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Abstract: Accurately extracting buildings is essential for urbanization rate statistics, urban planning,
resource allocation, etc. The high-resolution remote sensing images contain rich building information,
which provides an important data source for building extraction. However, the extreme abundance
of building types with large differences in size, as well as the extreme complexity of the background
environment, result in the accurate extraction of spatial details of multi-scale buildings, which
remains a difficult problem worth studying. To this end, this study selects the representative Xinjiang
Tumxuk urban area as the study area. A building extraction network (SCA-Net) with feature
highlighting, multi-scale sensing, and multi-level feature fusion is proposed, which includes Selective
kernel spatial Feature Extraction (SFE), Contextual Information Aggregation (CIA), and Attentional
Feature Fusion (AFF) modules. First, Selective kernel spatial Feature Extraction modules are used
for cascading composition, highlighting information representation of features, and improving the
feature extraction capability. Adding a Contextual Information Aggregation module enables the
acquisition of multi-scale contextual information. The Attentional Feature Fusion module bridges the
semantic gap between high-level and low-level features to achieve effective fusion between cross-level
features. The classical U-Net, Segnet, Deeplab v3+, and HRNet v2 semantic segmentation models
are compared on the self-built Tmsk and WHU building datasets. The experimental results show
that the algorithm proposed in this paper can effectively extract multi-scale buildings in complex
backgrounds with IoUs of 85.98% and 89.90% on the two datasets, respectively. SCA-Net is a suitable
method for building extraction from high-resolution remote sensing images with good usability and
generalization.

Keywords: high-resolution remote sensing imagery; building extraction; deep learning; semantic
segmentation

1. Introduction

Buildings are the main vehicle for human life and development. The building den-
sity contains key information for urban development. Accurate building detection data
play a vital role in environmentally friendly urban planning, business programming,
land use change detection, national defense construction, disaster monitoring, and early
warning [1–5]. For instance, analyzing building information through an integrated dis-
aster monitoring system allows for early detection of disaster signs, and after a disaster,
detailed building information facilitates the planning of new infrastructure, residential
areas, and public facilities [6,7]. With the continuous rapid growth of sensors and space
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techniques, the spatial resolution of remote sensing images (RSIs) is becoming higher, and
the update period is becoming shorter. Remote sensing data has been used on a large scale
to obtain building information [8,9]. Accurate and efficient extraction of buildings from
high-resolution RSIs remains a key direction of research due to the spectral differences in
buildings, the variety of building types and dimensions, and the influence of the complex
background environment [10–12].

Deep learning has seen extensive application in recent years, encompassing target de-
tection, image classification, and image segmentation [13]. Convolutional neural networks
(CNNs) can automatically extract and classify hierarchical features within a single model.
CNNs can also automate the feature selection process, as conducted by traditional meth-
ods [14]. A Fully Convolutional Neural network (FCN) [13] is based on traditional CNN
but replaces the fully connected layer of the classification network with a convolutional
layer. During down sampling, features are extracted, and up sampling is then employed
to recover the original image size. FCN is gradually becoming the basic framework for
many semantic segmentation networks [15,16]. Ronneberger et al. [17] propose a U-Net
network based on FCN. The encoder part learns low-level features from the input through
convolution and pooling operations. The decoder part uses convolution and upsampling
to ensure the original image size in the output, and cascading operations are performed
between the encoder and decoder. Thanks to the excellent architecture and powerful
performance of U-Net, it is widely used in building extraction tasks [18]. Si et al. [19]
improve the combination of encoder and decoder based on Deeplab v3+ [20], introduce
three parallel channel attention mechanisms to improve the extraction of deep features,
and realize high-accuracy building extraction. Seonsyeong et al. [21] realize high-accuracy
building extraction by applying HRNet-v2 [22] and combining the channel and spatial
attention modules to effectively learn important features, fusing richer cross-layer semantic
features, and improving both building extraction accuracy and speed. Shi et al. introduced
a spatial channel attention mechanism based on U-Net to improve the feature extraction
capability of the model [23]. Aryal incorporates multi-scale feature maps with parts of
a Feature Pyramid Network (FPN) into the U-Net framework to obtain higher building
extraction accuracy and robustness [24]. Xu proposes that the backbone of the U-Net
encoder is replaced by a ResNeXt101 network for feature extraction, and a feature pyramid
structure is used to fuse feature maps at different scales to improve the accuracy of building
segmentation for small sample sizes [25].

In recent years, Transformer has also been applied to building extraction, where its
powerful feature representation and ability to establish long-term dependencies between
pixels are important for building extraction. Li et al. embedded a transposed convolutional
sampling module incorporating multiple normalized activation layers into a decoder based
on the SegFormer network to overcome the problems of loss of detailed information about
local buildings and lack of information at a distance [26]. Wei proposed a multi-scale
adaptive segmentation network model (MSST-Net) based on the Swin transformer to re-
alize high-precision extraction of buildings [27]. Chen designed an efficient two-channel
transformer structure (SST) to realize the reduction of transformer computational complex-
ity [28]. Kirillov et al. used a large number of masks for training and proposed the Segment
Anything Model (SAM) that can segment any target object with pre-prompting [29]. Chen
et al. proposed the RSPrompter based on the SAM model in combination with prompt
learning, which enables SAM to produce semantically recognizable segmentation results
for remote sensing images [30]. Although Transformer has many advantages in building
extraction, its complexity is still large, and its performance may not be good when the
training dataset is small.

According to the above literature, the spectral differences, background complexity,
and large scale differences of buildings pose a challenge for extracting buildings in high-
resolution RSIs by directly utilizing existing semantic segmentation networks [31,32]. The
encoder in the semantic segmentation network lacks the ability to effectively capture low-
level feature representations, leading to reduced spatial information in building features
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and an abundance of redundant information. Consequently, it fails to convey the precise
spatial details of the buildings. The maximum pooling operation reduces computational
complexity by integrating global information. However, for feature maps with wide
perceptual areas, ordinary convolution can only capture local information. The jump
connection improves the utilization of underlying features and facilitates the incorporation
of high-level semantic information with low-level features. However, it ignores the effect of
superfluous information and the semantic gap between low-level features and high-level
features, thus limiting the performance of multiple scales of building extraction.

Deep learning being data-driven, it heavily relies on the diversity and quality of
datasets for effective building extraction. The current building extraction datasets mainly
include the WHU Building [33] and Massachusetts [34] datasets. The WHU Building
dataset includes a large range of satellite and aerial imagery, and the coverage mainly
includes Europe, the United States, New Zealand, and East Asia, with a variety of building
styles and dense building coverage. The Massachusetts dataset primarily comprises aerial
images of the Boston area, encompassing both urban and suburban regions. These two
datasets have been used in many studies [35–37], mainly for buildings with architectural
styles in foreign regions. Domestic towns, especially those with low urbanization, have
obvious differences between building styles and morphology and foreign buildings, which
makes the extraction of buildings more difficult, but the number of datasets extracted for
buildings in domestic towns and cities is relatively small at present.

To address the issue of inadequate spatial details in multi-scale building extraction,
this paper adopts the U-Net structure as the fundamental framework. The SFE module is
employed for accurate feature extraction, while the CIA module captures global information
from multi-scale perceptual fields, enabling precise building extraction in high-resolution
remote sensing images. The feature fusion is enhanced by adding the AFF mechanism, and
the imbalance between foreground and background categories of buildings is addressed
using a hybrid loss function. We selected Tumxuk City as the research subject and utilized a
UAV equipped with a visible camera to capture high-resolution images and label building
targets. This approach results in a diverse building dataset for Tumxuk City, comprising
various building types and challenging extraction scenarios. The dataset introduces new
requirements for the building extraction network and enriches the diversity of building
extraction datasets. The main contributions of this study can be summarized as follows:

(1) We use UAV remote sensing technology to construct the Tmsk building high-resolution
remote sensing building extraction dataset, which covers multiple types and scales of
buildings;

(2) We propose an effective building extraction model, SCA-Net, that can accurately ex-
tract buildings at different scales. We introduced SFE to enhance the feature extraction
capability of the network; by introducing CIA, we can improve the ability to detect
multi-scale buildings; and applying AFF increases the network’s capability to perceive
the details of buildings in complex environments;

(3) Our network, SCA-Net, is evaluated on two remote sensing building datasets, demon-
strating its robustness and superior accuracy compared to other building extraction
methods.

The main chapters of this paper are organized as follows: Section 2 describes the status
of the research area of this paper, including the general architecture of the proposed network,
the design of the feature extraction module, the design of the contextual information
aggregation module, and the design of the Attentional Feature Fusion module, in terms of
the main technical methods, data acquisition and dataset construction, the experimental
setup, the selection of evaluation metrics, and the introduction of the loss function. Section 3
presents the main experimental results. Section 4 discusses the work of this paper. Section 5
summarizes the work of this paper as well as the outlook for future work.
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2. Materials and Methods
2.1. Study Area

In this study, the urban area of Tumxuk, located in southwestern Xinjiang, China, was
selected as the study area, as shown in Figure 1. It is located at the southern foot of the
Tianshan Mountains and the northwestern edge of the Tarim Basin, with a warm-temperate
continental arid climate and a total area of 3664 km2. Located in the border zone between
China and Central Asia, there are some Central Asian influences in the architectural style,
and the buildings are usually in the form of flat-roofed, square, or rectangular buildings.
With the development of the times, Tumxuk has also seen many modern buildings appear,
especially in the commercial and downtown areas.
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Figure 1. Study area. A location map of the study area and a schematic diagram of some types of
buildings.

In summary, the architectural styles in the study area vary significantly, with a variety
of geometric attributes such as building shapes, sizes, and structures, as shown in Figure 2.
Specifically including high-rise buildings, mid-rise regular residential areas, mid-rise
irregular residential areas, low-rise scattered houses, and low-rise continuous houses, as
well as the existence of a significant proportion of self-built houses such as bungalows
and buildings in scale, due to the local climate and building habits, some buildings have
spectral characteristics that are highly similar to the background (roads and land), and
some houses are partially covered by vegetation.

Compared with the WHU building dataset in Figure 2d, the building environment in
the Tmsk building dataset is more complex, with some buildings being shaded by trees
more, as shown by the red circles in Figure 2. Many of the building roofs are chosen
to be made of materials such as cement boards, which are similar to the roads, they are
difficult to distinguish between foreground and background. They fit more into the Chinese
architectural style, as shown by the red boxes in Figure 2. Therefore, the test area selected
in this study is representative and enriches the diversity of building extraction datasets in
China, which is more difficult for the building extraction algorithm and has higher accuracy,
generalization, and usability requirements.
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Figure 2. Examples of typical buildings in the Tumk building dataset and the WHU building
dataset: (a) Low-rise buildings are scattered, similar in textural character to the background, and
heavily obscured by vegetation; (b) middle-rise and high-rise buildings have a wide range of size
types; (c) large building footprint and complex environment with many trucks and sheds in the
vicinity; (d) WHU building dataset typical building.

2.2. Methodology
2.2.1. Architecture Overview

The proposed network in this paper follows a classical end-to-end structure, com-
prising the encoder module, contextual information aggregation module, and decoder
module, as illustrated in Figure 3. The RSIs containing the building are fed into the encoder,
which automatically extracts high-level semantic features using the SFE feature extraction
module, which comprises multiple-level cascaded SFE units. The CIA module utilizes the
ASPP-HDC module to continuously aggregate semantic information about the building.
Subsequently, during upsampling, the decoder module employs the AFF module to merge
various levels of building features, generating the final building segmentation map.

The encoder module extracts low-level features using cascaded SFE units as the
backbone, and the input data are processed in four stages of repeated convolutional layers.
Each group of convolutional layers contains three SFE units, and different levels of low-
level features are generated using residual connections between each unit. The convolution
step of the first SFE unit in each group is set to 2, the feature map space resolution is reduced
by 1/2, and the number of channels doubles. In contrast, the resolution and number of
channels are adjusted using 1 × 1 convolution, as shown in Figure 4a, and the second and
third units are schematically shown in Figure 4b.

The CIA module captures multi-scale image contexts and semantic information about
architectural features by employing parallel multiple cavity convolutions with appropri-
ate expansion rates. Additionally, in stage 4, it aggregates low-level features with large
perceptual fields at different scales.
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stride = 1.

The decoder module employs bilinear interpolation and 3 × 3 convolution to restore
the feature map resolution. Despite the increased perceptual field due to down sampling,
valuable spatial information is lost, making it challenging to fully recover detailed global
semantic information through up sampling and standard convolution operations. So we
utilize the AFF module to address the semantic gap between low-level and high-level
features during the jump connection operation. This approach reduces noisy information
interference and enhances the utilization of relevant feature information. We apply the
AFF module to fuse low-level features from stages 1, 2, and 3 with high-level features
after upsampling, thereby recovering spatial information and highlighting building-related
details such as space, shape, and edge features while suppressing irrelevant backgrounds
like roads, trees, and farmland. The decoder restores the feature map to the original image
size by four times upsampling and finally outputs the building extraction results. To
prevent overfitting and improve the training speed, dropout [38] and batch normalized
(BN) [39] are applied after each convolution operation, respectively.

2.2.2. Selective Kernel Spatial Feature Extraction

Buildings have complex natural attributes and backgrounds, such as roofs with various
color, size, and shape features, and standard convolutional operations use a fixed perceptual
field while focusing on neighboring pixels, which cannot accurately obtain multiple scale
features and pixel distributions and provide a limited exploration of overall spatial and
channel relationships. Our study proposes an SFE convolution inspired by [40], as shown in
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Figure 5. The SFE convolution aims to extract building features while exploring the spatial
distribution patterns of pixels and the relationships between channels to highlight building
feature representations. The SFE convolution comprises three main parts: separation,
fusion, and selection. SFE convolution facilitates adaptive learning of feature expressions in
channel and spatial dimensions, allowing different neurons in the model to acquire channel
and spatial weights for each feature through three key steps.
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1. Separation: for any given feature map X ∈ RH×W×C, first two transformations with
kernel sizes 3 and 5 C1 : X → A1 ∈ RH×W×C and C2 : X → A2 ∈ RH×W×C . where
both C1 and C2 are composed of deep group convolution, batch normalization, and
ReLU [41] activation function sequences. To further improve the efficiency, the original
5 × 5 convolution kernel is replaced by an inflated convolution of size 3 × 3 and a
dilation rate of 2;

2. Fusion: First, the information from different branches is integrated, and the feature
maps A1 and A2 obtained through different-sized sensory fields are summed element
by element;

The fused features A ∈ RH×W×C undergo averaging pooling over channel dimensions
and global maximum pooling to optimize the spatial distribution information of each
feature, resulting in pooling results a1 and b1, respectively. a1 and b1 are fused for a
7 × 7 convolution operation to obtain the feature map F. Feature map F is obtained by
the sigmoid [42] activation function to generate the spatial attention feature map S. S can
effectively highlight the distribution of feature points. Then, feature map S is dotted with
feature map A to obtain feature map D ∈ RH×W×C. The calculation procedure is as follows:

D = σ( f7×7([AvgPool(A); MaxPool(A)]))·A (1)

where σ denotes the sigmoid activation function and f7×7 denotes the 7 × 7 convolution
operation.

After that, the spatial dimensionality of compressed feature map D ∈ RH×W×C is
compressed using global average pooling, embedding global information to generate the
channel vector E ∈ RC. The reduced dimensionality features are constructed by a simple
fully connected layer Z ∈ Rd×1, which guides the adaptive selection of features while
reducing the dimensionality to achieve better efficiency. The computational procedure is as
follows:

Z = C f c(E) = δ
(
B
(
Cgp(D)

))
(2)

where δ denotes the ReLU activation function and B denotes the regularization.
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3. Selection: The features after dimensionality reduction are selected adaptively at
different spatial scales using the channel attention mechanism and convolved with
the convolution kernels A, B ∈ RC×d, respectively, and then processed by Softmax to
obtain the channel attention information corresponding to each convolution kernel.
The computation process is as follows:

a =
eAZ

eAZ + eBZ , b =
eBZ

eAZ + eBZ (3)

where a, b denote the attention vectors corresponding to A1 and A2, respectively.

The final feature map Y ∈ RH×W×C is obtained by multiplying a, b, A1, and A2
channel by channel and adding them element by element with original feature map X. The
computational procedure is as follows:

Y = a·A1 + b·A2 + X (4)

The SFE unit is constructed using SFE convolution and residual structure. The number
of channels is first reduced using a 1 × 1 convolution kernel. Then, feature extraction is per-
formed using SFE convolution. Finally, the number of channels is recovered using a 1 × 1
convolution kernel, and the feature maps are output by element-by-element summation of
the input features connected by residuals.

2.2.3. Contextual Information Aggregation

After the feature extraction in the encoding stage, the Atrous Spatial Pyramid Pooling
module (ASPP) with an expansion rate set by the design principles of HDC [43] is intro-
duced. ASPP-HDC combines dilation convolution and spatial pyramid pooling, utilizing
multiple dilation convolutions with different expansion rates in parallel. This approach
increases the perceptual field of the convolution kernel without adding parameters, en-
abling the network to preserve more image features and capture multi-scale contextual
information for more accurate segmentation. The scale variability among buildings is
large, containing small buildings with rich local details and larger targets such as public
places and factories. Therefore, this study uses ASPP-HDC to extract multi-scale features
of buildings.

The ASPP-HDC module used in this paper consists of six branches, including a 1 × 1
convolutional kernel and four parallel 3 × 3 convolutional kernels with different expansion
rates. The expansion rates are set to 2, 4, 8, and 16 to prevent the influence of the gridding
effect on the building extraction while satisfying the acquisition of multi-scale information
above. After the global mean pooling of the input feature map, the number of feature map
channels is adjusted using a 1 × 1 convolution kernel and upsampling to the same size as
the other five branches using bilinear interpolation. Then the multi-scale feature maps of
the fused six branches are output through a 1 × 1 convolution kernel. The ASPP-HDC is
applied to the feature maps generated in the encoder section. The generated feature maps
are sent to the decoder section, as shown in Figure 6.

2.2.4. Attentional Feature Fusion

Most semantic segmentation networks directly use channel cascading or pixel summa-
tion for low-level feature and high-level feature fusion, which may result in the network
failing to learn adequate complementary information among cross-level features or even
having noisy and redundant information. Low-level features tend to contain more details
and local information during feature fusion, while high-level features have higher semantic
information. In this paper, the introduction of AFF allows the model to dynamically adjust
the level of attention given to high- and low-level features. Consequently, the attention
module enables the model to focus more on detailed information in the low-level features
and seamlessly integrate them with the high-level features, effectively bridging the gap be-
tween them. The AFF module is incorporated at the jump connection to fuse low-level and
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high-level features, resulting in the elimination of redundant information and a semantic
gap between different features.
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The structure of the AFF module is shown in Figure 7. The inputs to the AFF module
are the low-level features from the encoder G ∈ RH×W×C1 and the high-level features
from the decoder sampled by the decoder X ∈ RH×W×C2 , use 1 × 1 convolution kernel to
adjust the channel number of high-level features and low-level features; perform element-
by-element summing to generate fusion features; apply global average pooling operation
and 3 × 3 convolution kernel to generate features I ∈ RH×W with channel number 1; use
Sigmoid function to generate attention weight coefficients in the range of 0–1, where the
closer the value is to 1, the more valuable the feature is. The closer the value is to 1 means,
the more valuable the feature is, and finally, the generated weight coefficient vector is
multiplied by the feature X ∈ RH×W×C2 to obtain the final feature map H ∈ RH×W×C. The
calculation process is as follows:

I = f3×3(p( f1×1(G); f1×1(X))) (5)

H = σ(I)·X (6)

where f denotes the convolution operation, p denotes the global average pooling operation,
and σ denotes the sigmoid function.
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2.3. Data Acquisition and Dataset Construction

The mission used CW-20 composite with a UAV with a SONY-A7RII camera to obtain
visible images with 0.09 m ground resolution, 700 m relative flight height, 1791 m route
elevation, and 75% overlap, covering the whole Tumushuk urban area. The obtained
raw data were stitched and radiometrically corrected, and 2206 images of 2048 × 2048
were generated using the sliding window method. The buildings were labeled by manual
decoding, and the building area of less than 5% was removed. The final Tmsk building
dataset is 1323, randomly divided into 1058 training sets, 132 validation sets, and 133 test
sets. To avoid overfitting the network, the data are enhanced by random inversion, image
noise addition, and increasing image brightness.

To validate the generalization performance of the network, we use an aerial im-
age dataset from the WHU Aerial Building Imagery dataset, which is constructed from
Christchurch, New Zealand, covering an area of 450 square kilometers. It contains
8189 images of 512× 512 pixels with a ground resolution of 0.3 m. The training set contains
4736 images, and the validation and test sets contain 1036 and 2417 images, respectively.

2.4. Implementation Setting and Evaluation Indicators

All experiments in this paper are based on a Linux system equipped with 24 GB
of video memory, a NVIDIA GeForce RTX 3090, implemented using Python 3.9 and the
PyTorch deep learning framework, using the Adam optimizer [44], with an initial learning
rate of 0.0001, a sample size of 4 selected for each training, and 100 iterations for all
experimental networks.

To objectively evaluate the performance of the proposed network, four metrics com-
monly used for semantic segmentation are used in this paper, including Precision, Recall,
F1-score, and Intersection-over-Union (IoU), with the following equations:

Precision =
TP

TF + FP
(7)

Recall =
TP

TP + FN
(8)

F1− score =
2× Precision × Recall

Precision + Recal
(9)

IoU =
TP

TP + FP + FN
(10)

where TP is the number of actual building pixels classified as building pixels; FN is the
number of actual building pixels classified as background pixels; FP is the number of
background pixels classified as building pixels; and TN is the number of background pixels
classified as background pixels.

2.5. Loss Function

Since the pixel regions of buildings in remote sensing images vary in size, especially the
extremely high proportion of background pixels, this usually leads to a more background-
biased prediction of the network, which results in poor segmentation accuracy for buildings.
Therefore, this paper uses dice loss [45] and focal loss [46] to calculate the difference between
the actual and predicted values to train the model. Dice loss is a region-based loss that
calculates the entire image region and focuses more on mining the foreground, but the
training is quickly unstable. Focal loss is a variation of cross-entropy loss based on cross-
entropy loss. The focal loss is a variation of cross-entropy loss that introduces adjustable
factors on top of cross-entropy loss to reduce the weight of easily classified samples and
increase the weight of hard-to-classify samples, focusing on pixel-level loss calculation. The
fusion of the two loss functions helps the model learn the foreground knowledge better
and accelerates the convergence of the model simultaneously.
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Dice loss is defined as:

Ld = 1− 2∑N
i pigi

∑N
i p2

i + ∑N
i g2

i
(11)

where pi denotes the predicted result of pixel i, gi denotes the true labeling result of pixel i,
and N denotes the number of all pixels.

Focal loss is defined as:

L f = −α(1− pt)
γ log(pt) (12)

αi = 1− ri (13)

where the closer pt is to 1, the more accurate the pixel prediction is, the easier it is to
distinguish, and the less weight it takes up, allowing the network to focus on hard-to-
classify pixels. ri is the percentage of pixels in each category, αi is the weight of each
category, γ is the parameter controlling the degree of weight, and γ = 2 is taken in this
paper.

Therefore, the total loss function Lb in this paper is defined as:

Lb = L f + Ld (14)

where L f is the focal loss function and Ld is the dice loss function.

3. Results
3.1. Comparative Experimental Results on the Tmsk Building

To verify the effectiveness of the proposed SCA-Net, building extraction comparison
experiments are conducted with several mainstream semantic segmentation networks
on the Tmsk Building dataset, including U-Net, Segnet, Deeplab v3+, HRNet v2, and
SegFormer-B2 [47]. Building extraction results are shown in Figure 8.
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Remote Sens. 2023, 15, 4466 12 of 19

As shown in Figure 8, U-Net, Segnet, Deeplab v3+, and HRNet v2 algorithms extracted
most of the buildings, but there are still problems with extraction errors and missing
extractions. U-Net and SegNet have a large number of voids due to the lack of multi-scale
feature extraction capability, and Deeplab v3+ directly quadruples down sampling the
images at the beginning of the network. HRNet v2 uses direct pixel summation or merging
on channel dimensions for feature fusion, which loses the details and distinction of the
original features. The extracted results cannot focus on the edges of buildings or the shape
of the region, resulting in boundary adhesion and false detection. Due to the similar
spectral features of buildings and backgrounds in the first row and the second row of red
circles, building extraction is tough and challenging. SegFormer-B2 can extract the shape
information of buildings better, but the extraction results may occasionally show noise and
blurred boundary information.

The method proposed in this paper has a more complete extraction of small buildings,
sharper building edges, and can better overcome the interference of similar spectral features.
From the red circles in the fourth and sixth rows, we can see that for large-scale build-
ings, the extraction results of other methods have serious voids and building edge error
phenomena. However, the method proposed in this paper solves the above problems by
using the CIA module to extract multi-scale contextual information about buildings, which
helps the network better understand building boundaries, shapes, and details. In other
challenging building scenarios, such as building shadows (third row) and complex country
courtyard (fifth row) buildings, other methods suffer from incomplete extraction results
and inaccurate building outer boundary locations. The SCA-Net proposed in this paper
has the best extraction results through SFE and AFF, retaining more feature details while
suppressing the expression of redundant noise, integrating multiple scale of contextual
information, and accomplishing effective fusion of cross-layer information.

The quantitative analysis of the segmentation results of different algorithms on the
Tmsk Building dataset is shown in Table 1, and the metrics used for the quantitative
analysis are Precision, Recall, IoU, and F1-Score. Table 1 shows that the proposed SCA-Net
algorithm has 93.89% Precision, 90.95% Recall, 85.98% IoU, and 92.40% F1-Score on the
Tmsk Building dataset, achieving an outstanding level in all assessment indicators. Rows
1~5 show the semantic segmentation quantifiers of U-Net, Segnet, Deeplab v3+, HRNet v2,
and SegFormer-B2 comparison algorithms. Compared with the U-Net, Segnet, Deeplab
v3+, HRNet v2, and SegFormer-B2 comparison algorithms, the precision of the comparison
metrics improved by 1.46%, 4.66%, 1.33%, 1.32%, and 0.68%, respectively; the recall of the
metrics improved by 4.46%, 8.48%, 4.58%, 2.12%, and 1.08%, respectively; the IoU improved
by 3.69%, 10.09%, 4.27%, 3.67%, and 0.63%, respectively; the F1-Score improved by 3.05%,
6.68%, 3.04%, 1.72%, and 0.89%, respectively.

Table 1. Quantitative comparison of Precision, Recall, F1-score, and IoU in the Tmsk building dataset.

Method Precision (%) Recall (%) IoU (%) F1-Score (%)

U-Net 92.43 86.49 82.29 89.35
Segnet 89.23 82.47 75.89 85.72

Deeplab v3+ 92.56 86.37 81.71 89.36
HRNet v2 92.57 88.83 82.31 90.68

SegFormer-B2 93.21 89.87 85.35 91.51
SCA-Net 93.89 90.95 85.98 92.40

In summary, it can be seen from the segmentation indexes and comparison algorithms
that the SCA-Net algorithm proposed in this paper has a better segmentation effect in the
Tmsk Building dataset and can perform higher quality segmentation in remote sensing
building images in various complex scenes.
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3.2. Comparative Experimental Results on the WHU Building

To verify the generalization of the proposed SCA-Net, a building segmentation compar-
ison experiment is conducted with several mainstream semantic segmentation networks on
the building segmentation public dataset WHU Building, including U-Net, Segnet, Deeplab
v3+, HRNet v2, and SegFormer-B2. The segmentation results are shown in Figure 9.
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From Figure 9, it can be seen that the SCA-Net algorithm proposed in this paper
can better distinguish the background and foreground, which ensures the visualization
of the extraction results in a variety of situations, such as tree shadow occlusion, dense
building clusters, more significant buildings, small buildings, complex backgrounds, etc.
The extraction results of the U-Net, Segnet, Deeplab v3+, HRNet v2, and SegFormer-
B2 algorithms. The edge integrity of the U-Net, Segnet, Deeplab v3+, HRNet v2, and
SegFormer-B2 algorithms is poor, as shown by the red circle in Figure 9. In addition, the
U-Net, Segnet, Deeplab v3+, and HRNet v2 algorithms also have large building extraction
results in the void due to the insufficient feature extraction capability of the encoder part
and the insufficient sensory field size, as shown in Figure 9. The Segnet algorithm also
has the phenomenon of omission in the extraction of the small buildings as well as the
phenomenon of incomplete extraction due to the lack of feature information in the lower
layers.

As shown in Figure 9, the algorithm proposed in this paper benefits from the intro-
duction of SFE to better extract the feature information of the building, the addition of the
CIA module to obtain the contextual information of the larger and more scaled buildings,
and the introduction of AFF to better guide the feature fusion at the same time to eliminate
the interference of redundant noise, so the SCA-Net algorithm can effectively retain the
boundary information of the building in complex environments. The extraction results
are precise contours, and the extraction of large buildings is incomplete. The result is a
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clear outline; the extraction of large buildings is complete, and small buildings are also
effectively extracted.

The results of the quantitative analysis of the segmentation results of different algo-
rithms on the WHU Building dataset are shown in Table 2. The metrics used in the quanti-
tative analysis are Precision, Recall, IoU, and F1-Score. As shown in Table 2, the proposed
SCA-Net algorithm has 95.18% Precision, 92.59% Recall, 89.90% IoU, and 93.87% F1-Score
on the WHU Building dataset. Rows 1~7 show the semantic segmentation quantifiers of
U-Net, Segnet, Deeplab v3+, HRNet v2, SST, MSST-Net, and SegFormer-B2 comparison
algorithms. Compared with the U-Net, Segnet, Deeplab v3+, HRNet v2, SST, MSST-Net,
and SegFormer-B2 comparison algorithms, the comparison metrics Precision improved
by 2.13%, 5.34%, 2.73%, 1.36%, and −1.06%, respectively; the metrics Recall improved by
2.53%, 5.81%, 3.62%, 0.61%, and 1.23%, respectively; the IoU improved by 2.51%, 6.87%,
3.31%, 1.65%, −0.58%, 1.9%, and −0.13%, and the F1-Score improved by 2.23%, 5.59%,
3.19%, 0.98%, −1.1%, 5.67%, and 0.13%, respectively. It is again verified that the proposed
method in this paper is robust enough to handle buildings in multiple scenarios with strong
robustness. Although the SCA-Net proposed in this paper is slightly lower than the SST
(R18, S4) algorithm in terms of evaluation metrics, the model complexity of SST (R18, S4) is
the highest among the SST family of algorithms.

Table 2. Quantitative comparison of Precision, Recall, F1-score, and IoU in the WHU building dataset.

Method Precision (%) Recall (%) IoU (%) F1-Score (%)

U-Net 93.05 90.06 87.39 91.53
Segnet 89.84 86.78 83.03 88.28

Deeplab v3+ 92.45 88.97 86.59 90.68
HRNet v2 93.82 91.98 88.25 92.89

SST - - 90.48 94.97
MSST-Net - - 88.00 88.20

SegFormer-B2 96.24 91.36 90.03 93.74
SCA-Net 95.18 92.59 89.90 93.87

In summary, it can be seen from the segmentation metrics and comparison algorithms
that the proposed SCA-Net algorithm has a better segmentation effect in the WHU Building
dataset, and it is also verified that SCA-Net has good extraction ability and generalization
performance in different scenarios.

3.3. Ablation Study

To verify the effectiveness of each module of SCA-Net, ablation experiments are con-
ducted on the Tmsk Building dataset based on SCA-Net. Using the semantic segmentation
model U-Net as the baseline model (B), we successively added Selective kernel spatial Fea-
ture Extraction (SFE), Contextual Information Aggregation (CIA), and Attentional Feature
Fusion (AFF), mainly from the segmentation results of Precision, Recall, IoU, and F1-score
four indicators for comparison, as shown in Table 1. The segmentation results are shown in
Figure 10.

After adding AFF based on baseline, the network pays better attention to the target
region, suppresses the image of redundant information on segmentation results, and
effectively solves the problem of misclassification in noisy backgrounds, as shown in the
red circle in the first row in Figure 10. The use of SFE for feature extraction significantly
improves the completeness of the network for small building extraction. It solves the
problem of mis-segmentation for courtyard buildings with similar background colors, as
shown in the red circle in the second row of Figure 10. The complete extraction of large
buildings is achieved by using cavity convolution with a more significant cavity rate to
reduce the cavity phenomenon of large building extraction results, as shown in the red
circle in the third row of Figure 10. The SCA-Net proposed in this paper realizes the
accurate extraction of multi-scale buildings against complex backgrounds.
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As shown in Figure 11, after Baseline introduces the AFF module, Precision, Recall,
IoU, and F1-score are improved by 0.74%, 2.53%, 1.28%, and 1.69%, respectively, which
proves that the Attention Fusion Module removes the disparity between the high- and low-
level features during the feature fusion process, makes full use of the low-level features
featuring diverse spatial information, and guides the high-level features to focus on the spatial
location of the foreground. Precision, Recall, IoU, and F1-score improved after using the SFE
module as an encoder by 0.89%, 4.16%, 2.18%, and 2.61%, respectively, which verified the
feature extraction ability of the SFE conv. After adding the CIA module, Baseline obtains
an improvement of 1.46%, 4.46%, 2.69%, and 3.04% in Precision, Recall, IoU, and F1-score,
respectively, demonstrating the usefulness of the HDC-compliant nulling-rate ASPP design
for feature capture and global feature integration of buildings at various scales.
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4. Discussion

Buildings are one of the most important man-made features in remote sensing imagery,
and researchers have proposed various methods to accurately extract building information.
Huang et al. [48] proposed to use the Morphological Building Index (MBI) method to
extract buildings in high-resolution imagery, and then Yuan [49] used a CNN network-
based method to apply it to the accurate extraction of buildings.

In the building extraction task, the different materials (concrete, asphalt, and metal)
between the buildings lead to large differences in the spectral features, but some of the
buildings are extremely similar to the spectral features of the roads in the background,
which puts forward strict requirements on the feature extraction method. Deepening the
network depth and expanding the scale can have a certain effect, but there will be high
network complexity and overfitting phenomena. This paper proposes that the SFE conv
module uses the attention mechanism at the same time as the feature extraction so that
the network has a good generalization performance while focusing on the building itself
during the feature extraction.

The size difference between the buildings is huge. For small buildings, the low-level
features are very important as the target itself has a limited width of only a few pixels,
and the spatial location information of the target becomes unstable after multiple down
sampling, so the spatial location information of the low-level features is more accurate. The
fusion of bottom layer features and high layer features can solve the problem of accurate
extraction of small buildings. In this paper, the low-level features are used to guide the
high-level features through the AFF module to add more spatial location information
while eliminating the interference of redundant information from the low-level features.
In addition, the extraction of multi-scale buildings relies on multi-level receptive fields
and global information; using hollow convolution to expand the receptive field or using
deep-level features can play a role. This paper uses the CIA module in the deepest part
of the deepest network to realize the acquisition of multi-scale receptive fields and global
information, which plays an important role in the network.

Although the method proposed in this paper obtains good results in terms of usability
and robustness, it still has some limitations. For example, in the extraction of low-rise
bungalows and relatively old buildings in the suburbs of the city, although the extraction
method in this paper is indeed better than other methods, the visualization effect is still
somewhat different from that of high-rise buildings and other buildings with distinctive
features, and the roofs of neighboring buildings are not well recognized as separate individ-
uals. Shadows are an important factor that has to be considered when extracting buildings
from remote sensing images. Shadows can have an impact on the shape and location
information of a building, which may lead to blurring of the building outline, making it
difficult to accurately determine the boundary information of the building, and incorrectly
identifying the shadowed area as part of the building. Therefore, in future research, we will
study the morphological processing method of the neighbor relationship between buildings,
introduce building edge information, use image enhancement techniques to improve the
effect of shadows in the impact, and develop the multi-sensor complex building extraction
method to further improve the effect of neighboring building extraction.

5. Conclusions

Aiming at the problems of low extraction accuracy and unclear building boundaries
of the existing building extraction methods. Firstly, we select the Tumxuk urban area,
which has various types of buildings in the town and is challenging to extract, as the
study area. Data acquisition is carried out using remote sensing technology to produce
the Tmsk Building dataset, which enriches the diversity of the building extraction types
and puts forward new challenges to the existing building extraction algorithms. Secondly,
the SCA-Net algorithm is proposed, where the encoder part consists of a cascade of SFE
units to improve the extraction of building features; the CIA module is used to obtain a
multi-scale sensory field for more comprehensive semantic information and to enhance the
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completeness of the network for the extraction of multi-sized buildings; and the decoder
part uses the AF for the effective fusion of cross-level features to achieve a fine-scale
inter-scalar transfer of information, which improves the focus on building targets while
eliminating redundant information. Beyond that, we are using an improved loss function
to balance the building-to-background ratio to improve the prediction accuracy of building
edges and the ability to retain details. Finally, the ablation experiments are conducted on
the Tmsk building dataset to validate the effectiveness of each module. In comparison with
U-Net, Segnet, Deeplab v3+, HRNet v2, SST, MSST-Net, and SegFormer-B2 comparison
algorithms on the Tmsk building dataset and the WHU building dataset, the experimental
results show that the algorithm proposed in this paper overcomes the building shadows
and tree occlusions, dramatically reduces the phenomenon of omission of extraction for
small buildings and extraction of voids for large buildings, and that the extraction effect is
outstanding with high extraction accuracy and good generalization performance.
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