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Abstract: A hyperspectral image (HSI) has a very high spectral resolution, which can reflect the
target’s material properties well. However, the limited spatial resolution poses a constraint on its
applicability. In recent years, some hyperspectral pansharpening studies have attempted to integrate
HSI with PAN to improve the spatial resolution of HSI. Although some achievements have been
made, there are still shortcomings, such as insufficient utilization of multi-scale spatial and spectral
information, high computational complexity, and long network model inference time. To address
the above issues, we propose a novel U-shaped hyperspectral pansharpening network with channel
cross-concatenation and spatial–spectral attention mechanism (CCC-SSA-UNet). A novel channel
cross-concatenation (CCC) method was designed to effectively enhance the fusion ability of different
input source images and the fusion ability between feature maps at different levels. Regarding
network design, integrating a UNet based on an encoder–decoder architecture with a spatial–spectral
attention network (SSA-Net) based on residual spatial–spectral attention (Res-SSA) blocks further
enhances the ability to extract spatial and spectral features. The experiment shows that our proposed
CCC-SSA-UNet exhibits state-of-the-art performance and has a shorter inference runtime and lower
GPU memory consumption than most of the existing hyperspectral pansharpening methods.

Keywords: U-shaped fusion network; hyperspectral image super-resolution; hyperspectral
pansharpening; channel cross-concatenation; spatial–spectral attention mechanism

1. Introduction

As a data cube, HSI often contains hundreds of spectral bands. HSI can reconstruct
any point in space through its continuous and fine spectral curves, thus simultaneously
obtaining the target’s spatial and material properties. However, due to the limitations of
sensors, HSI often has low spatial resolution. In many applications, such as fine classifi-
cation of land cover [1], medical diagnosis [2], and anomaly detection [3], HSI is required
to have the characteristics of high spatial resolution and hyperspectral resolution at the
same time. For these reasons, HSI SR has become a research hotspot. At present, RGB
image super-resolution technology is very mature. There are many methods for single RGB
image super-resolution (SISR), including the interpolation method, reconstruction method,
traditional machine-learning method, and deep learning method. However, because hyper-
spectral images have higher spectral dimensions than RGB images, HSI SR technology is
more challenging than SISR. At present, HSI SR technology has achieved some research
results but is still under development. How to improve the spatial resolution and maintain
as much spectral information as possible is a pressing problem to be solved [4].
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According to whether additional information is used (such as multispectral image
(MSI), RGB image, or panchromatic image (PAN)), the existing HSI SR methods can be
roughly classified into the following three categories: (1) single HSI SR method without
any other auxiliary image; (2) RGB or MSI spectral super-resolution reconstruction method;
and (3) the method based on fusion is to fuse HSI and its corresponding auxiliary image,
and the method of fusing HSI and PAN is also called hyperspectral pansharpening.

Hyperspectral pansharpening has evolved from the research on pansharpening, which
involves the fusion of MSI and PAN. This method achieves a balance between improving
spatial resolution and maintaining spectral information. The study of MSI and PAN image
fusion has been ongoing for several decades and has reached a performance bottleneck,
with minimal differences in the performance of different fusion methods, making them
visually indistinguishable. On the other hand, research on the fusion of HSI and PAN
started relatively late and still holds significant potential for development.

Early pansharpening methods primarily relied on traditional techniques such as com-
ponent substitution (CS) [5–8], multiresolution analysis (MRA) [9–11], and optimization-
based methods [12–16]. In recent years, deep learning methods based on artificial neural
networks have exhibited remarkable efficacy in diverse computer vision tasks. These tasks
include high-level applications such as object detection [17,18], object tracking [19], and im-
age classification [20], as well as low-level applications such as image denoising [21], image
deblurring [22], and image super-resolution [23–27], achieving excellent results. Inspired
by these studies, researchers have gradually started to introduce various deep learning
methods into the field of hyperspectral pansharpening. Examples include HyperPNN [28]
and Hyper-DSNet [29] based on convolutional neural networks (CNNs), DHP-DARN [30],
and DIP-HyperKite [31] based on deep image prior network (DIP-Net) and CNNs, PS-
GDANet [32], and HPGAN [33] based on generative adversarial networks (GANs), as well
as HyperTransformer [34] based on Transformer.

After an extensive literature review, we identified the following issues with existing
deep learning-based hyperspectral pansharpening methods. HyperPNN focuses solely
on the fusion of single-scale information and fails to achieve satisfactory fusion quality.
DIP-HyperKite employs an encoder–decoder network with layer-wise upsampling and
downsampling for multiscale information fusion, which significantly increases computa-
tional complexity and GPU memory consumption. Both DHP-DAR and DIP-HyperKite
utilize a two-step pansharpening approach, involving upsampling the LR-HSI using a
deep prior network followed by image fusion using a convolutional neural network. This
approach substantially increases the inference runtime of the network model, and the
adopted deep prior network exhibits significant instability. While recent Transformer-based
pansharpening networks such as HyperTransformer have achieved good fusion results,
their large parameter and computational requirements pose high demands on computer
performance, thereby reducing their practicality. To address the drawbacks of the aforemen-
tioned methods and effectively extract spatial and spectral features from the input HSI and
PAN, we propose a U-shaped network with channel cross-connection and spatial–spectral
attention mechanism.

The contributions of this paper are summarized as follows:

• We propose a novel framework for hyperspectral pansharpening named the CCC-SSA-
UNet, which integrates the UNet architecture with the SSA-Net.

• We propose a novel channel cross-concatenation method called Input CCC at the
network’s entrance. This method effectively enhances the fusion capability of different
input source images while introducing only a minimal number of additional param-
eters. Furthermore, we propose a Feature CCC approach within the decoder. This
approach effectively strengthens the fusion capacity between different hierarchical
feature maps without introducing any extra parameters or computational complexity.

• We propose an improved Res-SSA block to enhance the representation capacity of
spatial and spectral features. Experimental results demonstrate the effectiveness
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of our proposed hybrid attention module and its superiority over other attention
module variants.

The remaining sections of this paper are organized as follows. Section 2 reviews
related works about pansharpening methods, including classical pansharpening methods
and deep learning-based methods. Section 3 provides a detailed exposition of the proposed
methodology. Section 4 presents the experimental results and provides a comprehensive
discussion. The conclusion of the paper is given in Section 5.

2. Related Work

HSI holds versatile applications in pansharpening [35], change detection [36], ob-
ject detection [37], and classification [38] tasks, making it invaluable in various domains.
This research specifically delves into the realm of pansharpening, where our focus lies.
Within this section, we meticulously investigate both classical pansharpening methods
and deep learning-based pansharpening methods, aiming to unravel their potential and
advancements in this domain.

2.1. Classical Pansharpening Methods

Classical pansharpening methods can be roughly classified into the following three
categories: CS, MRA, and optimization-based methods.

The CS approach first transforms the HSI into a new projection space, decomposes it
into spectral components and spatial components, and then replaces its spatial components
with a panchromatic image. Subsequently, the inverse transformation is applied to generate
the reconstructed image. Typical CS approaches include IHS color space transformation [39],
Gram–Schmidt (GS) transformation [5], Gram–Schmidt transformation with adaptive
weights (GSA) [6], principal component analysis (PCA) [8], and guided filter principal
component analysis (GFPCA) [7]. This category of methods is easy to implement and
exhibits fast processing speeds while effectively preserving spatial information. However,
these methods might introduce certain degrees of distortion to spectral information.

The MRA approach involves initially downsampling the HR-PAN image at multiple
scales and decomposing it into high-frequency and low-frequency components. Subse-
quently, these components are then fused with the upsampled HSI according to various
fusion rules, and finally, an inverse transformation is applied to obtain the reconstructed
image. Typical methods within the MRA category can be classified as follows: the Laplacian
pyramid method [40], the approach [41] based on undecimated discrete wavelet transform
(UDWT) and the generalized Laplacian pyramid (GLP), the method using modulation
transfer function and GLP (MTF-GLP) [9], and MTF-GLP with High Pass Modulation (MTF-
GLP-HPM) [11], as well as the integration of MRA with CNNs, as seen in LPPNet [42].
The advantages of these methods lie in their ability to incorporate high-frequency spatial
details into the HSI while preserving spectral information. However, they may result in the
loss of some spatial information and introduce ringing artifacts.

CS-based and MRA-based methods are primarily employed in the field of MSI pan-
sharpening. Due to the relatively low spatial resolution of HSI, pixel-level ambiguity often
arises, rendering CS and MRA less suitable for addressing the fusion of HSI and PAN.
Instead, optimization-based approaches are suitable to tackle this problem.

The core idea of the optimization-based approach lies in treating the fusion problem as
an inverse reconstruction problem. By establishing a relationship model between the origi-
nal image and the reference ground truth image, the model is mathematically optimized
to obtain a solution. Bayesian estimation methods [12–14,43,44] and matrix factorization
methods [15,16,45] are commonly used optimization-based methods. In contrast to the
CS-based and MRA-based methods, these methods perform well in preserving both spa-
tial and spectral information. However, due to their high computational demands, these
methods also require massive computational resources.
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2.2. Deep Learning-Based Pansharpening Methods

In the earlier research on deep learning-based pansharpening, the Pansharping Neu-
ral Network (PNN) [46] treated HR-PAN as an additional spectral band of LR-MSI, and
employed three convolutional layers to learn the mapping relationship between the com-
posited image of HR-PAN and LR-MSI and the reference ground truth MSI. However, this
fusion method only combined the two input images at a basic level. Moreover, the utilized
convolutional network was overly simplistic, which hindered the extraction of intricate
spectral and spatial information. Consequently, the fusion performance was compromised.
Yuan et al. [47] introduced a multi-scale and multi-depth CNN (MSDCNN) that improved
upon the PNN by employing parallel multi-scale convolutional blocks to enhance the
representational capacity.

Certain approaches employ a strategy of separately extracting features from the two
input images before fusion. Liu et al. [48] proposed a TFNet, which employs two sub-
networks to extract spectral and spatial features from the upsampled LR-MSI and the
corresponding HR-PAN images, respectively. These features are then fused using a fusion
network comprising multiple convolutional layers. Finally, an image reconstruction process
is carried out using a reconstruction network.

In addition to fusing the features extracted from the two inputs, some methods propose
the fusion of an original HR-PAN with deep features extracted from LR-HSI. He et al. [28]
introduced two spectral prediction CNNs, called HyperPNN1 and HyperPNN2, which
initially extract spectral features from the upsampled LR-HSI using two convolutional
layers. These spectral features are then concatenated with the HR-PAN image and subjected
to fusion reconstruction through multiple convolutional layers. While both HyperPNN1
and HyperPNN2 share a fundamental network structure, HyperPNN2 incorporates an
additional residual structure with skip connections. These methods effectively extract
features from the LR-HSI input. However, the process of feature fusion does not adequately
account for the correlation between LR-HSI and HR-PAN. Additionally, some methods
adopt the fusion of the upsampled LR-HSI with high-frequency detail features extracted
from HR-PAN. Zhuo et al. [29] devised an HSI pansharpening network named Hyper-
DSNet. This network employs five spatial domain high-pass filter templates to extract
high-frequency detail characteristics from the HR-PAN. Subsequently, these extracted
details are concatenated with the upsampled LR-HSI in the spectral dimension. The
network architecture incorporates multi-scale convolutional modules, shallow-to-deep
fusion structures, and a spectral attention mechanism. This method retains inherent spatial
details and spectral fidelity.

In recent years, attention mechanisms have been widely applied in various computer
vision tasks such as image super-resolution, object detection, and object recognition. The
principle underlying attention mechanism is to automatically highlight the most informa-
tive components while suppressing less relevant ones, thereby enhancing computational
efficiency. Hu et al. [49] initially introduced the channel attention mechanism, where a
Squeeze-and-Excitation (SE) module, constructed using global average pooling along the
spatial dimensions and two 1 × 1 convolutions, was employed to improve the object recog-
nition performance of networks. Building upon the SE module, Roy et al. [50] proposed
a concurrent spatial and channel Squeeze-and-Excitation (scSE) module, which utilized
convolutional layers with 1 × 1 × C kernels and sigmoid activation functions to gener-
ate spatial attention maps. The scSE module then combined with the channel attention
mechanism, yielding promising results in medical image segmentation. Motivated by
this, Zheng et al. [30] proposed a hyperspectral pansharpening approach based on Deep
Hyperspectral Prior (DHP) and Dual Attention Residual Network (DARN) that combines
spatial–spectral attention mechanisms. In this approach, the DHP process solely employs
spectral constraints, overlooking spatial constraints. Moreover, the fusion network only
employs single-scale feature maps for fusion, neglecting multi-scale feature information.
To overcome these limitations, Bandara et al. [31] introduced a novel spatial constraint in
the Deep Image Prior (DIP) upsampling process and proposed the HyperKite network for
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residual reconstruction. HyperKite employs an encoder–decoder network that sequentially
performs upsampling and downsampling layers for multi-scale feature fusion. However,
the simplistic encoder–decoder architecture in HyperKite hinders the extraction of fine
spectral and spatial information. Additionally, the layered upsampling and downsampling
design imposes a significant computational burden.

In addition to the aforementioned CNN-based pansharpening methods, in recent
years, pansharpening approaches based on Generative Adversarial Networks (GANs)
have also emerged. Dong et al. [32] developed a specific pansharpening framework us-
ing a Paired-Shared Generative Dual Adversarial Network (PS-GDANet), featuring two
discriminators. The spatial discriminator enforces the similarity between the intensity
component of the pansharpened image and the panchromatic (PAN) image, while the
spectral discriminator aids in preserving the spectral characteristics of the original HSI
image. This configuration enables the network to generate high-resolution pansharpened
images. Xie et al. [33] introduced a high-dimensional pansharpening framework called
HPGAN based on a 3D Generative Adversarial Network (3D-GAN) and devised a loss
function that comprehensively considers global, spectral, and spatial constraints. Despite
the favorable perceptual quality of images generated by GANs, the instability in generating
images was not well received in the remote sensing field.

The Transformer architecture initially emerged in the field of natural language pro-
cessing and was later introduced to computer vision. In recent years, with the continuous
development and expansion of the Transformer, it has also made its mark in the domain of
hyperspectral pansharpening. Bandara et al. [34] introduced a novel Transformer-based
pansharpening network known as HyperTransformer. This network comprises three core
modules: two separate PAN and HSI feature extractors, a multi-head feature attention
module, and a spatial–spectral feature fusion module. Despite its enhancement of the
spatial and spectral quality of the pansharpened HSI, the network’s large parameter count
and high computational load pose challenges to its practical applicability.

3. Proposed Method

This section will provide a detailed introduction to the proposed method from
three aspects: problem statement and formulation, network architecture design, and loss
function design.

3.1. Problem Statement and Formulation

Original hyperspectral image (LR-HSI) possesses high spectral resolution but suffers
from low spatial resolution, whereas panchromatic image (PAN) exhibits high spatial
resolution but lacks spectral information. Therefore, employing a fusion approach to com-
bine these two types of image data is an effective means to obtain high-spatial-resolution
hyperspectral image (HR-HSI). The main objective of this paper is to design a deep neural
network model that can fuse LR-HSI and PAN to generate high-quality HR-HSI.

Let X ∈ Rh×w×C represent LR-HSI, with a spatial resolution of h× w pixels and C
spectral bands. Let P ∈ RH×W×1 represent PAN, with a spatial resolution of H ×W pixels

and a single spectral band. Let
^
Y ∈ RH×W×C denote the reconstructed hyperspectral image

(HR-HSI), with a spatial resolution of H×W pixels and C spectral bands. Let Y ∈ RH×W×C

represent the reference ground truth HR-HSI (Ref-HR-HSI), with a spatial resolution of
H ×W pixels and C spectral bands. Additionally, it is assumed that conditions H > h,
W > w and C >> 1 hold. Then, the training process of the HSI-PAN fusion network can
be described as follows: The training dataset {[X1, P1, Y1], · · · , [XD, PD, YD]} consists of
D pairs of images. These images are processed by the neural network model Φ(·, ·; Θ),

resulting in the output image set
[

^
Y1, · · · ,

^
YD

]
. The parameters Θ of the neural network are

continuously optimized and adjusted using an optimization algorithm, aiming to minimize
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the difference between
^
Yd(1 ≤ d ≤ D) and Yd until it converges to a certain value. The

training process of the network can be represented by the following equation:

Θ̂ = argminΘ
1
D

D

∑
d=1

Loss(
^
Yd, Yd) s.t.

^
Yd = Φ(Xd, Pd; Θ) (1)

where Θ̂ represents the optimized network parameters and Loss(·, ·) refers to the loss
function employed by the network. The loss function quantifies the dissimilarity between

the predicted output
^
Yd and the desired target Yd, facilitating the training and optimization

of the network.
During the testing phase, test image pairs [Xt, Pt] are processed using a neural network

model Φ(·, ·; Θ̂) with pre-trained parameters Θ̂, resulting in the final output fused image
^
Yt. The testing process of the network can be represented by the following equation:

^
Yt = Φ(Xt, Pt; Θ̂) (2)

where, Xt and Pt respectively represent the input LR-HSI and PAN images used for testing,

while
^
Yt denotes the fused image, which is the final output of the network.

The schematic diagram of the training and testing phases of the deep learning-based
HSI-PAN fusion network is illustrated in Figure 1.
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3.2. Network Design

Figure 2 illustrates the overall network architecture of the proposed CCC-SSA-UNet.
CCC-SSA-UNet takes an LR-HSI (represented by X ∈ Rh×w×C) and a PAN (represented

by P ∈ RH×W×1) as initial inputs and outputs an HR-HSI (represented by
^
Y ∈ RH×W×C).

Following the design of DHP-DARN [30] and DIP-HyperKite [31], our pansharpening
network CCC-SSA-UNet adopts a residual learning-based framework. Firstly, LR-HSI X is
upsampled using bilinear interpolation to obtain the image U ∈ RH×W×C, which has the
same spatial resolution as P. Then, the proposed Input CCC method is applied to cross-
concatenate U and P in the channel dimension, resulting in the image O ∈ RH×W×(C+m).
Image O is fed into a U-shaped network to learn the residual image Xres ∈ RH×W×C for
HR-HSI. Finally, the residual image Xres is pixel-wise added to the image U to obtain the
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final fusion result
^
Y. The aforementioned process can be described using the following

equation:
U =↑ (X) (3)

Xres = fCCC−SSA−UNet(U, P) (4)

^
Y = U + Xres (5)

where ↑ (·) represents bilinear interpolation for upsampling, while fCCC−SSA−UNet(·, ·)
represents the proposed CCC-SSA-UNet network introduced in this paper.
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scribed using the following equation: 

( )=↑U X  (3) 

- - ( , )res CCC SSA UNetf=X U P  (4) 

ˆ
res= +Y U X  (5) 

where ( )↑   represents bilinear interpolation for upsampling, while ( , )CCC SSA UNetf − −    
represents the proposed CCC-SSA-UNet network introduced in this paper. 

 
Figure 2. The architecture of the proposed CCC-SSA-UNet. CCC-SSA-UNet takes an LR-HSI and a 
PAN as input and takes an HR-HSI as output. It combines UNet and SSA-Net, exploits the “Conv 
Block” as the main building block of the UNet backbone, and adopts the Res-SSA block as the main 
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Figure 2. The architecture of the proposed CCC-SSA-UNet. CCC-SSA-UNet takes an LR-HSI and a
PAN as input and takes an HR-HSI as output. It combines UNet and SSA-Net, exploits the “Conv
Block” as the main building block of the UNet backbone, and adopts the Res-SSA block as the main
building block of the SSA-Net. In each “Conv Block” of the UNet, the input is first passed through
a 3 × 3 convolution and subsequently is passed through a batch normalization layer (BN) and a
LeakyReLU layer. In this way, the feature map is extracted and passed to the next layer. Finally, the
output of UNet is passed through a 1 × 1 convolution to produce the residual map of the Up-HSI and
then the residual map and Up-HSI are element-wise summed to produce the final output HR-HSI.
“DownSample 2×” denotes 2 × 2 maxpooling, and “UpSample 2×” and “UpSample 4×” denote
bilinear interpolation with scale 2 and scale 4, respectively. “Input CCC” and “Fea CCC” denote
channel cross-concatenation of input images and feature maps, respectively.

The main idea behind CCC-SSA-UNet is to integrate the U-Net [51], based on an
encoder–decoder architecture, with the SSA-Net, which incorporates spatial–spectral resid-
ual attention modules. The encoder–decoder architecture is applicable in many areas such
as medical science [52], HSI classification [53], and agriculture science [54]. Firstly, we
construct a U-shaped encoder–decoder network similar to U-Net, named UNet. Within
UNet, we introduce the SSA-Net, which utilizes spatial–spectral attention mechanisms,
between the layers of the encoder and their corresponding decoder counterparts. This
design aims to enhance the expression capability of both spatial and spectral features.
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Additionally, we propose novel channel cross-concatenation methods, namely Input CCC
and Feature CCC, at the network’s entrance and within the decoder, respectively. These
methods effectively enhance the fusion capability of different input source images and the
fusion capability between different hierarchical feature maps while minimizing additional
computational complexity.

3.2.1. UNet Backbone

The network design of CCC-SSA-UNet draws inspiration from the state-of-the-art
RGB image denoising method DRUNet [55] and the hyperspectral pansharpening method
DIP-HyperKite [31]. Similar to DRUNet, our UNet backbone network consists of four
scales with skip connections between the encoder and decoder at each scale. The number of
channels at each layer varies across scales, denoted as C f 0, C f 1, C f 2, and C f 2 from the first
to the fourth scale, respectively. These parameters are determined through experimentation,
and the specific parameter settings will be described in Section 4.3.

The UNet backbone network we propose is composed of several key components. The
encoder consists of three Conv Block modules and three downsampling modules, which
are arranged in an alternating manner. Similarly, the decoder follows the same structure,
with three upsampling modules and three Conv Block modules. The skip connections
between each layer of the encoder and its corresponding decoder are equipped with the
SSA-Net, enhancing the fusion and representation capabilities. Additionally, a Bottleneck
layer, comprising one Conv Block module, resides between the last downsampling module
and the first upsampling module, facilitating the information flow between the encoder
and decoder pathways.

The Conv Block module consists of consecutive layers, including a 3× 3 convolutional
layer with a stride of 1, a batch normalization layer, and a LeakyReLU activation function
layer. This module plays a crucial role in feature extraction in the encoder and feature
reconstruction in the decoder. Mathematically, the Conv Block module can be represented
as follows:

CBout = fCB(CBin) = δ(BN(Conv3×3(CBin))) (6)

where CBin represents the input and CBout represents the output of the Conv Block module,
fCB(·) represents the function representation of the Conv Block module, δ(·) represents
the LeakyReLU activation function, BN(·) represents the batch normalization layer, and
Conv3×3(·) represents the 3 × 3 convolutional layer. It should be noted that the Conv Block
module sequentially connects these layers to effectively capture and process the input
features throughout the network.

In the encoder section, the output image O ∈ RH×W×(C+m) from Input CCC undergoes
a series of operations. First, it passes through the first Conv Block module, resulting in the
first-level feature map E1 ∈ RH×W×C f 0 . Subsequently, E1 is processed by a downsampling
layer, yielding a feature map Ed1 ∈ RH/2×W/2×C f 0 with half the spatial dimensions. Ed1
then undergoes the second Conv Block module, generating the second-level feature map
E2 ∈ RH/2×W/2×C f 1 , which is further downsampled to obtain the feature map Ed2 ∈
RH/4×W/4×C f 1 . Similarly, Ed2 goes through the third Conv Block module, producing the
third-level feature map E3 ∈ RH/4×W/4×C f 2 , followed by downsampling to obtain the
feature map Ed3 ∈ RH/8×W/8×C f 2 . Finally, Ed3 is processed by the fourth Conv Block
module, generating the feature map B ∈ RH/8×W/8×C f 2 in the Bottleneck layer. This
process can be mathematically represented as follows:

E1 = fCB1(O) (7)

E2 = fCB2(Ed1) = fCB2(↓ (E1)) (8)

E3 = fCB3(Ed2) = fCB3(↓ (E2)) (9)
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B = fCB4(Ed3) = fCB4(↓ (E3)) (10)

where fCBi(·), i = 1, 2, 3, 4 represents the functional notation for the i-th Conv Block module,
which greatly contributes to feature extraction and reconstruction. On the other hand, ↓ (·)
signifies the 2 × 2 maxpooling operation, employed for downsampling the feature maps to
reduce their spatial dimensions.

Subsequently, the feature maps from the first three levels denoted as E1, E2, and E3
undergo spatial and spectral feature enhancement using the respective SSA-Net mod-
ules at their corresponding levels. This enhancement process yields refined feature maps
Q1 ∈ RH×W×C f 0 , Q2 ∈ RH/2×W/2×C f 1 , and Q3 ∈ RH/4×W/4×C f 2 , which embody strength-
ened spatial and spectral characteristics. These transformations can be mathematically
represented by the equations as follows:

Q1 = fSSA−Net1(E1) (11)

Q2 = fSSA−Net2(E2) (12)

Q3 = fSSA−Net3(E3) (13)

where fSSA−Net1(·), fSSA−Net2(·), and fSSA−Net3(·) denote the functional representations of
the SSA-Net modules at the three corresponding levels. The comprehensive design details
of these modules will be presented in Section 3.2.3.

Within the decoder section, the feature map B is initially subjected to an upsampling
operation, yielding the feature map R3 ∈ RH/4×W/4×C f 2 . Subsequently, the Feature CCC
method is utilized to concatenate the feature map R3 with the output feature map Q3 from
the third-level SSA-Net, leading to the formation of the feature map O′3 ∈ RH/4×W/4×2C f 2 .
Following this, O′3 is processed through the fifth Conv Block module, resulting in the
refined feature map D1 ∈ RH/4×W/4×C f 2 , which is further upsampled to generate the
feature map R2 ∈ RH/2×W/2×C f 1 . Simultaneously, the feature map R2 is merged with the
output feature map Q2 from the second-level SSA-Net via channel concatenation, resulting
in the composite feature map O′2 ∈ RH/2×W/2×2C f 1 . O′2 is then passed through the sixth
Conv Block module, generating the enhanced feature map D2 ∈ RH/2×W/2×C f 0 . Further
upsampling is performed on D2, producing the feature map R1 ∈ RH×W×C f 0 . Lastly, the
feature map R1 is merged with the output feature map Q1 from the first-level SSA-Net
through channel concatenation, yielding the combined feature map O′1 ∈ RH×W×2C f 0 . O′1
subsequently undergoes processing through the seventh Conv Block module, culminating
in the final feature map D3 ∈ RH×W×C. These transformations can be mathematically
represented by the equations as follows:

O′3 = FeaCCC(Q3, R3) = FeaCCC(Q3, ↑ (B)) (14)

D1 = fCB5(O′3) (15)

O′2 = FeaCCC(Q2, R2) = FeaCCC(Q2, ↑ (D1)) (16)

D2 = fCB6(O′2) (17)

O′1 = FeaCCC(Q1, R1) = FeaCCC(Q1, ↑ (D2)) (18)

D3 = fCB7(O′1) (19)

where fCBi(·), i = 5, 6, 7 represents the functional notation for the i-th Conv Block module,
while ↑ (·) denotes the bilinear interpolation operation for upsampling, which increases
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the spatial resolution of the feature maps by a factor of 2. Meanwhile, FeaCCC(·) de-
notes the specific procedure of the proposed Feature CCC, which will be elaborated on in
Section 3.2.2.

Finally, following the encoder section, we introduce a 1 × 1 convolutional layer for the
reconstruction of residual maps. This process can be mathematically represented as follows:

Xres = Conv1×1(D3) (20)

where the symbol Conv1×1(·) represents a 1 × 1 convolutional layer, and Xres ∈ RH×W×C

represents the residual image obtained after reconstruction.
The aforementioned details elucidate the design specifics of our proposed CCC-

SSA-UNet backbone network, which draws inspiration from the design principles of
DRUNet [55] and DIP-HyperKite [31] while featuring notable differences. CCC-SSA-UNet
distinguishes itself from DRUNe in three key aspects. Firstly, our backbone network em-
ploys 2 × 2 maxpooling downsampling and bilinear interpolation upsampling, in contrast
to DRUNet’s use of 2 × 2 stride convolution (SConv) and 2 × 2 transpose convolution
(TConv). This design choice reduces the parameter count in the sampling layers. Secondly,
CCC-SSA-UNet utilizes a single Conv Block in each encoder or decoder block, as opposed
to DRUNet’s employment of four residual convolution blocks. This design decision reduces
the complexity of the encoder–decoder network. Lastly, CCC-SSA-UNet places the skip
connections before each downsampling layer of the encoder and after the corresponding up-
sampling layer of the decoder, in contrast to DRUNet’s placement after each downsampling
layer and before each upsampling layer. This arrangement maximizes the preservation
of extracted features by the encoder, mitigating spatial information loss resulting from
immediate upsampling following downsampling.

The CCC-SSA-UNet and DIP-HyperKite [31] exhibit three notable differences. First,
DIP-HyperKite employs an architecture that performs layer-wise upsampling followed by
downsampling, while our CCC-SSA-UNet adheres to the U-Net [51] architecture, which
performs downsampling followed by upsampling. This design choice results in reduced
intermediate feature map size, decreased computational complexity, and minimized GPU
memory consumption. Second, DIP-HyperKite incorporates a DIP-Net for upsampling
preprocessing of LR-HSI, while our CCC-SSA-UNet directly employs bilinear interpolation
for upsampling, significantly reducing the inference time of the network model. Last, DIP-
HyperKite employs direct skip connections between each encoder and its corresponding
decoder, whereas our CCC-SSA-UNet integrates the SSA-Net, leveraging spatial–spectral
attention mechanisms, between each encoder and its corresponding decoder. This design
choice further enhances the representation capability of spatial–spectral features.

3.2.2. CCC

To enhance the fusion capability of different information sources, we propose a novel
channel cross-concatenation method, referred to as CCC, which is shown in Figure 3.
Based on the nature of the input sources, CCC can be further divided into two categories:
Input CCC and Feature CCC. Input CCC refers to the channel cross-concatenation method
between the HSI and PAN inputs, aiming to enhance the fusion capability of different input
source images. On the other hand, Feature CCC refers to the channel cross-concatenation
method between two feature maps, aiming to enhance the fusion capability between feature
maps at different levels.
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Figure 3. Schematic illustration of the proposed CCC method. (a) Schematic illustration of the
proposed Input CCC operation. The tensors corresponding to Up-HSI and PAN are taken as inputs,
and the result of channel cross-concatenation is used as the output. The spatial resolution of Up-HSI
is H ×W pixels, and it has a spectral bandwidth of C. The spatial resolution of PAN is H ×W pixels,
and it has a spectral bandwidth of Cp. The spatial resolution of output is H ×W pixels, and it has a
spectral bandwidth of Co. (b) Schematic illustration of the proposed Feature CCC operation. Feature
1 denotes the first input feature map of Feature CCC, and Feature 2 denotes the second input feature
map of Feature CCC. The tensors corresponding to Feature 1 and Feature 2 are taken as inputs, and
the result of channel cross-concatenation is used as the output. The spatial resolution of Feature 1 is
H ×W pixels, and it has a spectral bandwidth of Cq. The spatial resolution of Feature 2 is H ×W
pixels, and it has a spectral bandwidth of Cr. The spatial resolution of output is H ×W pixels, and it
has a spectral bandwidth of Co′ .
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• Input CCC

Figure 3a illustrates the working principle of Input CCC. The input consists of two
tensors corresponding to different source images, namely Up-HSI and PAN. The output is
the tensor obtained by performing channel cross-concatenation.

First, the Up-HSI is divided into m parts along the channel dimension, ensuring that
the first m− 1 parts have the same number of channels, and the number of channels in the
m-th part should not exceed that of each previous part. Specifically, we set:

C =
m

∑
i=1

Ci = C1 + · · ·+ Cm−1 + Cm (21)

where C1 = · · · = Cm−1 ≥ Cm when m ≥ 2. Particularly, C1 = C when m = 1, which
signifies that no splitting is performed on Up-HSI.

The aforementioned splitting process can be represented by the following formula:

U1, U2, · · · , Um−1, Um = Split(U) (22)

where U ∈ RH×W×C denotes the tensor corresponding to Up-HSI, while Split(·) signi-
fies the operation of tensor splitting. Notably, Ui ∈ RH×W×Ci (1 ≤ i ≤ m) denotes the
individual sub-tensors obtained through the splitting of U.

In the subsequent steps, the sub-tensor Ui obtained from the splitting, with a channel
number of Ci, is sequentially inserted after the PAN tensor P, which has a channel number
of Cp = 1. By concatenating them along the channel dimension, the resulting tensor O is
obtained, with the number of channels in the output tensor O being determined as follows:

CO =
m
∑

i=1

(
Ci + Cp

)
= C1 + Cp + · · ·+ Cm + Cp
= C + m·Cp
= C + m

(23)

The process of channel cross-concatenation mentioned above can be expressed mathe-
matically as follows:

O = Concat(U1, P, U2, P, · · · , Um, P) (24)

where P ∈ RH×W×Cp represents the tensor corresponding to PAN, while Concat(·) denotes
the operation of channel concatenation. O ∈ RH×W×CO signifies the resulting tensor.

In summary, the entire process of channel-wise cross-concatenation between Up-HSI
and PAN can be represented by the following equation:

O = InputCCC(U, P) (25)

where InputCCC(·) represents the operation process of Input CCC.

• Feature CCC

Figure 3b illustrates the working principle of Feature CCC. The input consists of
two feature maps, Feature 1 and Feature 2, extracted from different levels of the UNet
architecture. The output is a tensor obtained by cross-concatenating the two feature maps
along the channel dimension.

First, Feature 1 and Feature 2 are split into n = 2k(0 ≤ k ≤ 5) equal parts along the
channel dimension, ensuring each sub-tensor has the same number of channels. Mathemat-
ically, we can express this as:

Cqi =
Cq
n , 1 ≤ i ≤ n

Crj =
Cr
n , 1 ≤ j ≤ n

(26)
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Specifically, when n = 1, indicating k = 0, it represents no split operation is performed
on Feature 1 and Feature 2. The aforementioned split process can be represented by the
following formula:

Q1, Q2, · · · , Qn = Split(Q)
R1, R2, · · · , Rn = Split(R)

(27)

where Q ∈ RH×W×Cq represents the tensor corresponding to Feature 1, R ∈ RH×W×Cr

represents the tensor corresponding to Feature 2, Split(·) represents the tensor split opera-
tion, Qi ∈ RH×W×Cqi (1 ≤ i ≤ n) represents the sub-tensors obtained by splitting Q, and
Rj ∈ RH×W×Crj(1 ≤ j ≤ n) represents the sub-tensors obtained by splitting R.

The channel number of the output tensor O’ can be produced by inserting a sub-tensor
Rj with Crj channels after a sub-tensor Qi with Cqi channels obtained from splitting, and
then sequentially concatenating them along the channel dimension. The channel number
of the output tensor O’ can be determined using the following formula:

Co′ =
n
∑

i = 1
j = 1

(
Cqi + Crj

)

= Cq1 + Cr1 + · · ·+ Cqn + Crn
= Cq + Cr

(28)

The process of channel cross-concatenation mentioned above can be expressed mathe-
matically as follows:

O’ = Concat(Q1, R1, Q2, R2, · · · , Qn, Rn) (29)

where Concat(·) denotes the operation of channel concatenation, while O’ ∈ RH×W×Co

signifies the resulting tensor.
In summary, the entire process of channel-wise cross-concatenation between Feature 1

and Feature 2 can be represented by the following equation:

O’ = FeaCCC(Q, R) (30)

where FeaCCC(·) represents the operation process of Feature CCC.
There are two main differences between Feature CCC and Input CCC. First, in Feature

CCC, the channel numbers of input tensors Feature 1 and Feature 2 can be evenly divided
by n, while in Input CCC, the channel number of the input tensor Up-HSI may not be
evenly divisible by m. Second, in Feature CCC, the second input tensor Feature 2 needs
to be split and inserted into each sub-tensor of Feature 1, while in Input CCC, the second
input tensor PAN, having only one channel, cannot be split further. Instead, it is duplicated
m times and then inserted into each sub-tensor of Up-HSI.

3.2.3. SSA-Net

In order to further enhance the expression capability of spatial–spectral features in
the high-dimensional feature maps of CCC-SSA-UNet, we introduce SSA-Net, which is
based on the spatial–spectral attention mechanism. Inspired by the design principles of
the DARN network in DHP-DARN [30], SSA-Net incorporates N sequentially stacked
Res-SSA blocks to adaptively highlight important spectral and spatial feature information.
It is important to note that SSA-Net is positioned between the encoder and decoder in our
network architecture, with its input being the feature maps extracted by the encoder and
its output being the feature maps to be reconstructed by the decoder. Therefore, SSA-Net
omits the front-end feature extraction module and the back-end feature reconstruction
module of the DARN network. The schematic diagram of SSA-Net is shown in Figure 4,
and it can be formulated as follows:
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FN = fRes−SSABN (FN−1) = fRes−SSABN ( fRes−SSABN−1(. . . fRes−SSAB1(F0) . . .)) = fSSA−Net(F0) (31)

where F0 represents the input feature map of SSA-Net, corresponding to the encoder output
feature maps E1, E2, and E3 of CCC-SSA-UNet in Figure 2. FN represents the output feature
map of SSA-Net, corresponding to the decoder input feature maps Q1, Q2, and Q3 of
CCC-SSA-UNet in Figure 2. Fk(1 ≤ k ≤ N − 1) represents the intermediate feature map
of SSA-Net. fRes−SSABk (·), 1 ≤ k ≤ N represents the function representation of the i-th
Res-SSA block.
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Figure 4. Schematic illustration of the proposed SSA-Net. The SSA-Net consists of N Res-SSA
blocks connected sequentially. And “Res-SSA” denotes residual spatial–spectral attention. In the
proposed Res-SSA block, spectral attention is parallel to spatial attention and is embedded in the
basic residual module.

Similar to the CSA ResBlock in DHP-DARN [30] and the DAU in MIRNet [56], the
design principle of our Res-SSA block also incorporates channel attention and spatial
attention into the basic residual module. This integration aims to improve both spatial–
spectral feature representation and the stability of network training, while accelerating
convergence speed. In the field of hyperspectral image processing, channel attention is
often referred to as spectral attention. To differentiate it from CSA, we name the entire
residual spatial–spectral attention module as the Res-SSA block. The bottom half of Figure 4
illustrates the network structure of the Res-SSA block. For the Nth Res-SSA block, its input
is the feature map FN−1. FN−1 goes through a 3 × 3 convolutional layer to reduce the
number of channels to 64. It then undergoes a ReLU activation layer and another 3 × 3
convolutional layer to extract the feature map FU , which serves as the input to the attention
modules. FU is divided into two paths: one path obtains the spectral mask MCA through
the spectral attention module, which is multiplied element-wise with the feature map FU
to obtain FCA; the other path obtains the spatial mask MSA through the spatial attention
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module, which is multiplied element-wise with the feature map FU to obtain FSA. Finally,
FCA and FSA are added element-wise and combined with the input FN−1 to obtain the
output FN of the Res-SSA block. This can be expressed mathematically as:

FU = Conv3×3(δ
′(Conv3×3(FN−1))) (32)

FCA = FU ⊗MCA (33)

FSA = FU ⊗MSA (34)

FN = FCA + FSA + FN−1 (35)

where δ′(·) represents the ReLU activation layer, Conv3×3(·) represents the 3 × 3 convolu-
tional layer, MCA and MSA represent the spectral mask and spatial mask, respectively, and
⊗ represents the element-wise product operation.

Specifically, the backbone of the spectral attention module consists of a global average
pooling layer along the spatial dimension, a 1 × 1 convolutional layer that is employed
to reduce the number of channels from 64 to 64/r, a ReLU activation layer, a 1 × 1 con-
volutional layer that is employed to expand the number of channels from 64/r to 64, and
a sigmoid activation layer in sequence. Here, r is referred to as the channel reduction
ratio, which can be used to decrease the computational complexity of the network model.
The backbone of the spatial attention module consists of a parallel arrangement of global
average pooling and global maxpooling layers, a 1 × 1 convolutional layer, and a sigmoid
activation layer in sequence. This can be expressed mathematically as:

MCA = σ(Conv1×1(δ
′(Conv1×1(GAP(FU))))) (36)

MSA = σ(Conv1×1(Contact(GAP(FU), GMP(FU)))) (37)

where σ(·) represents the sigmoid activation layer, Conv1×1(·) represents the 1 × 1 con-
volutional layer, GAP(·) stands for Global Average Pooling operation, GMP(·) stands for
Global Maximum Pooling operation, and Concat(·) represents the operation of channel
concatenation.

The spectral attention module (CA) filters out spectral information in the feature tensor
that is less important for the fusion results, allowing the network to adaptively select crucial
spectral information. The spatial attention module (SA) enables the network to focus more
on the features in regions closely related to enhancing spatial details in the hyperspectral
image. By combining channel attention with spatial attention and embedding them into
the basic residual module, both the spatial–spectral feature representation capability of the
network and the stability of network training are enhanced.

3.3. Loss Function

In order to improve the fidelity of the fused reconstruction results to the ground truth
HSIs, common loss functions used in the current literature include `1 loss [30,31,48,57],
`2 loss [58,59], perceptual loss [34], and adversarial loss [60]. Perceptual and adversarial
losses are capable of restoring details that do not exist in the original image, which may not
be desirable in the field of remote sensing. Conversely, `1 and `2 losses are considered more
reliable [57]. `2 loss tends to penalize larger errors while disregarding smaller errors, which
can result in networks utilizing `2 loss producing slightly blurred reconstructions [57,60].
On the other hand, `1 loss effectively penalizes smaller errors and promotes better conver-
gence during training. Therefore, we employ `1 loss to evaluate the fusion performance
of our network. Specifically, the mean absolute error (MAE) between all reconstructed
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images in a training batch and the reference HSIs is used to define the `1 loss, which can be
mathematically expressed using the equation provided below:

L1(Θ) =
1
D

D

∑
d=1
‖

^
Yd − Yd‖1 =

1
D

D

∑
d=1
‖Φ(Xd, Pd; Θ)− Yd‖1 (38)

where
^
Yd and Yd correspond to the d-th reconstructed HR-HSI and the reference HSI (GT),

respectively. D represents the batch size, indicating the number of images included in a
training batch. Θ encompasses all the parameters within the network. Φ(·, ·; Θ) signifies
the comprehensive hyperspectral pansharpening neural network model proposed in this
paper. Finally, ‖ · ‖1 denotes the utilization of the `1 norm as a mathematical measure.

4. Experiments and Discussion
4.1. Datasets

In order to assess the effectiveness of the proposed hyperspectral pansharpening algo-
rithm in this study, several hyperspectral image datasets were utilized for the experiments.
These datasets include:

• Pavia University Dataset [61]: The Pavia University dataset comprises aerial images
acquired over Pavia University in Italy, utilizing the Reflective Optics System Imaging
Spectrometer (ROSIS). The original image has a spatial resolution of 1.3 m and dimen-
sions of 610 × 610 pixels. The ROSIS sensor captures 115 spectral bands, covering
the spectral range of 430–860 nm. After excluding noisy bands, the image dataset
contains 103 spectral bands. To remove uninformative regions, the right-side por-
tion of the image was cropped, leaving a 610 × 340 pixel area for further analysis.
Subsequently, a non-overlapping region of 576 × 288 pixels, situated at the top-left
corner, was extracted and divided into 18 sub-images measuring 96 × 96 pixels each.
These sub-images constitute the reference HR-HSI dataset, serving as the ground truth.
To generate corresponding PAN and LR-HSI, the Wald protocol [62] was employed.
Specifically, a Gaussian filter with an 8 × 8 kernel size was applied to blur the HR-HSI,
followed by a downsampling process, reducing its spatial dimensions by a factor of
four to obtain the LR-HSI. The PAN was created by computing the average of the first
100 spectral bands of the HR-HSI. Fourteen image pairs were randomly selected for
the training set, while the remaining four pairs were reserved for the test set.

• Pavia Centre Dataset [61]: The Pavia Centre dataset consists of aerial images cap-
tured over the city center of Pavia, located in northern Italy, using the Reflective
Optics System Imaging Spectrometer (ROSIS). The original image has dimensions of
1096 × 1096 pixels and a spatial resolution of 1.3 m, similar to the Pavia University
dataset. After excluding 13 noisy bands, the dataset contains 102 spectral bands,
covering the spectral range of 430–860 nm. Due to the lack of informative content
in the central region of the image, this portion was cropped, and only the remain-
ing 1096 × 715 pixel area containing the relevant information was used for analysis.
Subsequently, a non-overlapping region of 960 × 640 pixels, situated at the top-left
corner, was extracted and divided into 24 sub-images measuring 160 × 160 pixels
each. These sub-images constitute the reference HR-HSI dataset, serving as the ground
truth. Similar to the Pavia University Dataset, the PAN and LR-HSI corresponding to
the HR-HSI were generated using the same methodology. Eighteen image pairs were
randomly selected as the training set, while the remaining seven pairs were designated
as the test set.

• Chikusei Dataset [63]: The Chikusei dataset comprises aerial images captured over
the agricultural and urban areas of Chikusei, Japan, in 2014, using the Headwall
Hyperspec-VNIR-C sensor. The original image has pixel dimensions of 2517 × 2355
and a spatial resolution of 2.5 m. It encompasses a total of 128 spectral bands, covering
the spectral range of 363–1018 nm. For the experiments, a non-overlapping region of
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2304× 2304 pixels was selected from the top-left corner and divided into 81 sub-images
of 256× 256 pixels. These sub-images constitute the reference HR-HSI dataset, serving
as the ground truth. Similar to the Pavia University dataset, LR-HSI corresponding to
the HR-HSI were generated using the same method. The PAN image was obtained by
averaging the spectral bands from 60 to 100 of the HR-HSI. Sixty-one image pairs were
randomly selected as the training set, while the remaining 20 pairs were allocated to
the test set.

Consistent with previous studies [30,31], the standard deviation (σ) of the Gaussian
filter employed for LR-HSI generation is determined through the following formula:

σ =

√
β2

2× 2.7725887
(39)

Here, β represents the downsampling scale factor used during the dataset generation
process, indicating the linear spatial resolution ratio between the reference HR-HSI and the
generated LR-HSI. In this study, the value of β is set to four.

4.2. Evaluation Metrics

To quantitatively assess the performance of our proposed method, we employed
five widely used evaluation metrics: correlation coefficient (CC), spectral angle mapping
(SAM) [64], root-mean-square error (RMSE), Erreur Relative Globale Adimensionnelle De
Synthsès (ERGAS) [65], and peak signal-to-noise ratio (PSNR).

The CC metric provides insight into the geometric distortion present in the images,
with values ranging from zero to one. RMSE measures the intensity differences between
the super-resolved reconstruction and the ground truth. SAM evaluates the spectral
fidelity of the reconstructed images. ERGAS assesses the overall quality of the generated
images. PSNR serves as an important indicator of image reconstruction quality, and it is
directly related to RMSE. For RMSE, SAM, and ERGAS, lower values indicate superior
reconstruction quality. Conversely, higher values of CC and PSNR signify improved image
quality, with an ideal value of one for CC and positive infinity for PSNR.

4.3. Implementation Details

The CCC-SSA-UNet proposed in this study comprises a four-level UNet architecture.
Each level is characterized by the number of channels, represented as C f 0, C f 1, C f 2, and
C f 2, ranging from the first to the fourth level, respectively. For the larger model, CCC-SSA-
UNet-L, the channel values of C f 0, C f 1, and C f 2 are assigned as 32, 64, and 128, respectively.
Conversely, for the smaller model, CCC-SSA-UNet-S, the channel values of C f 0, C f 1, and
C f 2 are set as 32, 32, and 32, respectively. The SSA-Net module within CCC-SSA-UNet
consists of ten sequential Res-SSA blocks. Each Res-SSA block employs a channel reduction
factor of 16 within its spectral attention module. In the Input CCC module, the input tensor,
Up-HSI, is partitioned into eight segments, while in the Feature CCC module, the input
tensors, Feature 1 and Feature 2, are equally divided into eight partitions.

We set the batch size to four and employed the Adam [66] optimizer for training,
with β1 = 0.9 and β2 = 0.999 as hyperparameters. The initial learning rate was set to
0.001. Specifically, for the Chikusei dataset, the learning rate was halved every 1000 epochs,
whereas for the Pavia University dataset and Pavia Centre dataset, the learning rate was
reduced by half every 2000 epochs. To optimize the model, the L1 loss function was
utilized, and a total of 10,500 epochs were conducted. Our model was implemented using
the PyTorch framework, and the training process was executed on a single GeForce RTX
3090 GPU. The training duration was approximately 40 h for the Chikusei dataset, 1.5 h for
the Pavia University dataset, and 4 h for the Pavia Centre dataset.
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4.4. Comparison with State-of-the-Art Methods

In order to demonstrate the effectiveness, efficiency, and state-of-the-art performance of
the proposed CCC-SSA-UNet, comparative experiments were conducted on three datasets:
Pavia University dataset, Pavia Centre dataset, and Chikusei dataset. Our method was
compared against ten traditional pansharpening methods and five state-of-the-art deep
learning-based methods. The traditional methods included in the comparison were GS [5],
GSA [6], PCA [8], GFPCA [7], BayesNaive [14], BayesSparse [44], MTF-GLP [9], MTF-GLP-
HPM [11], CNMF [16], and HySure [12]. The deep learning-based methods consisted of
HyperPNN1 [28], HyperPNN2 [28], DHP-DARN [30], DIP-HyperKite [31], and Hyper-
DSNet [29]. The traditional methods were implemented using the open-source MATLAB
toolbox provided by Loncan et al. [67]. For the deep learning methods, we reproduced
the experiments on our computer following the original papers’ descriptions and param-
eter settings, presenting the best results obtained. Notably, all evaluation metrics for the
test datasets were recalculated using MATLAB to ensure a fair comparison between tra-
ditional and deep learning methods. During the calculations, the reconstructed images
were normalized concerning the reference images. The following sections present the
detailed comparative experimental results of the different pansharpening methods on the
three datasets.

4.4.1. Experiments on Pavia University Dataset

We compared our proposed CCC-SSA-UNet with 15 other methods on the test set of
the Pavia University dataset. The quantitative evaluation results are presented in Table 1,
with the best values highlighted in red, the second-best values in blue, and the third-best
values in green. It is evident that deep learning-based methods outperform traditional
methods across various objective metrics. Among the traditional methods, HySure achieves
the best performance, with a low SAM of 5.673 and a high PSNR of 32.663. However, there
still exists a considerable gap compared to deep learning methods. Among the other five
deep learning methods used for comparison, DHP-DARN delivers the best results, possibly
due to its utilization of the spatial–spectral dual attention mechanism in the residual blocks.
Our proposed CCC-SSA-UNet-S and CCC-SSA-UNet-L benefit from the fusion capability of
the CCC operation and the feature extraction capability of the SSA-Net. They significantly
outperform all other comparative methods across the objective metrics. Specifically, CCC-
SSA-UNet-S improves upon the state-of-the-art comparative methods by 0.002 in CC, 1.675
in RSNR, and 0.786 in PSNR, while reducing SAM by 0.276, RMSE by 0.0014, and ERGAS
by 0.176. CCC-SSA-UNet-L achieves improvements of 0.003 in CC, 2.002 in RSNR, and
0.928 in PSNR, along with reductions of 0.321 in SAM, 0.0016 in RMSE, and 0.204 in ERGAS,
compared to the state-of-the-art comparative methods.

In addition to the aforementioned quantitative comparison results, we also present the
visual results of various pansharpening methods on a randomly selected image patch (10th
patch) from the test subset of the Pavia University dataset in Figure 5. To better showcase
the reconstruction results, the regions of interest (ROI) in each image are magnified and
highlighted with yellow rectangular boxes. Furthermore, in Figure 6, we display the mean
absolute error (MAE) maps, which illustrate the differences between the reconstructed
images and the reference images for the 10th patch, generated by each method. It can
be observed that the images reconstructed by traditional methods are relatively blurry,
with larger average absolute errors, resulting in poorer visual quality. In contrast, deep
learning-based methods benefit from the powerful learning capabilities of deep neural
networks, resulting in less blurriness in the reconstructed images and smaller average
absolute errors, indicating better visual quality. Among them, our proposed CCC-SSA-
UNet-S and CCC-SSA-UNet-L demonstrate the closest resemblance to the reference images,
demonstrating their outstanding ability to maintain spectral fidelity and restore precise
spatial details.
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Table 1. Quantitative results of different methods on the Pavia University dataset. The best value is
marked in red, the second-best value is marked in blue, and the third-best value is marked in green.
↑ means that the larger the value, the better, while ↓ means that the smaller the value, the better.

Type Method CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑

Traditional

GS [5] 0.941 6.273 0.0329 37.933 4.755 30.572
GSA [6] 0.932 6.975 0.0326 38.687 4.745 30.709
PCA [8] 0.807 9.417 0.0498 29.156 6.977 27.059

GFPCA [7] 0.855 9.100 0.0516 28.738 7.247 26.754
BayesNaive [14] 0.869 5.940 0.0443 31.833 6.598 27.662
BayesSparse [44] 0.892 8.541 0.0428 32.220 6.211 28.210

MTF-GLP [9] 0.941 6.170 0.0303 39.498 4.273 31.570
MTF-GLP-HPM [11] 0.917 6.448 0.0348 36.459 5.569 30.401

CNMF [16] 0.919 6.252 0.0369 35.905 5.356 29.617
HySure [12] 0.953 5.673 0.0261 42.633 3.809 32.663

Deep
learning

HyperPNN1 [28] 0.976 4.117 0.0179 49.903 2.700 35.771
HyperPNN2 [28] 0.976 4.045 0.0176 50.270 2.663 35.900
DHP-DARN [30] 0.980 3.793 0.0161 52.015 2.444 36.667

DIP-HyperKite [31] 0.980 4.127 0.0168 51.126 2.545 36.270
Hyper-DSNet [29] 0.977 4.038 0.0173 50.618 2.591 36.097

CCC-SSA-UNet-S (Ours) 0.982 3.517 0.0147 53.690 2.268 37.453
CCC-SSA-UNet-L (Ours) 0.983 3.472 0.0145 54.017 2.240 37.595
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Figure 5. Visual results generated by different pansharpening algorithms for the 10th patch of the
Pavia University dataset. (a) GS [5], (b) GSA [6], (c) PCA [8], (d) GFPCA [7], (e) BayesNaive [14],
(f) BayesSparse [44], (g) MTF-GLP [9], (h) MTF-GLP-HPM [11], (i) CNMF [16], (j) HySure [12],
(k) HyperPNN1 [28], (l) HyperPNN2 [28], (m) DHP-DARN [30], (n) DIP-HyperKite [31], (o) Hyper-
DSNet [29], (p) CCC-SSA-UNet-S (Ours), (q) CCC-SSA-UNet-L (Ours), and (r) reference ground truth.
The RGB images are generated using the HSI’s 60th, 30th, and 10th bands as red, green, and blue
bands, respectively. The yellow box indicates the magnified region of interest (ROI).
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Figure 6. Mean absolute error maps of different pansharpening algorithms for the 10th patch of the
Pavia University dataset. (a) GS [5], (b) GSA [6], (c) PCA [8], (d) GFPCA [7], (e) BayesNaive [14],
(f) BayesSparse [44], (g) MTF-GLP [9], (h) MTF-GLP-HPM [11], (i) CNMF [16], (j) HySure [12],
(k) HyperPNN1 [28], (l) HyperPNN2 [28], (m) DHP-DARN [30], (n) DIP-HyperKite [31], (o) Hyper-
DSNet [29], (p) CCC-SSA-UNet-S (Ours), (q) CCC-SSA-UNet-L (Ours), and (r) reference ground truth.
MAE colormap denotes the colormap of normalized mean absolute error across all spectral bands;
the minimum value is set to 0 and the maximum value is set to 0.3 for better visual comparison. The
yellow box indicates the magnified region of interest (ROI).

4.4.2. Experiments on Pavia Centre Dataset

We also compared our proposed CCC-SSA-UNet with 15 other methods on the test
set of the Pavia Centre dataset, and the quantitative evaluation results are presented in
Table 2. Among the traditional methods, HySure still achieved the best performance, with
a SAM as low as 6.723 and a PSNR as high as 34.444, but there is still a significant gap
compared to the deep learning methods. Consistent with the results on the Pavia University
dataset, the deep learning-based methods outperformed the traditional methods across
all objective metrics. Among the other five deep learning methods used for comparison,
Hyper-DSNe achieved the best results. This may be attributed to the fact that the Pavia
Centre dataset contains more high-frequency information than the Pavia University dataset,
and Hyper-DSNet, with its five types of high-pass filter templates serving as multi-detail
extractors, is more effective in recovering high-frequency details.

Our proposed CCC-SSA-UNet-S and CCC-SSA-UNet-L benefit from the fusion ability
of the CCC and the feature extraction capability of the SSA-Net, demonstrating significant
improvements over all other comparison methods in terms of various objective metrics.
Specifically, CCC-SSA-UNet-S outperformed the state-of-the-art methods by 0.003 in CC,
1.905 in RSNR, and 0.868 in PSNR, while reducing SAM, RMSE, and ERGAS by 0.284,
0.0013, and 0.190, respectively. Similarly, CCC-SSA-UNet-L achieved improvements of
0.005 in CC, 1.895 in RSNR, and 0.873 in PSNR, along with reductions of 0.295, 0.0026, and
0.194 in SAM, RMSE, and ERGAS, respectively, compared to the state-of-the-art methods.

In addition to quantitative comparison results, Figure 7 presents the visual results
of various pan-sharpening methods on randomly selected image patches (the 15th patch)
from the test set of the Pavia Centre dataset. Figure 8 displays the mean absolute error
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(MAE) maps between the reconstructed images by different methods and the reference
images for the 15th patch. Clearly, the images reconstructed by traditional methods appear
blurrier, with larger mean absolute errors and lower visual quality. In contrast, the im-
ages reconstructed by deep learning-based methods exhibit less blurriness, smaller mean
absolute errors, and higher visual quality. Notably, our proposed CCC-SSA-UNet-S and
CCC-SSA-UNet-L demonstrate the closest resemblance to the reference images, providing
evidence for the effectiveness and advancement of our proposed approach.

Table 2. Quantitative results of different methods on the Pavia Centre dataset. The best value is
marked in red, the second-best value is marked in blue, and the third-best value is marked in green.
↑ means that the larger the value, the better, while ↓ means that the smaller the value, the better.

Type Method CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑

Traditional

GS [5] 0.964 7.527 0.0281 37.003 4.956 31.694
GSA [6] 0.955 7.915 0.0263 38.891 4.732 32.236
PCA [8] 0.946 7.978 0.0324 34.560 5.555 30.917

GFPCA [7] 0.903 9.463 0.0453 26.940 7.777 27.526
BayesNaive [14] 0.885 6.964 0.0431 28.292 7.593 27.760
BayesSparse [44] 0.929 8.908 0.0352 31.999 6.471 29.507

MTF-GLP [9] 0.960 7.134 0.0248 39.962 4.429 32.852
MTF-GLP-HPM [11] 0.952 7.585 0.0265 39.033 5.174 32.468

CNMF [16] 0.948 7.402 0.0293 36.385 5.200 31.287
HySure [12] 0.971 6.723 0.0208 43.624 3.792 34.444

Deep
learning

HyperPNN1 [28] 0.981 5.365 0.0159 49.148 2.990 36.910
HyperPNN2 [28] 0.981 5.415 0.0161 48.911 3.016 36.814
DHP-DARN [30] 0.981 6.175 0.0158 49.185 3.038 36.678

DIP-HyperKite [31] 0.981 6.162 0.0154 49.671 2.975 36.869
Hyper-DSNet [29] 0.984 4.940 0.0141 51.547 2.680 37.971

CCC-SSA-UNet-S (Ours) 0.986 4.656 0.0128 53.452 2.490 38.839
CCC-SSA-UNet-L (Ours) 0.986 4.645 0.0128 53.442 2.486 38.844
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Figure 7. Visual results generated by different pansharpening algorithms for the 15th patch of
the Pavia Center dataset. (a) GS [5], (b) GSA [6], (c) PCA [8], (d) GFPCA [7], (e) BayesNaive [14],
(f) BayesSparse [44], (g) MTF-GLP [9], (h) MTF-GLP-HPM [11], (i) CNMF [16], (j) HySure [12],
(k) HyperPNN1 [28], (l) HyperPNN2 [28], (m) DHP-DARN [30], (n) DIP-HyperKite [31], (o) Hyper-
DSNet [29], (p) CCC-SSA-UNet-S (Ours), (q) CCC-SSA-UNet-L (Ours), and (r) reference ground truth.
The RGB images are generated using the HSI’s 60th, 30th, and 10th bands as red, green, and blue
bands, respectively. The yellow box indicates the magnified region of interest (ROI).
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Figure 8. Mean absolute error maps of different pansharpening algorithms for the 15th patch of
the Pavia Center dataset. (a) GS [5], (b) GSA [6], (c) PCA [8], (d) GFPCA [7], (e) BayesNaive [14],
(f) BayesSparse [44], (g) MTF-GLP [9], (h) MTF-GLP-HPM [11], (i) CNMF [16], (j) HySure [12],
(k) HyperPNN1 [28], (l) HyperPNN2 [28], (m) DHP-DARN [30], (n) DIP-HyperKite [31], (o) Hyper-
DSNet [29], (p) CCC-SSA-UNet-S (Ours), (q) CCC-SSA-UNet-L (Ours), and (r) reference ground truth.
MAE colormap denotes the colormap of normalized mean absolute error across all spectral bands,
the minimum value is set to 0 and the maximum value is set to 0.3 for better visual comparison. The
yellow box indicates the magnified region of interest (ROI).

4.4.3. Experiments on Chikusei Dataset

We also compared our proposed CCC-SSA-UNet with 15 other methods on the Chiku-
sei dataset. Table 3 presents the average quantitative evaluation results on the test set.
Among the traditional methods, HySure achieved the best performance, with a SAM as
low as 3.139 and a PSNR as high as 39.615, surpassing the other nine classical methods by
a significant margin. Among the five other deep learning methods used for comparison,
Hyper-DSNet achieved the best results, consistent with the findings on the Pavia Centre
dataset. Our proposed CCC-SSA-UNet-S and CCC-SSA-UNet-L outperformed Hyper-
DSNet in terms of SAM, RSNR, and PSNR metrics, while being comparable in terms of CC
and RMSE metrics. Specifically, CCC-SSA-UNet-S improved RSNR and PSNR by 0.116 and
0.047, respectively, and reduced SAM by 0.012. CCC-SSA-UNet-L improved RSNR and
PSNR by 0.176 and 0.076, respectively, and reduced SAM by 0.011.

In addition to the quantitative comparison results mentioned above, Figure 9 show-
cases the visual results of various pansharpening methods on the randomly selected 31st
image patch from the Chikusei dataset’s test set. Figure 10 presents the average absolute
error map (MAE map) between the reconstructed images by different methods and the
reference images for the 31st patch. It is evident that the images reconstructed by the
first nine traditional methods appear blurry with larger average absolute errors, indicat-
ing poorer visual quality. Particularly, the reconstructed image by MTF-GLP-HP exhibits
numerous red spots, indicating significant spectral distortion. In contrast, HySure and
the deep learning-based methods produce less blurry reconstructed images with smaller
average absolute errors, demonstrating better visual quality. Among them, our proposed
CCC-SSA-UNet-S and CCC-SSA-UNet-L show the closest resemblance to the reference
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images and exhibit the lightest colors on the MAE map, further confirming the effectiveness
and superiority of our approach.

Table 3. Quantitative results of different methods on the Chikusei dataset. The best value is marked
in red, the second-best value is marked in blue, and the third-best value is marked in green. ↑ means
that the larger the value, the better, while ↓ means that the smaller the value, the better.

Type Method CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑

Traditional

GS [5] 0.942 3.865 0.0176 45.053 5.950 36.334
GSA [6] 0.947 3.752 0.0152 48.373 5.728 37.467
PCA [8] 0.793 6.214 0.0343 31.766 9.522 31.524

GFPCA [7] 0.880 5.237 0.0263 36.843 8.502 32.937
BayesNaive [14] 0.910 3.367 0.0237 39.235 6.522 34.449
BayesSparse [44] 0.899 4.840 0.0219 40.396 7.963 34.145

MTF-GLP [9] 0.938 4.051 0.0157 47.559 6.211 36.994
MTF-GLP-HPM [11] 0.765 6.322 0.0432 28.782 24.001 31.610

CNMF [16] 0.901 4.759 0.0208 42.251 7.229 35.224
HySure [12] 0.962 3.139 0.0117 53.571 4.825 39.615

Deep
learning

HyperPNN1 [28] 0.966 2.874 0.0105 55.709 4.458 40.404
HyperPNN2 [28] 0.967 2.860 0.0105 55.820 4.410 40.464
DHP-DARN [30] 0.956 3.631 0.0117 53.572 5.029 39.268

DIP-HyperKite [31] 0.952 3.884 0.0121 52.817 5.324 38.894
Hyper-DSNet [29] 0.980 2.274 0.0084 60.232 3.460 42.535

CCC-SSA-UNet-S (Ours) 0.980 2.262 0.0084 60.348 3.492 42.582
CCC-SSA-UNet-L (Ours) 0.980 2.263 0.0084 60.408 3.478 42.611
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Chikusei dataset. (a) GS [5], (b) GSA [6], (c) PCA [8], (d) GFPCA [7], (e) BayesNaive [14], (f) BayesS-
parse [44], (g) MTF-GLP [9], (h) MTF-GLP-HPM [11], (i) CNMF [16], (j) HySure [12], (k) Hy-
perPNN1 [28], (l) HyperPNN2 [28], (m) DHP-DARN [30], (n) DIP-HyperKite [31], (o) Hyper-

Figure 9. Visual results generated by different pansharpening algorithms for the 31st patch of
the Chikusei dataset. (a) GS [5], (b) GSA [6], (c) PCA [8], (d) GFPCA [7], (e) BayesNaive [14],
(f) BayesSparse [44], (g) MTF-GLP [9], (h) MTF-GLP-HPM [11], (i) CNMF [16], (j) HySure [12],
(k) HyperPNN1 [28], (l) HyperPNN2 [28], (m) DHP-DARN [30], (n) DIP-HyperKite [31], (o) Hyper-
DSNet [29], (p) CCC-SSA-UNet-S (Ours), (q) CCC-SSA-UNet-L (Ours), and (r) reference ground truth.
The RGB images are generated using the HSI’s 61st, 35th, and 10th bands as red, green, and blue
bands, respectively. The yellow box indicates the magnified region of interest (ROI).
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a five-fold increase in #Params compared to CCC-SSA-UNet-S, while MACs and FLOPs 
only double. Moreover, GPU memory usage and runtime remain relatively unchanged. 
Remarkably, CCC-SSA-UNet-L achieves optimal performance in terms of image quality. 
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Figure 10. Mean absolute error maps of different pansharpening algorithms for the 31st patch
of the Chikusei dataset. (a) GS [5], (b) GSA [6], (c) PCA [8], (d) GFPCA [7], (e) BayesNaive [14],
(f) BayesSparse [44], (g) MTF-GLP [9], (h) MTF-GLP-HPM [11], (i) CNMF [16], (j) HySure [12],
(k) HyperPNN1 [28], (l) HyperPNN2 [28], (m) DHP-DARN [30], (n) DIP-HyperKite [31], (o) Hyper-
DSNet [29], (p) CCC-SSA-UNet-S (Ours), (q) CCC-SSA-UNet-L (Ours), and (r) reference ground truth.
MAE colormap denotes the colormap of normalized mean absolute error across all spectral bands,
the minimum value is set to 0 and the maximum value is set to 0.3 for better visual comparison. The
yellow box indicates the magnified region of interest (ROI).

4.5. Analysis of the Computational Complexity

Table 4 presents a comparison of the computational complexities among different
pansharpening methods on the Pavia University dataset. The metrics PSNR and SAM are
representative indicators used to evaluate the quality of the network’s reconstructed im-
ages, while the number of parameters (#Params), multiply accumulate operations (MACs),
floating-point operations (FLOPs), GPU memory usage (GPU Memory), and average infer-
ence runtime (Runtime) are employed to assess the computational complexity of the neural
network. From Table 4, it can be observed that our CCC-SSA-UNet-S achieves leading
image reconstruction performance while maintaining a smaller #Params, MACs, FLOPs,
and GPU memory usage. In comparison, CCC-SSA-UNet-L demonstrates a five-fold in-
crease in #Params compared to CCC-SSA-UNet-S, while MACs and FLOPs only double.
Moreover, GPU memory usage and runtime remain relatively unchanged. Remarkably,
CCC-SSA-UNet-L achieves optimal performance in terms of image quality. CCC-SSA-UNet-
S and CCC-SSA-UNet-L demonstrate superior performance compared to other methods, as
evidenced by extensive experiments conducted on publicly available datasets. Our models
effectively leverage multiscale image feature information for fusion reconstruction while
maintaining lower memory usage. Furthermore, they achieve shorter inference runtime
while ensuring fusion quality.
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Table 4. Computational complexity comparison of different pansharpening methods on the Pavia
University dataset. The best value is marked in red, and the second-best value is marked in blue.
↑ means that the larger the value, the better, while ↓ means that the smaller the value, the better.
# means the number of something.

Type Method PSNR
↑

SAM
↓

#Params
(M)

MACs
(G)

FLOPs
(G)

Memory
(G)

Runtime
(ms)

Traditional

GS [5] 30.572 6.273 - - - - 79.0
GSA [6] 30.709 6.975 - - - - 205.8
PCA [8] 27.059 9.417 - - - - 102.8

GFPCA [7] 26.754 9.100 - - - - 139.5
BayesNaive [14] 27.662 5.940 - - - - 136.5
BayesSparse [44] 28.210 8.541 - - - - 79.5

MTF-GLP [9] 31.570 6.170 - - - - 30.0
MTF-GLP-HPM [11] 30.401 6.448 - - - - 118.5

CNMF [16] 29.617 6.252 - - - - 8976.3
HySure [12] 32.663 5.673 - - - - 2409.0

Deep
learning

HyperPNN1 [28] 35.771 4.117 0.133 1.222 2.444 0.898 24.3
HyperPNN2 [28] 35.900 4.045 0.137 1.259 2.518 1.124 22.5
DHP-DARN [30] 36.667 3.793 0.417 3.821 7.642 2.367 176,695.5

DIP-HyperKite [31] 36.270 4.127 0.526 122.981 245.962 7.082 23,375.5
Hyper-DSNet [29] 36.097 4.038 0.272 2.490 4.980 1.571 27.5

CCC-SSA-UNet-S (Ours) 37.453 3.517 0.727 3.259 6.519 1.446 47.8
CCC-SSA-UNet-L (Ours) 37.595 3.472 4.432 6.323 12.646 1.462 47.8

Figure 11 visually illustrates the balance and superiority of our network in terms of
performance and computational complexity. Figure 11a illustrates a comparison of our
method with the current state-of-the-art methods in terms of PSNR, FLOPs, and GPU
memory usage on the Pavia University dataset. Figure 11b presents a comparison of SAM,
FLOPs, and GPU memory usage. It can be observed that our method achieves superior
fusion quality with lower GPU memory consumption than the three state-of-the-art deep
learning-based pansharpening methods. Figures 11c and 11d, respectively demonstrate
the comparisons of PSNR versus runtime and SAM versus runtime for different methods
on the test set of the Pavia University dataset. It can be observed that our CCC-SSA-UNet
achieves the highest image reconstruction performance while surpassing the majority of
existing pansharpening methods in terms of inference runtime. This solidly demonstrates
the effectiveness, advancement, and efficiency of our proposed approach.

4.6. Sensitivity Analysis of the Network Parameters

In order to select the optimal network parameters, we conducted extensive exper-
iments and conducted detailed research on the number of Filter Channels, Input CCC
groups, Feature CCC groups, SSA blocks, and the choice of initial learning rate. The
following sections will provide a detailed description of each aspect.

4.6.1. Analysis of the Filter Channel Numbers

As described in Section 3.2.1, the proposed CCC-SSA-UNet adopts a four-layer UNet
architecture with varying numbers of channels in each layer, denoted as C f 0, C f 1, C f 2, and
C f 2, which can be referred to as Filter Channels. Clearly, the sizes of Filter Channels will
have an impact on the model’s computational complexity and performance. Therefore,
we conducted comparative experiments on the Pavia University dataset to investigate the
influence of channel numbers in each layer on the model. As shown in Table 5, while
keeping other parameters consistent, we created different models by setting the channel
numbers in each layer. Specifically, Model 1 has all channels set to 32, Model 2 has all
channels set to 64, Model 3 has all channels set to 128, Model 4 has C f 0, C f 1, and C f 2 set
to 128, 64, and 32, respectively, and Model 5 has C f 0, C f 1, and C f 2 set to 32, 64, and 128,
respectively. The experimental results indicate that Model 5 achieved the best performance,
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which corresponds to the CCC-SSA-UNet-L model mentioned in Section 4.3. Considering
that Model 5 has slightly higher computational complexity, we also selected Model 1, which
has comparable performance with the smallest #Params and MACs, as an alternative model.
This corresponds to the CCC-SSA-UNet-S model mentioned in Section 4.3.
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Table 5. Performance comparison of CCC-SSA-UNet with different numbers of filter channels on the
Pavia University dataset. The best value is marked in red, the second-best value is marked in blue,
and the third-best value is marked in green. ↑ means that the larger the value, the better, while ↓
means that the smaller the value, the better. # means the number of something.

Model Cf0 Cf1 Cf2 CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑ #Params (M) MACs (G) Runtime (ms)

1 32 32 32 0.982 3.517 0.0147 53.690 2.268 37.453 0.727 3.259 47.8
2 64 64 64 0.982 3.528 0.0146 53.850 2.257 37.512 2.686 11.038 48.8
3 128 128 128 0.982 3.527 0.0147 53.709 2.282 37.432 10.331 40.458 54.3
4 128 64 32 0.982 3.495 0.0148 53.697 2.274 37.459 4.568 33.014 54.5
5 32 64 128 0.983 3.472 0.0145 54.017 2.240 37.595 4.432 6.323 47.8
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4.6.2. Analysis of the Input CCC Group Numbers

The number of groups, denoted as m, in the Input CCC operation is another hyper-
parameter of the network. To determine the optimal number of groups, we conducted
comparative experiments on the Pavia University dataset to evaluate the impact of the
group number on the performance of CCC-SSA-UNet-L. By changing the value of m while
keeping other parameters constant, the experimental results are shown in Table 6. It can
be observed that when m is set to 8, the network achieves optimal performance in all
evaluation metrics. Compared to the base model with m = 1, setting m to 8 only increases
the #Params by 0.002 M, MACs by 0.018 G, and Runtime by 0.5 ms. This indicates that the
Input CCC operation can effectively enhance the fusion capability of different input source
images with minimal increases in parameters and computational complexity.

Table 6. Performance comparison of CCC-SSA-UNet-L with different numbers of Input CCC group
on the Pavia University dataset. The best value is marked in bold. ↑ means that the larger the value,
the better, while ↓ means that the smaller the value, the better. # means the number of something.

m CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑ #Params (M) MACs (G) Runtime (ms)

1 0.983 3.492 0.0145 53.956 2.252 37.548 4.430 6.305 47.3
2 0.983 3.486 0.0146 53.877 2.270 37.490 4.430 6.307 47.3
4 0.982 3.538 0.0147 53.795 2.261 37.498 4.431 6.312 47.5
8 0.983 3.472 0.0145 54.017 2.240 37.595 4.432 6.323 47.8
12 0.983 3.496 0.0146 53.941 2.251 37.555 4.433 6.334 48.0
15 0.982 3.506 0.0145 53.967 2.258 37.533 4.434 6.342 48.5
26 0.982 3.577 0.0148 53.621 2.279 37.422 4.437 6.371 49.3
35 0.982 3.491 0.0146 53.885 2.258 37.502 4.440 6.395 50.0

4.6.3. Analysis of the Feature CCC Group Numbers

Similar to the Input CCC operation, the number of groups, denoted as n, in the Feature
CCC operation is also one of the network’s hyperparameters. We conducted comparative
experiments on the Pavia University dataset to evaluate the impact of the group number
in Feature CCC on the performance of CCC-SSA-UNet-L. By changing the value of n
while keeping other parameters constant, the experimental results are shown in Table 7. It
can be observed that when n is set to 8, the network achieves optimal performance in all
evaluation metrics. Compared to the base model with n = 1, setting n to 8 does not increase
the #Params or MACs. Moreover, the Runtime decreases by 0.2 ms. This indicates that
the Feature CCC operation can effectively enhance the fusion capability between different
levels of feature maps without adding any parameters or computational complexity.

Table 7. Performance comparison of CCC-SSA-UNet-L with different numbers of Feature CCC group
on the Pavia University dataset. The best value is marked in bold. ↑ means that the larger the value,
the better, while ↓ means that the smaller the value, the better. # means the number of something.

n CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑ #Params (M) MACs (G) Runtime (ms)

1 0.983 3.508 0.0147 53.833 2.277 37.479 4.432 6.323 48.0
2 0.982 3.483 0.0146 53.858 2.268 37.475 4.432 6.323 48.8
4 0.982 3.497 0.0146 53.874 2.259 37.527 4.432 6.323 49.8
8 0.983 3.472 0.0145 54.017 2.240 37.595 4.432 6.323 47.8
16 0.982 3.488 0.0145 53.989 2.251 37.559 4.432 6.323 50.0
32 0.982 3.515 0.0146 53.868 2.258 37.516 4.432 6.323 50.0

4.6.4. Analysis of the SSA Block Numbers

The SSA Block enhances the spatial–spectral feature representation of the network
by combining channel attention and spatial attention and embedding them into the basic
residual module. Multiple SSA blocks are concatenated to form the SSA-Net. Therefore, the
number of SSA blocks, denoted as N, affects the performance of the SSA-Net. To investigate
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how the number of SSA blocks influences the network’s performance, we constructed
several variants of SSA-Net, each containing a different number of SSA blocks while
keeping other settings the same. Table 8 presents the comparative experiments conducted
on the Pavia University dataset with these 12 SSA-Net variants.

Table 8. Performance comparison of CCC-SSA-UNet-L with different numbers of SSA blocks on the
Pavia University dataset. The best value is marked in bold. ↑ means that the larger the value, the
better, while ↓ means that the smaller the value, the better. # means the number of something.

N CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑ #Params (M) MACs (G) Runtime (ms)

0 0.978 3.964 0.0170 50.938 2.549 36.286 0.528 1.222 24.5
1 0.977 4.059 0.0176 50.349 2.608 36.039 0.918 1.732 26.5
2 0.980 3.779 0.0161 51.988 2.436 36.742 1.309 2.242 27.5
4 0.980 3.724 0.0158 52.386 2.400 36.892 2.089 3.262 32.5
6 0.981 3.679 0.0157 52.520 2.375 36.981 2.870 4.282 38.0
8 0.982 3.511 0.0147 53.807 2.264 37.491 3.651 5.303 45.3
10 0.983 3.472 0.0145 54.017 2.240 37.595 4.432 6.323 47.8
12 0.982 3.499 0.0147 53.751 2.264 37.470 5.213 7.343 61.5
14 0.982 3.502 0.0148 53.605 2.290 37.384 5.994 8.364 69.3
16 0.983 3.478 0.0145 54.051 2.246 37.572 6.775 9.384 71.5
18 0.983 3.463 0.0145 53.992 2.245 37.571 7.556 10.404 72.0
20 0.982 3.526 0.0146 53.857 2.270 37.482 8.337 11.425 76.5

The results show that, initially, as N increases, the network’s performance improves.
When N reaches 10, the network achieves its maximum performance. However, beyond N
= 10, as the network deepens, the computational complexity increases significantly without
a substantial performance improvement. In fact, the performance may even degrade.
Considering both performance and computational complexity, we set the number of SSA
blocks to 10 in CCC-SSA-UNet.

4.6.5. Analysis of the Learning Rate

The learning rate is one of the most important hyperparameters in neural networks.
Table 9 presents the performance of the CCC-SSA-UNet-L on the Pavia University dataset
with different initial learning rates. It can be observed that the network achieves the best
results when the initial learning rate is set to 0.001 and undergoes a halving decay every
2000 epochs.

Table 9. Performance comparison of CCC-SSA-UNet-L with different initial learning rates on the
Pavia University dataset. The best value is marked in bold. ↑ means that the larger the value, the
better, while ↓ means that the smaller the value, the better.

Learning Rate Decay Rate CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑
0.004 0.5 0.982 3.540 0.0148 53.646 2.302 37.374
0.002 0.5 0.982 3.526 0.0147 53.793 2.263 37.496
0.001 0.5 0.983 3.472 0.0145 54.017 2.240 37.595
0.0005 0.5 0.982 3.582 0.0148 53.601 2.294 37.388
0.0001 0.5 0.975 4.441 0.0185 49.411 2.770 35.497

4.7. Ablation Study

In this section, we conducted detailed ablation experiments to validate the effectiveness
of the proposed Input CCC, Feature CCC, SSA-Net, and Res-SSA block. We constructed
several variants of the CCC-SSA-UNet-L network, labeled as model 1 to model 8, each
variant incorporating different combinations of the Input CCC, Feature CCC, and SSA-Net
modules. Specifically, model 1 did not use any of the modules and employed regular
channel connections instead of Input CCC, and used skip connections instead of SSA-Net.
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Models 2 to 4 utilized only one of the modules, while models 5 to 7 excluded one of the
modules. Model 8 incorporated all three modules simultaneously. The quantitative results
of the ablation experiments conducted on the Pavia University dataset are presented in
Table 10. It can be observed that model 8, which incorporates Input CCC, Feature CCC,
and SSA-Net, achieved the best performance. A detailed analysis of the effectiveness of
each submodule will be discussed in the following subsections.

Table 10. Quantitative results of ablation study of the CCC-SSA-UNet-L on the Pavia University
dataset. The best value is marked in bold. ↑ means that the larger the value, the better, while ↓ means
that the smaller the value, the better.

Model Input CCC Feature CCC SSA-Net CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑
1 8 8 8 0.977 4.046 0.0175 50.423 2.604 36.064
2 4 8 8 0.978 4.009 0.0171 50.923 2.560 36.271
3 8 4 8 0.978 3.999 0.0172 50.712 2.580 36.157
4 8 8 4 0.982 3.506 0.0147 53.809 2.269 37.490
5 8 4 4 0.983 3.492 0.0145 53.956 2.252 37.548
6 4 8 4 0.983 3.508 0.0147 53.833 2.277 37.479
7 4 4 8 0.978 3.964 0.0170 50.938 2.549 36.286
8 4 4 4 0.983 3.472 0.0145 54.017 2.240 37.595

4.7.1. Effect of the Proposed Input CCC

From Table 10, it is evident that when comparing model 2 to model 1, the inclusion of
the Input CCC module in the structure resulted in improvements in the CC, RSNR, and
PSNR metrics by 0.001, 0.289, and 0.207, respectively. Additionally, the SAM, RMSE, and
ERGAS metrics decreased by 0.037, 0.0004, and 0.044, respectively. Moreover, for model
8 compared to model 5, the addition of the Input CCC module to the structure led to
an increase in RSNR and PSNR metrics by 0.061 and 0.047, respectively, while the SAM
and ERGAS metrics decreased by 0.020 and 0.012, respectively. These findings strongly
demonstrate the effectiveness of the proposed Input CCC method.

4.7.2. Effect of the Proposed Feature CCC

From Table 10, it can be observed that model 3, which incorporates the Feature CCC
module into the structure of model 1, showed improvements in the CC, RSNR, and PSNR
metrics by 0.001, 0.500, and 0.093, respectively. Moreover, the SAM, RMSE, and ERGAS
metrics decreased by 0.047, 0.0003, and 0.024, respectively. On the other hand, model 8,
which incorporates the Feature CCC module into the structure of model 6, demonstrated
increases in the RSNR and PSNR metrics by 0.184 and 0.116, respectively, while the SAM,
RMSE, and ERGAS metrics decreased by 0.036, 0.0002, and 0.037, respectively. These results
provide strong evidence for the effectiveness of our proposed Feature CCC method.

4.7.3. Effect of the Proposed SSA-Net

Table 10 also provides evidence for the effectiveness of our proposed SSA-Net. When
SSA-Net was added to the structure of model 1, significant performance improvements were
observed. Model 4, which incorporated SSA-Net, exhibited notable improvements in CC,
RSNR, and PSNR metrics by 0.005, 3.386, and 1.426, respectively. Additionally, SAM, RMSE,
and ERGAS metrics decreased by 0.540, 0.0028, and 0.335, respectively. Similarly, for model
8, which incorporated SSA-Net in the structure of model 7, improvements were observed
in CC, RSNR, and PSNR metrics by 0.005, 3.079, and 1.309, respectively. Furthermore, SAM,
RMSE, and ERGAS metrics decreased by 0.492, 0.0025, and 0.309, respectively.

4.7.4. Effect of the Proposed Res-SSA Block

SSA-Net is composed of multiple Res-SSA blocks connected in series. To demonstrate
the effectiveness of the proposed Res-SSA block, we designed several variants of attention
modules for comparison in Figure 12. (a) Residual block baseline, which utilizes the
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basic residual module only. (b) CA, which employs the spectral attention module from
the Res-SSA block. (c) SA, which utilizes the spatial attention module from the Res-SSA
block. (d) CSA, which adopts the channel-spatial attention module from DHP-DARN [30].
(e) DAU, which incorporates the dual attention module from MIRNet [56]. Table 11 presents
the quantitative comparison results of CCC-SSA-UNet-L with different attention modules
on the Pavia University dataset. It can be observed that using CA or SA alone had a negative
impact on the network performance. However, CSA showed performance improvement
compared to the baseline residual block, while DAU did not demonstrate significant
improvement in network performance. The experimental results indicate that our Res-SSA
block achieved the best performance while having fewer parameters and MACs compared
to CSA and DAU, suggesting a good balance between image reconstruction performance
and computational complexity.
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Table 11. Performance comparison of CCC-SSA-UNet-L with different attention blocks on the Pavia
University dataset. The best value is marked in bold. ↑ means that the larger the value, the better,
while ↓ means that the smaller the value, the better. # means the number of something.

Attention CC ↑ SAM ↓ RMSE ↓ RSNR ↑ ERGAS ↓ PSNR ↑ #Params (M) MACs (G) Runtime (ms)

Baseline 0.982 3.581 0.0150 53.385 2.299 37.326 4.403 6.318 32.8
CA 0.981 3.652 0.0155 52.722 2.355 37.066 4.432 6.323 41.8
SA 0.980 3.714 0.0159 52.306 2.395 36.891 4.405 6.323 38.0

CSA 0.982 3.561 0.0147 53.710 2.288 37.414 4.434 6.328 44.0
DAU 0.982 3.568 0.0150 53.425 2.303 37.327 4.892 6.895 54.0

Res-SSA 0.983 3.472 0.0145 54.017 2.240 37.595 4.432 6.323 47.8

5. Conclusions

This paper has proposed a novel U-shaped hyperspectral pansharpening network
CCC-SSA-UNet for hyperspectral image super-resolution. The channel cross-concatenation
mechanism and the spatial–spectral attention mechanism have been incorporated in UNet,
which effectively enhanced the network’s ability to extract spatial and spectral features. In
detail, a novel Input CCC method at the network entrance and a novel Feature CCC method
within the decoder have been proposed, which effectively enhanced the fusion capability
of different input source images and facilitated the fusion of features at different levels
without introducing additional parameters, respectively. Furthermore, the effectiveness of
SSA-Net, which is composed of Res-SSA blocks, has been demonstrated by comparing it
with other attention module variants. Furthermore, an ablation study has been performed
to verify the effectiveness of each module proposed in our framework. By conducting
comparative experiments with ten traditional pansharpening methods and five state-of-
the-art deep learning-based methods on three datasets, the effectiveness, efficiency, and
advancement of our proposed CCC-SSA-UNet have been proven. The results show a
satisfactory performance of CCC-SSA-UNet and its superiority over the reference methods.

Although our method has achieved a state-of-the-art performance, there are some
limitations and room for improvement too. First, the number of spectral bands varies
across different datasets, which affects the equal partitioning of the input tensor Up-HSI
in the Input CCC module and limits the flexibility in choosing specific values. In the
future, we will consider adding a convolutional layer before the Input CCC module to
adjust the channel number of the input tensor. Second, both the encoder and decoder in
our network are composed of simple Conv Block modules, which have limited feature
extraction capability. In the future, we plan to incorporate lightweight Transformer modules
with global self-attention into the encoder and decoder to enhance the network’s ability
to extract global features. The last problem is the scarcity of training data, which causes
a limited generalization ability and poor performance on off-training test images. In the
future, we will conduct in-depth research on unsupervised pansharpening methods to
promote their application in practical scenarios.
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