·kg−1, respectively.

Scatterplots of four models were constructed by analyzing the RF and GBM method
(Figure 3(A1–B4)). It is evident that when SAR images are utilized as the input predictor
variable, the GBM method’s predictive ability is weaker than that of the RF method. For
other models, the GBM method performs better than the RF method. Model D, based
on the GBM method, exhibits 34.9% and 11.4% higher prediction accuracy than Model
A and Model B, respectively, and the optimization is greater than that of the RF method.
Compared to Model C, the R2 value of Model D, constructed by using the GBM method,
only increased by 0.029, which is lower than the 0.033 observed with the RF method.

Figure 3 displays the modeling results of the XGBoost method in the four models.
When compared to the RF and GBM methods, although the XGBoost method does not
exhibit as impressive optimization as the GBM method, it achieves the optimal model
performance among the three ML methods. The R2 values of the four models constructed
based on the XGBoost method are all greater than 0.6, the highest value is 0.730 and the
MAE values are all less than 1 g·kg−1, indicating that the model instability is reduced.

After conducting a comparative analysis of the performance of models constructed
using three different ML methods, the results indicate that the four models constructed
using the XGBoost method had the highest accuracy when compared to those constructed
using the RF and GBM methods (Table 4). Except for Model A, the models constructed
using the GBM method demonstrate better performance than those constructed using the
RF method.

Table 4. Evaluation and comparison of different models.

Methods Technique Model R2 MAE (g·kg−1) RMSE (g·kg−1)

RF

A 0.411 1.304 1.760
B 0.456 1.227 1.621
C 0.472 1.179 1.543
D 0.505 1.092 1.479

GBM

A 0.378 1.644 2.455
B 0.458 1.487 2.006
C 0.481 1.314 1.841
D 0.510 1.224 1.800

XGBoost

A 0.615 0.823 1.162
B 0.677 0.661 0.994
C 0.714 0.571 0.939
D 0.730 0.554 0.899

The accuracy of predicting CW-SOC content was influenced by both the ML methods
and predictor variables. Using a combination of multi-source data as predictor variables,
three ML methods were effective for modeling CW-SOC content, with the XGBoost method
having the highest accuracy. The R2 value was as high as 0.730, and the MAE and RMSE
values were both less than 0.9 g·kg−1 (Table 4). This study found that the prediction
accuracy ranking of the models constructed by the three ML methods was Model D > Model
C > Model B > Model A. The combination of SAR and optical images improves prediction
accuracy when compared with using a single type of remote sensing images. Adding
climate variables further improved the accuracy of the model, though the improvement
was not substantial.
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3.2. Relative Importance of Predictor Variables

The analysis of relative importance is used to reveal the contributions of relevant
predictor variables in the predictive model and estimate their importance [62]. To obtain
the relative importance of each variable in predicting CW-SOC content, the “variable
importance” feature of the RF, GBM, and XGBoost models was used to calculate the
relative importance of each predictor variable. Both RF and GBM calculate the reduction in
weighted impurity of all non-leaf nodes when splitting variables. The greater the reduction,
the more important the variable [63]. XGBoost utilizes the average gain brought by variables
when used as split attributes. The larger the value, the stronger the importance [64]. The
relative importance of different variables in Model D for predicting CW-SOC content
was obtained (Figure 4). To enhance the comparability of predictor variables, they were
normalized to 100%. Since topographic variables were screened out during the variable
selection process, the relative importance is ranked only for SAR images, optical images, and
climate variables. This also applies to the discussion of variable relative importance. Optical
images were found to be the main explanatory variables for CW-SOC content prediction,
accounting for over 65% of the relative importance, followed by SAR images, with climate
variables having the lowest relative importance. In models with high prediction accuracy,
the relative importance of band reflectance tends to be higher. In the XGBoost method, the
relative importance of band reflectance exceeds 39%.
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Compared to the relative importance ranking of the top ten predictive variables in
Model D obtained by RF, GBM, and XGBoost methods (Figure 5), the results showed that
the three ML methods exhibited different characteristics in terms of importance ranking.
The most important predictive variables for RF, GBM, and XGBoost methods were, respec-
tively MARH (12.2%), DVI (18.1%), and B2 (37.6%). MARH was the only climate variable
predicting CW-SOC content, ranked among the top three in all three ML methods, even
becoming the most important predictor variable in the RF method. In any ML method, the
number of optical images predictive variables was always among the top ten. SAR images
explained 14.7%, 23.6%, and 18.5% of the variability in the RF, GBM, and XGBoost methods,
respectively. Overall, in the three ML methods, optical images contributed the most, while
SAR images and climate variables also made a certain degree of contribution.
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3.3. Spatial Distribution Prediction of the CW-SOC Content

Based on RF, GBM, and XGBoost, the model with the best performance in each method
was selected for CW-SOC content prediction and drew the spatial distribution map of
the CW-SOC content (Figure 6). The predicted range of CW-SOC content using the RF
method was from 3.174 g·kg−1 to 14.079 g·kg−1, with a mean and SD values of 8.001 g·kg−1

and 1.681 g·kg−1, respectively. The GBM method predicted the CW-SOC content ranging
from 0.455 g·kg−1 to 14.923 g·kg−1, with a mean value of 6.857 g·kg−1 and an SD value
of 1.565 g·kg−1. The range of CW-SOC content predicted by the XGBoost method was
1.208 g·kg−1 to 17.645 g·kg−1, with a mean and SD values of 6.236 g·kg−1 and 1.862 g·kg−1,
respectively (Table 5). The range, mean, and SD value of CW-SOC content predicted by the
XGBoost method was closest to the measured value of CW-SOC content, which can better
reflecting the spatial distribution of CW-SOC content.
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Table 5. Summary statistics for predicted CW-SOC content.

Methods
Technique Area Max

(g·kg−1)
Min

(g·kg−1)
Mean

(g·kg−1)
SD

(g·kg−1)
CV
(%)

RF

Study area 14.079 3.174 8.001 1.681 21.01
Binhai
New

District
14.079 3.276 8.629 1.449 16.79

Huanghua 13.149 3.396 7.660 1.586 20.70
Haixing 12.846 3.174 6.392 1.284 20.09

GBM

Study area 14.923 0.455 6.857 1.565 22.82
Binhai
New

District
14.844 0.752 7.463 1.366 18.30

Huanghua 14.923 0.455 6.575 1.457 22.16
Haixing 12.906 0.709 5.217 0.952 18.25

XGBoost

Study area 17.645 1.208 6.236 1.862 29.86
Binhai
New

District
17.645 1.379 6.621 1.815 27.41

Huanghua 16.086 1.208 6.192 1.829 29.54
Haixing 17.645 1.337 4.984 1.478 29.65

The spatial distribution maps of CW-SOC content predicted by three ML methods
(Figure 6) had similar spatial distribution characteristics. The CW-SOC content showed a
gradually increasing trend from coastal to inland areas, which is most evident in the spatial
distribution maps predicted by the RF and GBM methods. The southern and northern parts
of the study area had lower CW-SOC content, while the central region had higher content,
mainly near the Beidagang Wetlands Reserve and Nandagang Wetlands Reserve (Figure 6).
According to the summary statistics of CW-SOC content in different counties and cities
(Table 5), it was found that the CW-SOC content in Binhai new district was higher than
those in Huanghua and Haixing.

4. Discussion
4.1. Prediction Accuracy Comparison of Machine Learning Methods

By comparing this study to other related research, we aim to explore the model
performance patterns of different data combinations and the performance of machine
learning methods under different land-use types. This study found that the choice of
ML methods and various combinations of predictor variables have a substantial impact
on the accurate prediction of CW-SOC contents (Table 4). This study has showed that
regardless of the combination of predictor variables used, the XGBoost method has the
highest prediction accuracy for CW-SOC content. Xie et al. compared the prediction
accuracy of the RF, GBM, and XGBoost methods for SOC content in the Ebinur Lake
wetlands in Xinjiang and found that the XGBoost method had better prediction accuracy
than RF and GBM methods (Table 6) [65]. However, when Zhang et al. predicted the SOC
content in the dry land of Northeast China using the RF and XGBoost methods and found
that the RF method outperformed XGBoost [23]. This implies that there is no single ML
method that is suitable for all ecosystems [26]. At the same time, there are uncertainties
in parameter adjustment and optimization of the three machine learning methods [66].
Additionally, the sample selection in the study can also have an impact on the model
performance. Although machine learning methods are effective in estimating CW-SOC
content, the presence of unknown internal nonlinear processes can introduce additional
uncertainty to the model [67]. Therefore, it is crucial to evaluate the performance of different
ML methods under different combinations of predictor variables.
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Table 6. Comparison of model accuracy between this study and related studies.

Land Cover Depth Data Method R2 Literature

Wetland 0–10 cm

Landsat 8 (6band)
RF 0.583

[65]

GBM 0.531
XGBoost 0.600

Landsat 8 (6band) + Spectral index
RF 0.633

GBM 0.689
XGBoost 0.677

Landsat 8 (6band) + Spectral index +
Climate variables + Topographic

variables

RF 0.627
GBM 0.670

XGBoost 0.693
Landsat 8 (6band) + Spectral index +

Climate variables + Topographic
variables + Sentinel-1A

RF 0.681
GBM 0.671

XGBoost 0.701

Sentinel-2A (6band)
RF 0.615

GBM 0.626
XGBoost 0.685

Sentinel-2A (6band) + Spectral index
RF 0.632

GBM 0.649
XGBoost 0.693

Sentinel-2A (6band) + Spectral index
+ Climate + Topographic variables

RF 0.569
GBM 0.681

XGBoost 0.712
Sentinel-2A (6band) + Spectral index
+ Climate + Topographic variables +

Sentinel-1A

RF 0.701
GBM 0.708

XGBoost 0.735

Sentinel-2A (10band)
RF 0.615

GBM 0.659
XGBoost 0.694

Sentinel-2A (10band) + Spectral index
+ Red-edge index

RF 0.693
GBM 0.663

XGBoost 0.715

Sentinel-2A (10band) + Spectral index
+ Red-edge index + Climate +

Topographic variables

RF 0.640
GBM 0.687

XGBoost 0.726
Sentinel-2A (10band) + Spectral index

+ Red-edge index + Climate +
Topographic variables +Sentinel-1A

RF 0.705
GBM 0.751

XGBoost 0.771

0–30 cm

SAR images
RF 0.411

This study

GBM 0.378
XGBoost 0.615

Optical images
RF 0.456

GBM 0.458
XGBoost 0.677

SAR and optical images
RF 0.472

GBM 0.481
XGBoost 0.714

SAR images, optical images, and
climate data

RF 0.505
GBM 0.510

XGBoost 0.730
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Table 6. Cont.

Land Cover Depth Data Method R2 Literature

Dryland

0–20 cm

SAR images

RF

0.190

[19]
Optical images 0.500

SAR and optical images 0.560
Land use + climate + topography +

optical images 0.740

Land use + climate + topography +
SAR images + optical images) 0.750

0–10 cm

Soil and parent material, climate,
organism, relief and remote sensing

variables

RF

0.580

[23]

10–20 cm 0.710
20–30 cm 0.730
30–40 cm 0.740
0–10 cm

XGBoost

0.530
10–20 cm 0.670
20–30 cm 0.700
30–40 cm 0.710

Forest land 0–20 cm

SAR images

RF

0.160

[13]
Optical images 0.200

SAR and optical images 0.250
Sentinel-1/2-derived predictors and

DEM derivatives 0.400

We found that among the three machine learning methods, the performance of Model
B is consistently better than that of Model A, indicating that the prediction accuracy of
optical images is higher than those of SAR images. Further, it showed that optical images
provide more relevant information for predicting the CW-SOC content [19]. When optical
images and SAR images are combined, the model’s performance further improves. This
was expected as the combination of the two types of images can complement each other and
provide more effective information for building models. Previous research also confirmed
the great potential of combining optical and SAR images in predicting SOC content [13,19].
For example, in Model C, which uses optical and SAR images as predictor variables,
incorporating climate data into the model can improve its performance. However, the
optimization effect of the model is not ideal, with an optimization amplitude of only 2.2–7%.
In the study of Zhou and Xie et al., the optimal optimization amplitude reached 23.2% and
56%, respectively [13,65]. This could be caused by our study area being located in a coastal
region where the effects of climate variables are not significant, thus their impact on the
model accuracy is not significant.

It was found that the same ML method performs differently in different land use types.
When Zhou et al. used the RF method to predict SOC content in drylands, their model had
a higher prediction accuracy than this study [19]. However, when SAR images were used
as predictor variables, the model performance of this study was better than the former.
This was mainly because Zhou et al. only used VV and VH as predictor variables, while
this study also took D as predictor variables, helping to improve the model’s performance.
When using the RF method to predict the SOC content of forest land, the prediction accuracy
was lower than in this study. Perhaps it may be because Zhou et al. had fewer predictor
variables, which cannot meet the needs of large-scale prediction, and did not consider the
influence of climate factors.

4.2. Influence of Predictor Variables on CW-SOC Content Prediction

In the three ML methods, optical images and SAR images were the main variables for
predicting CW-SOC content. The relative importance of optical images and SAR images
reached over 65% and 14%, respectively, indicating that optical images and SAR images
could effectively explain the spatial variability of CW-SOC content [68]. Sentinel-2A was
the most important factor for predicting CW-SOC content [69]. This was mainly because the
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band reflectance and remote sensing indices of Sentinel-2A, especially the remote sensing
indices involving the red-edge band, could provide characteristics that are related to the
correlation between vegetation and soil properties [70]. Among the models with high
prediction accuracy, the relative importance of the remote sensing indices in the red-edge
band and red-edge band participating is relatively high. The relative importance of SAR
imagery are 14.7%, 23.6%, and 18.5% in the RF, GBM, and XGBoost method, respectively.
However, research by Zhou et al. indicates that the relative importance of SAR images is
only 9% [19], which could be due to the contribution of SAR images to the model being
dependent on the sensitivity of the backscatter coefficient to surface humidity and on this
study area being coastal wetlands with a relatively high surface humidity [15]. In addition,
some studies have mentioned that D obtained from mathematical calculations based on
the VV and VH backscattering coefficients have higher relative importance than VV and
VH [16].

In addition to remote sensing images, climate variables are important factors affecting
the distribution of CW-SOC content. As a crucial factor influencing soil formation, climate
impacts SOC content by affecting soil water and heat conditions, as well as the decomposi-
tion and transformation of SOC by microorganisms [71]. Previous studies have emphasized
the importance of precipitation and temperature in influencing SOC distribution [72,73].
However, our results showed that regardless of which ML method is used for CW-SOC
content prediction, MARH is always the most important predictor variable among climate
variables, while MAT and MAP are both excluded during the variable selection process.
This is mainly due to our study area being situated in a small coastal region where there
are minor variations in precipitation and temperature. Hence, the CW-SOC content is not
considerably affected. We observed a significant relationship between MARH and soil
moisture. Any modifications in soil moisture levels can affect the exchange of water and
energy between the land and the atmosphere [74], which can further impact plant growth
and net primary productivity [72].

4.3. Spatial Distribution Characteristics of CW-SOC Content

Comparing the CW-SOC content predicted by the three ML methods, we found that
the RF methods predicted a smaller range of CW-SOC content. This is due to the RF method
deriving its prediction results from the average output values of multiple independent
trees, making it more conservative in predicting CW-SOC content and less sensitive to
extreme values [26].

The predicted range and spatial distribution patterns of CW-SOC content in this study
are similar to the results obtained by Luo et al. [75]. The CW-SOC content predicted by the
three ML methods had similar spatial distribution characteristics. The central part of the
study area has higher CW-SOC content, mainly including Beidagang Wetlands Reserve
and Nandagang Wetlands Reserve (Figure 6), while the northern and southern parts have
lower content. The reason for this spatial distribution is that the central part of the study
area has higher vegetation coverage than the southern and northern parts, especially in
the Beidagang Wetlands Nature Reserve and Nandagang Wetlands Nature Reserve. High
vegetation coverage can effectively protect soil, converting atmospheric carbon dioxide into
organic carbon through photosynthesis and promoting the accumulation of CW-SOC [76,77].
On the other hand, the decomposition of vegetation litter by soil microorganisms can also
promote the accumulation of CW-SOC [78]. We found that the CW-SOC content showed an
increasing trend from the sea to the inland direction. This is mainly because the coastal
areas are mostly tidal flats, and the vegetation coverage is lower than that of the inland
areas [13].

Previous studies on this study area have some differences from the results compared
to ours. Mao and Hao et al. studied the CW-SOC content in Tianjin and found that the
average CW-SOC content was 16.304 g·kg−1 and 8.55 g·kg−1 [79,80], which is higher than
the predicted CW-SOC content in this study. Whereas Li et al. found through the study
of the salinity response and influencing factors of SOC in Tianjin coastal wetlands that
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the average SOC content in the study area was 5.40 g·kg−1 [81], which is lower than the
results in this study. This discrepancy may result from the sampling points of Mao and
Hao et al. being distributed in forests, grasslands, towns, harbors and tidal flat areas, while
Li et al. only collected typical coastal wetlands soil samples with salinity differences in
Tianjin. Our sampling points are distributed in coastal wetlands, and they are relatively
evenly distributed. The different sampling areas and densities of soil samples resulted in
different research results.

5. Conclusions

This study compared the performance of three ML methods based on decision tree
models in predicting CW-SOC content and the prediction of the spatial distribution of
CW-SOC content using SAR images, optical images, and climate and topographic data.
The main conclusions of the study are summarized as follows:

(1) Combining SAR images and optical images can effectively improve the prediction
accuracy of the model. After adding climate variables, the performance of the model
is further improved, but the optimization effect is not obvious, and the prediction
accuracy is only increased by 7% (RF), 6% (GBM), and 2.2% (XGBoost).

(2) XGBoost method exhibits better prediction ability than the RF and GBM method. The
optimal model is built using the XGBoost method, with the R2 as high as 0.730, and
the MAE and RMSE as low as 0.554 g·kg−1 and 0.899 g·kg−1, respectively.

(3) Remote sensing variables are the primary explanatory variables for predicting CW-
SOC content, with optical images being the most prominent contributor, explaining
more than 65% of the variability. The most important predictor variables for the
RF, GBM, and XGBoost method were MARH (12.2%), DVI (18.1%), and B2 (37.6%),
respectively.

(4) CW-SOC content gradually increase from the coast to the inland. The CW-SOC
content is lower in the south and north of the study area and higher in the central
area. The mean value of CW-SOC content in Binhai New District is higher than those
in Huanghua and Haixing.

Author Contributions: Conceptualization, Y.Z., C.K., M.L., F.L., C.L. and W.M.; methodology, Y.Z.,
C.K., M.L., F.L., J.S., T.S. and W.M.; software, Y.Z., C.K., Q.Z. and X.L.; validation, M.L. and W.M.;
formal analysis, M.L. and W.M.; investigation, J.S., T.S., X.L. and D.T.; resources, Y.Z. and C.K.;
data curation, C.K., Q.Z., X.L. and D.T.; writing—original draft preparation, Y.Z., C.K., M.L. and
W.M.; writing—review and editing, M.L., C.L. and W.M.; visualization, C.K., Q.Z., X.L. and D.T.;
supervision, Y.Z.; project administration, W.M.; funding acquisition, Y.Z., M.L. and W.M. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (Grant
No. 41901375, 42101393 and 52274166); the Natural Science Foundation of Hebei Province, China
(Grant No. D2022209005); the Science and Technology Project of Hebei Education Department (Grant
No. BJ2020058); the Key Research and Development Program of Science and Technology Plan of
Tangshan, China (Grant No. 22150221J); the North China University of Science and Technology
Foundation (Grant No. BS201824 and BS201825); the Fostering Project for Science and Technology
Research and Development Platform of Tangshan, China (No. 2020TS003b).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank Hua Fang, Huifeng Gao, and Cheng Guan for
processing soil samples. The authors are deeply grateful to the anonymous reviewers and the editor
for their helpful comments on the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2023, 15, 4241 17 of 20

References
1. Rumpel, C.; Amiraslani, F.; Koutika, L.S.; Smith, P.; Whitehead, D.; Wollenberg, E. Put more carbon in soils to meet Paris climate

pledges. Nature 2018, 564, 32–34. [CrossRef] [PubMed]
2. Dharumarajan, S.; Kalaiselvi, B.; Suputhra, A.; Lalitha, M.; Vasundhara, R.; Kumar, K.S.A.; Nair, K.M.; Hegde, R.; Singh, S.K.;

Lagacherie, P. Digital soil mapping of soil organic carbon stocks in Western Ghats, South India. Geoderma Reg. 2021, 25, e00387.
[CrossRef]

3. Fernández-Martínez, M.; Peñuelas, J.; Chevallier, F.; Ciais, P.; Obersteiner, M.; Rödenbeck, C.; Sardans, J.; Vicca, S.; Yang, H.; Sitch,
S.; et al. Diagnosing destabilization risk in global land carbon sinks. Nature 2023, 615, 848–853. [CrossRef]

4. Mao, D.; Luo, L.; Wang, Z.; Wilson, M.C.; Zeng, Y.; Wu, B.; Wu, J. Conversions between natural wetlands and farmland in China:
A multiscale geospatial analysis. Sci. Total Environ. 2018, 634, 550–560. [CrossRef]

5. Xia, S.; Song, Z.; Van Zwieten, L.; Guo, L.; Yu, C.; Wang, W.; Li, Q.; Hartley, I.; Yang, Y.; Liu, H.; et al. Storage, patterns and
influencing factors for soil organic carbon in coastal wetlands of China. Glob. Chang. Biol. 2022, 28, 6065–6085. [CrossRef]

6. Lausch, A.; Baade, J.; Bannehr, L.; Borg, E.; Bumberger, J.; Chabrilliat, S.; Dietrich, P.; Gerighausen, H.; Glässer, C.; Hacker, J.M.;
et al. Linking Remote Sensing and Geodiversity and Their Traits Relevant to Biodiversity—Part I: Soil Characteristics. Remote
Sens. 2019, 11, 2356. [CrossRef]

7. Wang, F.; Lu, X.; Sanders, C.J.; Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in
United States. Nat. Commun. 2019, 10, 5434. [CrossRef] [PubMed]

8. Mao, D.; Yang, H.; Wang, Z.; Song, K.; Thompson, J.R.; Flower, R.J. Reverse the hidden loss of China’s wetlands. Science 2022, 376, 1061.
[CrossRef]

9. Song, J.; Gao, J.; Zhang, Y.; Li, F.; Man, W.; Liu, M.; Wang, J.; Li, M.; Zheng, H.; Yang, X.; et al. Estimation of Soil Organic Carbon
Content in Coastal Wetlands with Measured VIS-NIR Spectroscopy Using Optimized Support Vector Machines and Random
Forests. Remote Sens. 2022, 14, 4372. [CrossRef]

10. Zhang, T.; Zhang, W.; Yang, R.; Liu, Y.; Jafari, M. CO2 capture and storage monitoring based on remote sensing techniques: A
review. J. Clean. Prod. 2021, 281, 124409. [CrossRef]

11. Li, Z.; Liu, F.; Peng, X.; Hu, B.; Song, X. Synergetic use of DEM derivatives, Sentinel-1 and Sentinel-2 data for mapping soil
properties of a sloped cropland based on a two-step ensemble learning method. Sci. Total Environ. 2023, 866, 161421. [CrossRef]
[PubMed]

12. Lin, C.; Zhu, A.; Wang, Z.; Wang, X.; Ma, R. The refined spatiotemporal representation of soil organic matter based on remote
images fusion of Sentinel-2 and Sentinel-3. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102094. [CrossRef]

13. Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-resolution digital mapping of soil organic carbon and soil total
nitrogen using DEM derivatives, Sentinel-1 and Sentinel-2 data based on machine learning algorithms. Sci. Total Environ. 2020,
729, 138244. [CrossRef] [PubMed]

14. Were, K.; Bui, D.T.; Dick, Ø.B.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and
random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52,
394–403. [CrossRef]

15. Chen, S.; Zhang, W.; Li, Z.; Wang, Y.; Zhang, B. Cloud Removal with SAR-Optical Data Fusion and Graph-Based Feature
Aggregation Network. Remote Sens. 2022, 14, 3374. [CrossRef]

16. Yang, R.-M.; Guo, W.-W. Using time-series Sentinel-1 data for soil prediction on invaded coastal wetlands. Environ. Monit. Assess.
2019, 191, 462. [CrossRef] [PubMed]

17. Yang, R.-M.; Guo, W.-W. Modelling of soil organic carbon and bulk density in invaded coastal wetlands using Sentinel-1 imagery.
Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101906. [CrossRef]

18. Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the temporal behavior of
crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [CrossRef]

19. Zhou, T.; Geng, Y.; Chen, J.; Liu, M.; Haase, D.; Lausch, A. Mapping soil organic carbon content using multi-source remote
sensing variables in the Heihe River Basin in China. Ecol. Indic. 2020, 114, 106288. [CrossRef]

20. Azizi, K.; Garosi, Y.; Ayoubi, S.; Tajik, S. Integration of Sentinel-1/2 and topographic attributes to predict the spatial distribution
of soil texture fractions in some agricultural soils of western Iran. Soil Tillage Res. 2023, 229, 105681. [CrossRef]

21. van der Westhuizen, S.; Heuvelink, G.B.M.; Hofmeyr, D.P. Multivariate random forest for digital soil mapping. Geoderma 2023,
431, 116365. [CrossRef]

22. Akinci, H.; Zeybek, M.; Dogan, S. Evaluation of landslide susceptibility of Şavşat District of Artvin Province (Turkey) using
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