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Abstract: A satellite altimeter measures sea surface height (SSH) along the nadir track. Multiple
satellite altimeters have been in orbit, and the measurements been merged for mapping mesoscale
eddies of ~100 km in size in the oceans. The capability of the mapped SSH for resolving mesoscale
eddies depends on mapping algorithms. A two-dimensional variational (2DVAR) algorithm was
implemented to generate mapped SSH at a grid size of 1/12◦ in the South China Sea. A range of
comparisons were performed between the mapped SSH and the commonly used AVISO (Archiving,
Validation, and Interpretation of Satellite Oceanographic satellite data) mapped SSH data product
at a grid size of 1/8◦ and 1/4◦. The effective resolution, which represents the spatial scale that
the data can resolve, was examined. The effective resolution of the mapped SSH using the 2DVAR
algorithm is approximately 100 km, while it is 250 km with the 1/8◦ and 1/4◦ AVISO data products.
The difference in the effective resolution results from the difference in the background state and
thus the background error. The result suggests that the effective resolution of the mapped data
could be increased by choosing a background state so that the associated errors could have a smaller
decorrelation length scale.

Keywords: effective resolution; deviation from background field; merged maps; mesoscale eddies

1. Introduction

Abundant in situ observations of oceans (e.g., Argo, drifter, and glider) have greatly
promoted the progress of oceanography and led to unprecedented advancements in oceanic
dynamics [1–5]. However, limited by the high cost of deploying oceanic observing plat-
forms, the density of in situ observations is still insufficient to resolve mesoscale eddies at a
scale of ca. 100 km in size over the wide-open ocean [6,7]. Mesoscale eddies have long been
recognized as “synoptic systems” in the ocean [8]. With a rapid advancement of remote
sensing technology, satellite altimeters, which measure sea surface height (SSH), provide
most important measurements for detecting and monitoring mesoscale eddies [9].

Satellite altimeters measure sea surface height (SSH) only at nadir points, producing
one-dimensional along-track SSH [10]. To resolve two-dimensional (2D) mesoscale features,
it is therefore necessary to merge along-track data from multi-satellite altimeters to produce
spatiotemporally continuous maps [11,12]. Currently, the most commonly used gridded
altimeter maps are from the Data Unification and Altimeter Combination System (DUACS),
formerly known as Archiving, Validation, and Interpretation of Satellite Oceanography
(AVISO) data products. It is also called level 4 (L4) product. This L4 product was generated
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using an optimal interpolation (OI) algorithm. The newly reprocessed delayed-time (DT)
DUACS daily global absolute dynamic topography (ADT) maps (DT2018 and DT2021) have
a global spatial resolution of 1/4◦ × 1/4◦ (longitude × latitude), providing an effective
resolution (ER) of ca. 240 km at middle latitudes [12].

An ER represents the spatial scale that the data can resolve. We emphasize that an ER
differs from the grid size. Unlike the grid size, an ER is defined as a space–time scale of
the structure that the gridded data can correctly resolve. An OI method always imposes
a filtering effect [13,14]. One question is then whether there is room to increase the ER
beyond the AVISO data product [1,15].

The SCS is an immense marginal sea in the near-equatorial tropics. Energetic mesoscale
eddies occur at a range of sizes. More than 7000 eddies were identified from the satellite
altimetry data during the period 1992–2009 [16]. Based on their generation mechanisms,
the eddies can be separated into four geographic regions [17]. The Kuroshio invasion is
particularly considered in the surrounding area of the Luzon Strait. More than half of the
eddies’ radii are 100–200 km, <15% have radii exceeding 200 km, and they have a Rayleigh
distribution peak of 130 km [18]. Eddies with the largest radii (100–150 km) occur in the
central and western SCS. The SCS region is thus selected in this study.

A two-dimensional variational (2DVAR) method is implemented to map ADT data.
ADT should be used, rather than sea level anomalies (SLA) for eddy detection [19]. The
2DVAR method was recently introduced for mapping the multi-satellite altimeter data for
the East China Sea, the SCS, and the California Current system. The merged data from
those areas was shown to have better ER than the AVISO data product [11,12,20].

The 2DVAR and OI methods are based on optimal estimation theory. Both methods
use a background state. The associated background error covariance thus plays a key role
in the methods. The background error correlation can be characterized by its correlation
length scale. The main objective of this study is to illustrate that the background error
decorrelation length scale is a factor that dictates the ER of the mapped data. To improve
the ER, a proper background state should be carefully chosen. The background error should
have a relatively smaller correlation length scale.

The ER in 2DVAR mapped data and AVISO data products are compared. The compar-
ison is made not only with the 1/4◦ global product but also with a customized regional
1/8◦ product in the SCS, particularly provided by DUACS. Another focus is to examine
whether the specially customized regional 1/8◦ product has the same performance as other
regional AVISO products. Finally, this work demonstrates the robustness of the 2DVAR
mapped data, in terms of its higher ER and quality. To comprehensively validate the
quality of the merged 2DVAR and 1/4◦ AVISO products, we used two additional mapping
datasets (the 1/4◦ AVISO and the HYCOM products), comparing their accuracy and ER.
These findings on the HYCOM ER could be meaningful for future data assimilation, as the
HYCOM product can distinguish 80 km-scale ocean structures.

2. Data and Methods
2.1. Datasets

Major datasets that are used in the analyses are summarized as follows.
First, the 1/4◦ × 1/4◦ AVISO data product. It is also known as the DUACS-DT2021

maps. For convenience, it is called ‘1/4◦ AVISO’. This is the latest version of 1/4◦ AVISO.
In this version, the following improvements were implemented over the previous DUACS-
DT2018 version [14]:

A. New altimetry standards and geophysical corrections were used to improve the
accuracy of sea level anomaly (SLA) content. The regional mean sea level (MSL)
trend and regional deviation was affected.

B. The new ‘internal tide’ correction was used to improve the mesoscale signal mapping.
C. The new mean sea level (non-repetitive and recent tasks) or mean profile (repetitive

task) was used to improve the accuracy of SLA and regional deviation.
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D. The new mean dynamic topography (MDT) was used to improve the geostrophic
current and regional deviation.

E. The mesoscale signal on the L4 products were improved by using the improved
mapping parameters.

Second, The 2021 customized version of the 1/8◦ × 1/8◦ grid-resolution DUACS ADT
product (‘1/8◦ AVISO’).

Table 1 lists the improvements in the 1/8◦ regional European AVISO product compared
with 1/4◦ global AVISO product, as well as the regional spatial ER [16,21,22].

Table 1. Variance and effective resolution (ER) of regional Europe products. The first column is the
variance of the differences between 1/8◦ DT2021 regional Europe product and SARAL-DP/ALtika
independent along-track measurements from 2016 to 2019. In parenthesis, variance reduction (in %)
compared with the results obtained with the 1/4◦ DT2021 Global product. The second column is
the spatial ER of the 1/8◦ DUACS-DT2018 product in the regional European seas. In parenthesis,
average resolution over the basin.

European Seas Variance [cm2] Effective Resolution [km]

Black Sea 14.4 (−0.94%) 100 to 150 (~130)
Mediterranean Sea 15.3 (−4.25%) 90 to 160 (~130)

The 1/8◦ regional European AVISO products provided substantially better spatiotem-
poral resolution than the global product. For the current study, 1/8◦ AVISO products were
custom-produced for the SCS region for the first time. We hope that they will match the
European Sea AVISO products in quality.

Third, the daily averaged reanalysis product of a fully 3D, multivariate, variational
ocean data assimilation system (the Navy Coupled Ocean Data Assimilation (NCODA)
System (HYCOM-NCODA, hereafter ‘HYCOM’; U.S. Naval Oceanographic Office), ob-
tained by averaging the data over eight periods each day. The HYCOM reanalysis product
was produced by using the 3D-Var method to assimilate the satellite altimeter SSH, in two
alternative ways: (1) assimilating the along-track data of the satellite altimeter directly, and
(2) assimilating the merged maps of 2D horizontal analysis of SSH [23].

To evaluate the reconstruction achieved using the different models, we first used
independent data, including remote sensing Multi-scale Ultra-high Resolution (MUR)
Sea Surface Temperature (SST) data and in situ Global Drifter Program (GDP) drift buoy
data [24,25]. In addition, the AVISO along-track L3 data—from the Sentinal-3A (S3A) and
Jason-3 (J3) satellites—were used for observation-based ground truthing. Owing to their
low observation error and stable operation, S3A and J3 are used primarily to analyze the
merged field error and the ER and useful resolution (UR).

The selected period was from 1 April to 1 September 2018, in the SCS, covering
0◦–26◦N and 100◦–130◦E. Five altimeters were in orbit in this region and period, providing
sufficiently dense observational coverage and corresponding to the customized 1/8◦ AVISO
product provided by DUACS.

2.2. A Two-Dimensional Variational Method

2DVAR is based on the 2D variational principle. The solution is optimal in the sense
of minimum error variance [11,12,20]. The solution is obtained by minimizing the cost
function:

J(h) =
1
2
(h− hb)

TB−1(h− hb) +
1
2

N

∑
s=1

(Hsh− ho
s)

TR−1
s (Hsh− ho

s) (1)

where h is the analysis field, hb and ho
S are the background and observation fields of the SSH,

respectively; B and Rs are the error covariance matrices of the background and observation
fields, respectively; the subscript ‘s’ denotes the time level, and ‘N’ is the total number of
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time levels of observation. Hs is the observation operator that maps the background to the
observations. The superscripted ‘T’ indicates ‘transposing matrix’.

The analytical solution that minimizes Equation (1) can be written as:

ha = hb +

(
B−1 +

N

∑
s=1

HT
s R
−1
s ho

s −Hs

)−1 N

∑
Seq=1

HT
s R
−1
s (ho

s −Hshb) (2)

The AVISO products are based on the optimal interpolation principle, and the solution
can be written as follows [26]:

ha
x = hb

x + ∑M
r=1 Cxr

[
∑M

q=1 A−1
rq

(
ho

q − hb
q

)]
(3)

where ha
x is the SSH estimate on the regular grid x, hb

x is the background field, ho
q is

the observation field, Arq is the covariance matrix between observation points r and q,
and Cxr is the covariance matrix between the observation and grid points. The solutions
(Equations (2) and (3)) can be shown to be equivalent to each other [15].

One factor that the two methods was adapted differently is the background fields hb
x.

The 2DVAR model used the merged map of the previous day, whereas DT2010, DT2014,
and DT2018 (AVISO products) used mean dynamic topography (MDT), which is the SSH
over a period T [seven years (1993–1999), 20 years (1993–2012), and 25 years (1993–2017)]
above the Geoid, as follows [21]:

MDTT = 〈SSH〉T − Geoid (4)

where SSH is the height of the surface above the ellipsoid of the reference and includes the
Geoid. The ADT field on the initial day of the 2DVAR product was obtained by directly
interpolating the observation data along a satellite track without a background field. One-
day merging can eliminate the error differences between different background fields. The
first day of the merging algorithm was not used in the evaluation as a product in Section 3.
The 2DVAR method used 10 d of along-track data before and after the central day (21 d
in total) and considered the temporal evolution error. Therefore, there was temporal
correlation in the background field. The different period T of the background fields used in
the 2DVAR and AVISO models will introduce different background errors:

εb
x = hb

x − ht
x (5)

where hb
x is the background field and ht

x is the unknown actual value at the background
state time. During mapping, the covariance (B in Equation (2) and Cxr in Equation (3))
is directly related to and is constructed using the background error εb

x. Simultaneously,
the background error influences the sea level anomaly field. For example, the longer
the averaged period, the closer the background field is to the actual value, and the more
accurate the inter-annual and climatic-scale signals are in the SLA [26]. However, an
increase in the time-averaged range of maps as the background field may not improve the
covariance matrix, in turn hindering the improvement in the resolution capability of the
merged maps. To demonstrate this and to analyze the influences of the background field,
different B (C xr) values based on the above two methods were simulated. Although it
cannot be obtained directly by observing its error, the estimation of B (C xr) can be used to
solve the function equation.

In the mapping method, the background error covariance matrix B (C xr) and the
covariance matrix of observation error (Hs in Equation (2) and Arq in Equation (3)) are
used as the weight parameters that determine the dissemination of information in the
estimation field of the observed data. Assuming that the observation error is spatially
uncorrelated, B (C xr) determines the propagation weight of the spatial observation data.
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In data assimilation, the information propagation weight primarily represents the filtering
characteristics [18]. B (C xr) always can be decomposed as follows:

B = ∑ C ∑ (6)

where C is the correlation matrix.
Estimating the matrix B (C xr) thus requires the length scale of correlation matrix C,

which is the core parameter characterizing the covariance matrix B (C xr), because the
length scale extracts significant information from the matrix [27]. The auto-correlation
function was used here to calculate the correlation C; the distance at which the correlation
dropped to 0.6 was used as the length scale of its correlation.

According to the definition of ε in the forward calculation of SSH, the simulation of ε
for 2DVAR and AVISO in this study was specified as follows: 2DVAR used the merged maps
of the previous day as the background fields, whereas AVISO used the 7-, 20-, and 25-year
climate-averaged fields from 1993. The background error was calculated by subtracting the
along-track daily data from the background field. For the linear along-track datasets, the
covariance of each datasets was calculated using other data within 90 km. The covariance of
all the along-track data was then averaged, and the covariance of the Gaussian distribution
was obtained via ordinary least squares fitting.

The autocorrelation function of a uniform and isotropic one-dimensional spatial random
field is equivalent to the power spectral density (PSD), according to the Wiener–Khinchin
theorem [28]. For spatially uniform background errors, the spectral representation of the
covariance matrix B (C xr) is equivalent to the spectral representation of the correlation
matrix C. For homogeneous and isotropic background errors, the covariance in the spectral
space is the variance of each wave number, namely PSD. The correlation based on the
autocorrelation function should have physical (filtering) characteristics similar to the PSD
of the background error. The degree of filtering of small-scale signals should have the same
variation as the correlation: that is, these values should increase together [29].

The following section presents the relationship between the length scale of the correla-
tion and the energy proportions of different scale errors. The Fourier transform method was
used to calculate the energy spectral density which represents the PSD of the background
errors. To highlight the differences in the energy spectral density between different models,
the spatial distance was divided into five scales, and the portion below the minimum
distinguishable scale in all models was omitted when calculating the percentages.

3. Results
3.1. Signal Proportion of Different Scales in the Background

The 2DVAR method generated the smaller correlation length scale than the AVISO
method (Figure 1). For the AVISO method, the correlation length scales increased with time
in years averaged for the background. This indicates that, even when a finer spatial grid is
used, selecting a too-long averaged period for the background field prevents the reduction
in the correlation length scale.

Around the SCS, slightly more than 25% energies of the identified signal in the back-
ground errors of the 2DVAR method were for small mesoscale signals (50 km to 150 km),
and 20% energies for signals of 150 to 400 km (Figure 2). In the background errors of the
AVISO method, small mesoscale (<150 km) signals had a deficient proportion (2–6%) of
energies in the 7-, 20-, and 25-year averaged background. Those signals with a spatial
scale >400 km accounted for 75% (7 y) and 88% (20 and 25 y) of the total energy, respec-
tively. The 2DVAR method generated more signals that have smaller scales because it uses
a day-to-day estimate, giving less weight to low-frequency longer spatial scales, whereas
the AVISO methods exhibit the opposite effect at each length scale.
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As the length of the background time window increases from day to year, the propor-
tion of energies with large-scale signals remaining in the background errors increased, and
the correlation length scale increases. Therefore, using a long-time-averaged background
field in the mapping implementation hinders improvement of the resolution capability of
the merged maps.

3.2. Evaluation of Accuracy

To validate the reconstruction of small mesoscale structure and consistency with the
actual signal, different merged maps were evaluated against independent SST and drifter
trajectory data and dependent along-track satellite ADT data. Tides significantly influence
the coastal area of the SCS. The continental shelf, at an average depth of 200 m, was not
included in the analyses in this section.
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3.2.1. Remote Sensing Evaluation

Although the spatial patterns of anticyclone eddies are not entirely consistent in terms
of SST, or are even orthogonal in some weaker eddies [30], SST of mesoscale eddies is
often characterized by a warmer center of the anticyclone, similarly, cyclonic eddies often
have colder centers. To a certain extent, SST is responsive to small mesoscale dynamic
processes in the upper ocean. In this section, we compared the sea surface geostrophic
current, inverted from the ADT data, with the MUR SST anomaly (SSTA) to verify the
accuracy of the estimated ADT structure [31].

2DVAR single-day surface flow and temperature corresponded highly in terms of
refined structural features (Figure 3a). The other three models show this correspondence
only at a larger scale, with poor correspondence in terms of the same refined structure
(Figure 3b–d). The geostrophic current of the 1/4◦ AVISO model was weaker than that of
the other models. Although the 2DVAR model achieved better reconstruction of mesoscale
eddies, it may induce more small-scale noise in the map the same SST.

3.2.2. In Situ Evaluation

The in situ GDP hourly drifting buoy datasets [3] is widely used to study small-scale
high-frequency dynamic ocean processes. The GDP measures ocean current velocity at a
depth of 15 m using a drogue that pulls a surface float underwater with each passing wave.
The drogue creates strain against the lower hull of the surface float, thereby reducing the
effect of wind. Here, a drifter path in the middle of the SCS, far from the coast areas, was
selected to reduce the influence of tides. A drifter with a curved moving path was compared
to evaluate its ability to capture the mesoscale structure in the various merged maps.

On 29 May 2018 (Figure 4), the buoy paths were parallel to the contours of the ADT
gradients of the four models. On 30 and 31 May 2018 (Figure 4b,c), the buoy paths were
almost parallel to the contours of the ADT gradient of the 2DVAR model and perpendicular
to those of the other maps. The result of the other models are mostly inconsistent with the
buoy data shown in Figure 4d, for 1 June 2018. The relationship between the buoy path and
the height field gradient is similar to that in panels c–e of Figure 4. Comparing the 2DVAR
height field with that of the stand-alone buoy reveals that the buoy rotated counterclockwise
around a small eddy with a low center at SSH, consistent with the eddy characteristics
obtained using the 2DVAR method. The two AVISO models and HYCOM have poor
reconstructions of smaller-scale eddies, thus resulting in buoy trajectory crossovers with
their height fields. Therefore, 2DVAR exhibits certain advantages over the other models in
terms of its ability to present smaller mesoscale eddies in the ocean.
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Figure 4. Absolute dynamic topography (ADT) maps of 2DVAR, HYCOM, 1/8◦ AVISO, and 1/4◦

AVISO (sorted by column) with the drifting buoy path. The days are (a) 29 May, (b) 30 May, (c) 31
May, (d) 1 June, and (e) 2 June 2018 (sorted by row, respectively). Blue line: drift path of the buoy
on the focal days; red line, drift path during the two days before and after. The arrow indicates the
geostrophic vectors from the middle moment of the focal day.

All of the models exhibited lower geostrophic velocities than the drifting buoys
(Figure 5). Although the HYCOM data were the most concentrated in the regression curve,
the 2DVAR regression curve illustrates a better fit, with a slope closest to 1. The 2DVAR
model also had the lowest root mean square deviation (RMSD) for the entire map.
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Figure 5. Geostrophic velocity scatter plot and linear regression curve of (a) 2DVAR, (b) HYCOM,
(c) 1/8◦ AVISO, and (d) 1/4◦ AVISO with the drifting buoy. The slope of the dotted black dot is 1.
Equation y on the upper left corner represents linear regression curve which is the dotted line colored
in red. R is the correlation of linear regression coefficients. C is the correlation coefficient between the
merged map and the drifting buoy data, and the root mean square deviation (RMSD) between the
merged map and the drifting buoy data.

3.2.3. Along-Track Satellite Evaluation

To calculate the root mean square error (RMSE), correlations, and linear regressions of
the merged maps and thus evaluate their accuracy, the L3 along-track data from the S3A
and J3 satellites were used as the hypothetical true values [11]. S3A has smaller orbital
spacing and higher data density satellite than J3, allowing it to cover a larger area in the
full-field mapping of RMSE. To illustrate the relationship between the 2DVAR maps and
those generated using the other models, an index score (S) comparing the deviations of
each product was calculated [12]:

S = 1− σ2
2DVAR/σ2

Others (7)

where σ is the mean square error for each model; ‘Others’ refers to the models other than
2DVAR; and S is the degree of deviation of other models relative to 2DVAR. A positive S
indicates a higher error relative to that of 2DVAR, while a negative S reflects an error less
than that of 2DVAR. Table 2 lists the mean RMSE and S for the entire map, reflecting the
accuracy of the merged maps.

2DVAR had the lowest RMSE for the center waters of the SCS (at only 1–2 cm), followed
by the 1/4◦ AVISO model (at ca. 1 cm higher) (Figure 6a,c,e,g). The 1/8◦ AVISO model had
an RMSE of ca. 5–6 cmca. double those obtained in the previous two models (Figure 6d,h).
HYCOM exhibited the highest RMSE (>20 cm, relative to the S3A data) in the northern SCS
(Figure 6b) and <10 cm relative to the J3 data (Figure 6f). The large RMSE obtained for the
Pacific Ocean, Luzon Strait, and the Celebes Sea was due to the tidal influences in coastal
areas and high eddy kinetic energy (EKE) transport from the Pacific crossing Luzon Strait
to Kuroshio [32]. In summary, the mean RMSE for the entire map (Table 2) was lowest for
the 2DVAR model, at ca. 0.01 cm lower than that of the AVISO global 1/4◦ model, and
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substantially lower than that of the HYCOM model. S varied in the same way as RMSE,
being highest for HYCOM and lowest for 1/4◦ AVISO model.

Table 2. The accuracy of 4 models. The root mean square error (RMSE, in cm) for entire map
compared with along-track S3A and J3 satellite L3 data, and the mean error index score S for entire
map of each product compared with 2DVAR.

Experiments/
Models

RMSE [cm] S

S3A J3 S3A J3

2DVAR 0.0299 0.0340 / /
HYCOM 1.5946 0.5189 0.8987 0.9421

1/8◦ AVISO 0.0678 0.0688 0.6658 0.7070
1/4◦ AVISO 0.0396 0.0414 0.1125 0.2313
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Figure 6. Root mean square error (RMSE) on the satellite track of merged absolute dynamic to-
pography (ADT) compared with S3A (a–d) and J3 (e–h) satellite along-track data: (a,e) 2DVAR,
(b,f) HYCOM, (c,g) 1/8◦ AVISO, and (d,h) 1/4◦ AVISO. Note that the color scale for each map is
differ from each other for the uniform of colors.

Due to the strong influence of the Kuroshio, the zonal flow in the surface (shallower
than 500 m) of the Luzon Strait is typically westward [32]. Thus, most of the high-frequency
mesoscale eddies generated from the Bashi and Northern Philippines Strait were propa-
gated from the longest channel of eddy propagation in the SCS to the southwest of the
northern SCS (from the Luzon Strait to ca. 18◦N, 112◦E), often with a long lifecycle [33].
The high RMSE values southwest of Taiwan island in both of the AVISO models reflect the
same distribution characteristic as the longest channel of eddy propagation. This result
may occur because the increased presence of eddies in the channel increases the spatiotem-
poral variability in sea surface conditions, increasing the difficulty in reproducing smaller
eddies. For the two AVISO maps, the poor scale-recognition resolution resulted in higher
RMSE values in the channel. While 2DVAR model benefits from its good scale-recognition
resolution, its RMSE exhibited very low consistency with the propagation channel.

The 2DVAR model exhibited a linear regression correlation coefficient (R) > 0.95 and
had the highest correlation coefficient (C) (ca. 0.98) (Figure 7a,e). The correlation between
the HYCOM data and the S3A hypothesized true value was only 0.64 (Figure 7b), almost
0.30 points smaller than that of the other three models. This is highly consistent with the
differences in RMSE values.
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Figure 7. Correlations between the merged maps: (a,e) 2DVAR, (b) HYCOM, (c) 1/8◦ AVISO,
(d) 1/4◦ AVISO, and S3A (a–d) and J3 (e–h) satellite along-track data. The ratio of the black dotted
line is 1; C is the coefficient of correlation; the red dotted line is the linear regression curve; y represents
its equation; and R is the coefficient of correlation for linear regression.

3.3. Evaluation of Effective Resolution

Figure 8a presents the ADT sequence of the along-track sampling points from the four
merged maps and J3 satellite data for a randomly selected date (9 July 2018). The track
(Figure 8b) is sorted in the sequence P1–6. Among the four merged maps, 2DVAR exhibited
the best fit and best reflected the satellite signal amplitude and small-scale information,
especially at P1–2. HYCOM performed the worst, with the largest deviation from satellite
data, especially at P5–6. The 1/4◦ AVISO model deviated slightly from the satellite data.
The deviation between the 1/8◦ AVISO and 1/4◦ AVISO data waveform was almost regular
at every sampling point. An offset occurred because the time scale of correlation and the
MDT of the customized 1/8◦ AVISO product had been adjusted.

Each product was a mapping of multiple satellite data, including the J3 data. Part of
the merged data approximately 370 and 420 points did not match the ADT variance in J3.
The reasons may not only be related to the smaller temporal scales of these processes than
that used in 2DVAR or AVISO but also to their smaller spatial scales than the background
error correlation coefficient scales.

ER refers to scale-recognition resolution, a parameter that relates the recognition
capability of the altimeter product to the dynamic signal of ocean eddies. Scale-recognition
resolution is defined as the minimum resolvable spatial scale of the signal in the merged
map, and its value indicates the smallest sea-surface eddy that can be distinguished in the
signal from the perspective of energy spectral density [13].

Scale-recognition resolution was calculated using the definitions of ER and UR [21]
based on the wavenumber PSD of the ADT field, using the observational ADT data as a
spatial sequence with distance as the independent variable. ER was obtained using the ratio
of the PSD of the noise to the signal, i.e., the noise–signal ratio (NSR). UR was obtained
using the ratio of the PSD between the estimated value of the merged maps and the satellite
along-track signal, i.e., the signal ratio (SR). At NSR or SR of 0.5, the wavelengths (λ)
corresponding to their positions are ER and UR, respectively. By comparing local phase
differences, using ER reduces the large systematic error generated by the comparison
between the different phases, although it may be more affected by noise. UR reflects a
comparison of spatial sequence spectral amplitudes that relatively better represent the
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energy magnitude of the signal available within the product data. The average value
of each grid point along the track during the study period was recorded to obtain the
resolution along the track.
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Figure 8. The absolute dynamic topography (ADT) sequence (a) from merged maps along the along-
track points of satellite J3 on 9 July. The red and blue dashed lines are the separation position between
different tracks. The J3 satellite track in the South China Sea (SCS) for 9 July (b); red dotted line).
The sequence P1–6 indicates the direction of movement of different parts of the satellite tracks and
corresponds to the sequence of the sampling fragments separated by the red and blue dashed lines.

Data for the same day as in Figure 8 (9 July 2018) was selected to display the PSD
and scale-recognition resolution results. In the wavelength range of 90–400 km, the PSD
value of the mapping field deviation of the 2DVAR product was much lower than that of
the 1/8◦ and 1/4◦ AVISO and HYCOM models (Figure 9a). The PSD value approximately
70–200 km wavelength of the mapping field of the 2DVAR product was higher than that
of the other models shown in Figure 9b. Excluding the 2DVAR model, the other three
models did not differ substantially in PSD. The order of ER and UR of the same product is
consistent among all products (Figure 9c,d). Relative to the two AVISO models, the 2DVAR
model had ER and UR values ca. 30% lower, whereas HYCOM had slightly higher ER and
UR values.

Both ER and UR of the 2DVAR model were mostly between 50 and 150 km, with the
higher resolutions near the coast or islands (Figure 10a–d). The HYCOM data ER showed an
extremely high value, (>200 km) and occupying a large area, with the UR mostly between
100 and 200 km (Figure 10b,f). For the two AVISO models, ER showed 150–250 km in a
large area, with some being ≥250 km. For the two AVISO models, UR was concentrated
approximately 200 km in most parts of the study area. For all four models, ER was much
higher in the vicinity of the Philippine Islands and their coastal waters than else. Owing
to the presence of anomalously fluctuating signals (noise), which could be confused with
small-scale signals in the ocean, ER had limited usefulness for resolving eddies.



Remote Sens. 2023, 15, 4275 14 of 20

Remote Sens. 2023, 15, x FOR PEER REVIEW 14 of 20 
 

 

obtained using the ratio of the PSD between the estimated value of the merged maps and 
the satellite along-track signal, i.e., the signal ratio (SR). At NSR or SR of 0.5, the wave-
lengths (λ) corresponding to their positions are ER and UR, respectively. By comparing 
local phase differences, using ER reduces the large systematic error generated by the com-
parison between the different phases, although it may be more affected by noise. UR re-
flects a comparison of spatial sequence spectral amplitudes that relatively better represent 
the energy magnitude of the signal available within the product data. The average value 
of each grid point along the track during the study period was recorded to obtain the 
resolution along the track. 

Data for the same day as in Figure 8 (9 July 2018) was selected to display the PSD and 
scale-recognition resolution results. In the wavelength range of 90–400 km, the PSD value 
of the mapping field deviation of the 2DVAR product was much lower than that of the 1/8° 
and 1/4° AVISO and HYCOM models (Figure 9a). The PSD value approximately 70–200 
km wavelength of the mapping field of the 2DVAR product was higher than that of the 
other models shown in Figure 9b. Excluding the 2DVAR model, the other three models 
did not differ substantially in PSD. The order of ER and UR of the same product is con-
sistent among all products (Figure 9c,d). Relative to the two AVISO models, the 2DVAR 
model had ER and UR values ca. 30% lower, whereas HYCOM had slightly higher ER and 
UR values. 

 Figure 9. The power spectral density (PSD) that calculated by (a) subtraction and (b) non-subtraction
of the J3 data (except for the gray line in (a), it was the origin data of J3 satellite) from the four merged
maps (2DVAR, HYCOM, 1/8◦ AVISO, and 1/4◦AVISO). (c) Effective resolution (ER) and (d) useful
resolution (UR) of the four merged maps based on NSR and ER, respectively on 9 July.

By definition, the ER value of an area with a high error increases correspondingly, and
the minimum resolved scale of the ocean eddy signal in the data increases. Comparing the
error statistics described in Section 3.2.3, ER > UR for most of the regions with large RMSE.
For example, for the southwestern waters regions with high EKE, around the Dongsha
Islands of Taiwan Island [16], ER < UR for the 1/4◦AVISO model, while for the other three
models, ER > UR. Based on these findings, for zones with large RMSE values, UR is more
effective than ER for identifying eddies.

Determining the ability to reconstruct eddies involves evaluating the scale of the
spatial field and the time scale. Based on a previous work [20], we used the time-frequency
domain and spatial wavenumber as reference elements to determine the 2D distribution
of the energy spectrum of the height field. The merged maps were decomposed via a
3D Fourier transform. In terms of the period, 2DVAR captured the signals much better
than the two AVISO models, within 20 d and 80–200 km (Figure 11a,c,d). The frequency
wavelength PSD of HYCOM was large in the wavelength range of 200–1000 km and in the
period 0–100 d (Figure 11b). The 2DVAR model exhibited a very low proportion of energy
for spatial scale of <80 km (Figure 11a) relative to that in the 80–200 km range, owing to
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filtering by its variational merging. Although the AVISO models had an energy proportion
below 80 km (Figure 11c,d), the method filtered out more energy at the 80–200 scale.
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The 2DVAR and AVISO models were used as the hypothetical ground truthing to
examine the HYCOM data, and a parameter similar to ER was used to score the frequency
wavelength PSD (FWPSDs), as follows [20]:

FWPSDs = 1− FWPSD(ADT − ADTtrue)/FWPSD(ADTtrue) (8)

A PSD distribution with a score > 0.5 is considered accurate and reliable. For the
2DVAR models, the HYCOM data were reliable in time–space frequency domain > 80 km,
regardless of the time span (Figure 12a). For the two AVISO models, HYCOM was con-
sidered reliable only for frequency domains > 150 km, and improved as the time scale
increased (Figure 12b,c).
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Based on these results, the 2DVAR merged maps have the highest quality and lowest
ER among the four models. In an early study [20], 2DVAR merged maps had a higher ER
than the 1/4◦ AVISO merged maps for the East China Sea region, especially in the open
ocean and to the north of Taiwan Island, where mesoscale eddies are relatively large and
long-lasting. Here, for the SCS, 2DVAR merged maps achieved better performance than
1/4◦ AVISO merged maps in reconstructing mesoscale oceanic structure, and their ER was
as low as 130 km, or even 110 km around the middle latitudes [12]. For the California
Current system, the 2DVAR merged maps could resolve smaller scales than the global 1/4◦

DUACS-DT2018 maps [11]. These findings together demonstrate that the 2DVAR model
has advantages in terms of its merged map quality and ER, and without region-dependent.

4. Discussion
4.1. Signal Composition in Background Field and Associated Error

For the AVISO models, the background-field MDT was obtained using a multiyear-
averaged SSH field. Therefore, the signal contained in the background field is strongly
time-smoothed, and the error associated with the background field contained more large-
scale ocean circulation signals, interannual variation, and seasonal variation. At the same
time, the 2DVAR background field did not smooth the signal for any time or region, and
induct an evolution error to maintain all signals in the merging processes. Therefore, the
background error with the 2DVAR method comprised more small and mesoscale signals
than that with the AVISO.

4.2. Filtering Effect of Correlation Coefficient Scale in Variational Method

The wavenumber energy spectral density of the background error and the characteris-
tics of the background error covariance have similar physical (filtering) characteristics.

The filtering characteristics of the PSD associated with the background error decrease
with the spatial scale, owing to the localization and intermittence of small-scale systems,
and small-scale errors can only represent a certain proportion of the background error.
When the spatial scale of the correlation coefficient is larger, the proportion represented
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by small scale error is less. For authentic ocean signals, when the proportion of the signal
energy of a certain scale is lower, the error of that scale is more difficult to correct in the
merged maps.

Based on these filtering characteristics, and owing to authentic ocean signals of the
AVISO merged maps, it is difficult to distinguish small-scale oceanic structure, due to the
larger correlation length scale with the AVISO method.

4.3. The Scale of Effective Resolution Compared with Eddy Radius

The correlation length scale was 10 km for 2DVAR and 100 km for AVISO. The 2DVAR
ER was 50–150 km, while that of both AVISO models was 150–250 km.

For the eddies in the SCS, the 2DVAR ER range includes the peak wavelength of the
eddy radius Rayleigh distribution, whereas AVISO fails to include the peak wavelength.
The 2DVAR merged map can reconstruct mesoscale eddies more accurately than the
AVISO maps.

4.4. The Restriction of HYCOM and the Advantages of 2DVAR

HYCOM reanalysis was produced using data assimilation. Altimetry data is first
used to estimate temperature and salinity vertical profiles, employing the ISOP (Improved
Synthetic Ocean Profiles) algorithm. The estimated temperature and salinity profiles are
then assimilated into HYCOM. This assimilation method may limit the impact of altimetry
data in the reanalysis:

• There is limited historical sampling data, leading to inaccurate assimilation of height
field results.

• Non-steric sea surface heights in the altimeter data cannot be assimilated.
• The set of an assimilation thresholds is defined as the noise level of the satellite

altimeter (currently set to 4 cm), which restricts the merging of small-scale information.

It is believed that the long background field time window of AVISO is the key fac-
tor causing its resolution to decline. The 2DVAR model has additional technical advan-
tages [23]:

• The matrix deformation avoids inversion of the background error covariance matrix
and can be minimized over the entire grid domain, and is therefore suitable for solving
high-resolution problems with a large number of grid points.

• The processing methods of the background error covariance matrix and observation
error covariance matrix are more flexible than those of the other models; this flexibility
is convenient for simplifying and introducing dynamic constraints.

• Using the observation operator H, it is easy to merge the observation data of different
properties.

Comparing with HYCOM, 2DVAR does not depend on the above assumptions such
as ‘noise level’, directly merges along-track data, and applies the correlation length scale
to supplement noise filtering, thereby retaining small and mesoscale signals. Therefore,
the obtained 2DVAR merged map provides higher quality reconstructions than the map
obtained using HYCOM reanalysis data.

4.5. Limitations and Future Work

Although the ER of 2DVAR product has been effectively improved, many small-scale
processes still cannot be resolved due to the temporal and spatial scales. To increase
the density of observation and acquire more valid information, 2DAVR introduced the
evolutionary error in the observation error (Rs = Rm + Re, the observation error covariance
matrix Rs consists of measurement Rm and evolutionary error covariance matrices Re) to
address the difference between observation time and mapping time [12]. In addition, the
wide-swath Surface Water and Ocean Topography (SWOT) mission was launched on 15
December 2022. As a result, the findings of this study can be extended to resolve small-scale
features in maps derived using data from new multi-satellite altimeters, including SWOT
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data [34]. The multi-scale data merging will be tried to improve further the ER of merged
maps in the future [35].

5. Conclusions

The analyses have shown that the ER of the 2DVAR mapped altimetry data is ap-
proximately 130 km, while it is approximately 250 km for both the 1/8◦ and 1/4◦ AVISO
mapped data products. The factors for increasing the effective resolution was then ex-
amined. Both the 2DVAR and AVISO OI methods were formulated based on optimal
estimation theory, and they are equivalent to each other [15]. The differences arise only
from their implementation.

It was shown that the differences in the effective resolution result from the difference
in the chosen background states and thus the associated background error. In the 2DVAR
method, the mapped SSH of the previous day was used as the background state, while a
25 yeas mean used as the background state in the AVISO OI method. Thus, the background
error with the 2DVAR method are relatively dominated by meso- and small-scale signals. In
contrast, the background error with the AVISO OI method is the anomalies from the 25 year
mean, and thus it includes large-scale signals, such as interannual and seasonal variabilities.
The large-scale signals leads to a larger correlation length scale. A large correlation length
scale imposes stronger filtering effect on the merged maps. Thus, the large correlation
length scale is the main reason for a low effective resolution with 1/4◦ AVISO, even with a
finer spatial grid of 1/8◦ AVISO and 1/12◦ HYCOM.
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